
An Efficient Staging Algorithm for
Binding-Time Analysis

Takuma Murakami1, Zhenjiang Hu1,2,
Kazuhiko Kakehi1, and Masato Takeichi1

1 Department of Mathematical Informatics,
Graduate School of Information Science and Technology, University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
{murakami,kaz}@ipl.t.u-tokyo.ac.jp
{hu,takeichi}@mist.i.u-tokyo.ac.jp

2 PRESTO 21, Japan Science and Technology Corporation

1 Introduction

Binding-Time Analysis (BTA) is one of the compile time program analyses which
is a general framework for program optimization and program generation [1].
BTA divides a whole program into static and dynamic parts from a binding-
time specification so that partial evaluators can perform static computations in
compile time [2]. A binding-time specification gives information about availabil-
ity of data: static data are available at compile time while dynamic data are
available at run time. From a binding-time specification of the input BTA de-
termines which computation can be done statically by propagating information
on static data. Partial evaluators specialize the program for the static data by
using the information from BTA to generate a more efficient program than the
original one.

By now several algorithms for BTA such as abstract interpretation [3], type
inference [4], constraint solving [5] or type based search [6] have been developed.
Looking at the type directed searching approach proposed by Tim Sheard and
Nathan Linger [6], we found two unclear points. First, it is not obvious how
the algorithm can cut off the searching space, and the precise running time is
left unestimated. The second point is the accuracy of the solution. The result
obtained by the algorithm is good, but may not be best. These two kinds of
uncertain are due to the existence of heuristics. We make use of the established
method of program transformation, the optimization theorem for the maximum
marking problem [7] [8]. It transforms a naive algorithm to an efficient one by
means of dynamic programming. Because it formally gives the estimation of
computation complexity and guarantees of optimality of solutions with respect
to given weight functions, we get a clear algorithm.

The main contribution of our algorithm is to avoid iterations in BTA. Because
of the finiteness of binding-time, we are able to compute all possible binding-time
annotations by only one traversal over the given program. The naive algorithm
in this approach obviously requires a large table to memoize intermediate results
but we address the problem by applying the optimization theorem. The theorem

drastically reduces the intermediate table if a problem is in a suitable form in
which we are to formalize the original BTA problem.

Moreover, our algorithm computes the optimal solution under some given
measurement of optimality. Generally an expression has multiple ways of binding-
time annotations that conform to given binding-time specification. In such cases
we want to select the optimal one as the result. Though the measurement of
optimality is up to users, circumstances and purposes, a result which computes
more parts in static is normally better than the others. Our algorithm allows
users to define their own measurement, and it derives the optimal solution under
the measurement.

In this paper we formalize the staging problem that we solve in Section 2. In
Section 3 we restate the staging problem from the perspective of the maximum
marking problem to apply the optimization theorem. Section 4 briefly shows the
derived efficient staging algorithm. Section 5 concludes.

2 The Staging Problem

In this section we describe the problem to be solved. After introducing the sub-
ject language of our algorithm in Section 2.1 we state staging problem in Sec-
tion 2.2.

2.1 A Simple Staged Language

In this paper we deal with the staged ML of MetaML [9] as the subject language.
MetaML is a dialect of Standard ML with staged computation. In short, a piece
of code in stage i is data in stage i + 1 in MetaML. It adds two notations to
operate on stages. First, angle brackets (<>) are called brackets and bring up
surrounded expression into one upper stage. For instance the expression <5>
denotes stage 1 code which results in the value 5 if executed. Types also reflect
stages, hence the type of the expression is <int>. Second, tildes (~) are called
escapes. Placing an escape just before an expression drops down its stage. It
extracts the piece of code from the expression and replaces original expression
with that. It should be noted that escapes must occur in stage 1 or higher because
their purpose is to construct a new piece of code from other ones. For example
in the case x = <5-2>, the expression <3 + ~x> evaluates to <3 + 5 - 2>.

The abstract syntax of the subject language is defined by BNF as in Fig. 1.
There are staged expressions (ē) and staged types (t̄) in addition to familiar
expressions (e) and types (t). Here we consider only integers (I) and booleans
(B) as values.

For example of the language, a staged version of an increment function is
defined as follows (the concrete syntax of MetaML is based on Standard ML).

val inc’ = fn x:<int> => < ~x + 1 >;

Its type is
<int> -> <int>

e ::= c | x | λx : t.ē | ē ē | if ē ē ē

t ::= I | B | t̄ → t̄

ē ::= e | 〈e〉 | ˜e

t̄ ::= t | 〈t〉

Fig. 1. The subject language

which means it accepts a piece of code yielding an integer and returns another
piece of code yielding the incremented integer.

2.2 Staging

The staging problem is essentially much like BTA problem, except that it uses
bracket and escape notations of MetaML rather than static and dynamic nota-
tions.

In order to formalize our staging problem we first introduce the notion of
erasure. Intuitively, we can gain the erasure of a given expression by removing
brackets and escapes. The function E defined below recursively computes the
erasure of a given expression.

E(c) = c E(〈e〉) = E(e)
E(x) = x E(˜e) = E(e)
E(λx : t.ē) = λx : t.E(ē)
E(ē1 ē2) = E(ē1) E(ē2)
E(if ē1 ē2 ē3) = if E(ē1) E(ē2) E(ē3)

Staging problem is formalized in [6] as follows: Given an unstaged expression
e of type t and a desired staged type t̄, staging is to find the optimal staged
expression ē which has the type t̄ and its erasure is e. In general, such ē is not
unique so we intend to give the optimal one under an estimation of optimality.

For example of staging, consider the ML power function which computes n-th
power of x:

fun pow n x = if n = 0 then 1 else x * pow (n-1) x

Note that its type is
int -> int -> int

The left tree in Fig. 2 shows the body of this pow function as a syntax tree.
Assume that we want to fix the first parameter n to a value and call it repeat-

edly with many different x’s. Then we can give the binding-time specification of
the desired function as

int -> <int> -> <int>

if

1=

n 0

x-

n 1

*

x pow

if

1=

n 0

x-

n 1

*

x pow1

<> <>

~ ~

Fig. 2. Syntax tree of pow and pow1

It means that the first parameter to this function is a normal value whereas the
second parameter is a piece of code which yields an integer value when executed.
From the definition of pow and the binding-time specification we expect to get
the staged version of the power function

fun pow1 n x = if n = 0 then <1>
else < ~x * ~(pow1 (n-1) x) >

which is the right tree of Fig. 2. Note that stage notations like brackets and tildes
are not nodes in the figure; instead they are represented as marks on nodes. The
figure illustrates the basic idea of our approach to regard the staging problem as
a marking problem. Our algorithm indeed derives the definition of pow1 above.

3 An Optimal Staging Algorithm

Our basic policy is to develop an algorithm to solve the staging problem in
terms of algorithm for the maximum marking problem and applying the opti-
mization theorem [7] to make the algorithm efficient. To achieve this goal, our
first algorithm must satisfy conditions required by the optimization theorem. In
this section we design our first algorithm for the maximum marking problem in
Section 3.1 and apply the optimization theorem to the algorithm to derive the
efficient algorithm in Section 3.2.

3.1 Staging as a Maximum Marking Problem

Maximum Marking Problem (MMP for short) [7] is a class of problems on re-
cursive data structures. To focus on our algorithm we discuss the syntax tree of
the subject language here. MMP is the problem to find a marking on the data
structure that accomplishes maximum weight by means of a weight function.

Mark Weight

None 0 no staging
<> 1 brackets
~ 3 escapes

Fig. 3. Mapping from marks to weights

We can consider multiple marks, a predicate to define acceptable markings and
a weight function to evaluate total weight of marked data structures. A naive
solution of MMP is

1. to generate all possible markings,
2. to take valid markings which satisfy the predicate p, and
3. to return the maximum one according to the weight function w.

As we regard the staging problem as a marking problem like Fig. 2, we con-
struct an algorithm to solve the problem by suitably selecting marks, a predicate
and a weight function.

First, considering bracket and escape as the two marks for syntax tree is
quite natural. A syntax tree with no marks represents the unstaged expression.
We can get erasure of an expression by stripping all marks from the syntax tree
of it.

Second, the predicate p judges validity of markings. Only valid markings
can be solution of problem. We employ type judgment as the predicate in our
algorithm so that it always returns correctly typed expressions as the result.
The type judgment includes staged type judgment as well as ordinary ML type
judgment. Section 4.1 illustrates some more about the staged type judgment.

Finally, we consider the weight function w which determines the way to se-
lect the optimal solution. It is basically composed of two parts: a mapping from
each mark to weight and a recursive function that calculates the weight of a
parent node from the weights of child nodes. Since the goal of staging is mak-
ing computations in earlier stages as possible, escapes are preferred to brackets
which make computations dynamic. We give higher weight to escape marks than
bracket marks to represent our intention in the algorithm. Our current system
gives the weight 3 to escapes and 1 to brackets as shown in Fig. 3. For the latter
component of w, we simply sum up the weights of all child nodes. It might be
the simplest form of weight function but it works fine for our small experiment.

3.2 Solving the Staging Problem Efficiently

The optimization theorem [7] for MMP eliminates the computational explosion
caused by the naive solution. It gives a transformation from a naive algorithm
to a linear-time algorithm provided p and w satisfy the following conditions:

1. the number of marks is finite

2. p is in the form of catamorphism
3. domain of p is finite
4. w is in the form of catamorphism

where catamorphism is a generalized form of bottom-up recursive functions on
recursive data structures [10]. We represent programs as syntax trees with 4
kinds of nodes, therefore catamorphism on the syntax trees is defined as follows:

([φ1, φ2, φ3, φ4]) (V e) = φ1 e
([φ1, φ2, φ3, φ4]) (L e r1 r2)

= φ2 e (([φ1, φ2, φ3, φ4]) r1) (([φ1, φ2, φ3, φ4]) r2)
([φ1, φ2, φ3, φ4]) (A e r1 r2)

= φ3 e (([φ1, φ2, φ3, φ4]) r1) (([φ1, φ2, φ3, φ4]) r2)
([φ1, φ2, φ3, φ4]) (I e r1 r2 r3)

= φ4 e (([φ1, φ2, φ3, φ4]) r1) (([φ1, φ2, φ3, φ4]) r2) (([φ1, φ2, φ3, φ4]) r3)

Note that the data constructors V , L, A, and I corresponds variables, lambda
abstractions, applications, and conditionals (if-then-else’s) respectively.

In our algorithm described in the previous section marks are bracket and
escape. Thus the number of marks is 2, which is of course finite and satisfies the
condition for the optimization theorem.

Type judgment is performed in a recursive way from subexpressions to larger
pieces of expressions. It is exactly the form of catamorphism which is required
by the optimization theorem. Moreover, the domain of type judgment is the type
of subexpressions. It is finite for any programs and usually small enough. This
fact enables the application of optimization theorem.

The weight function we employ is also a catamorphism because of the simple
recursive form of summation. We can precompute some information on each
node at preprocessing phase and improve weight function by making use of the
additional information.

As a result, our choice of marks, a predicate and a weight function satisfies
the conditions required by the optimization theorem so that we are able to obtain
an efficient algorithm for staging.

4 Implementation

The optimization theorem transforms a naive algorithm to the efficient one.
Although the program transformation is formally defined, it is somewhat com-
plicated step to derive the efficient algorithm. We derived the efficient algorithm
for staging from the naive one and implement the algorithm in a tiny system
using the language Haskell [11]. The system accepts the language defined in
Section 2.1 and apply our new algorithm to obtain the staged expression. For
the sake of simplicity current system is implemented rather naively though the
algorithm is not naive.

In this section we briefly describe the algorithm we implement. Section 4.1
and Section 4.2 formalize type checking algorithm and weight function by means

of catamorphism [10]. Section 4.3 shows the core algorithm which fuses the mark-
ing generation, the type checking, and the weight function into one catamor-
phism.

4.1 Type Judgment

The type judgment, which is the predicate in our algorithm, is formalized as a
catamorphism of a series of functions φi. The catamorphism scans the syntax
tree in bottom-up way, applies φi depending on the type of node, and yields the
final result (the type of the whole program or a type error).

For instance, φ3 judges the application case

Γ `s1 e1 : t1 Γ `s2 e2 : t2
Γ `s e1 e2 : t

A

where the subscripts represent the stages of (sub)expressions. The return value
of

φ3 e∗ (t1, s1) (t2, s2) s

is (t, s) if the judgment holds, or ⊥ (denoting type errors) if it does not hold.
Note that the arguments (t1, s1) and (t2, s2) are results of the type judgments
of subexpressions e1 and e2, which recursively performed by the catamorphism.

4.2 Weight Function

Similar to the type judgment in the previous section, the weight function is also
defined by catamorphism as

w = ([µ1, µ2, µ3, µ4]) ◦map f

where µ1 e = e

µ2 e r1 r2 = e⊕ r1 ⊕ r2

µ3 e r1 r2 = e⊕ r1 ⊕ r2

µ4 e r1 r2 r3 = e⊕ r1 ⊕ r2 ⊕ r3

The function f computes weights for each marked node of syntax tree, and
then the catamorphism accumulates the tree of weights. The binary operator ⊕
characterizes how to combine the weights of subexpressions into one value. In
our system we currently use + for ⊕.

4.3 Derived Algorithm

Applying the optimization theorem to the naive algorithm composed of the type
judgment (Section 4.1) and weight function (Section 4.2) we derived an efficient
algorithm for staging as in Fig. 4. The function core plays the central role in
our algorithm. It takes two arguments: t0 is the desired staged type and e is

the expression to be staged. The return value is the staged version of e. This
corresponds the concrete program

stage e0 = e at t0;

in our system.
In the algorithm the three steps in the naive algorithm namely

1. generation of all possible markings,
2. staged type checking, and
3. selection of the optimal solution

are fused into one large loop in the form of catamorphism. When ψi is applied
to each node by the catamorphism, it performs three steps above. In the body of
ψ3 in Fig. 4 the list comprehensions (e∗ ← maks e and s ← Stage) generate all
possible staged types as step 1. The generated pairs are immediately compared
with the recursive parts (candi) and only valid pairs are filtered and processed
further.

The elements of the list comprehension have their staged types, weights and
marked tree itself. There exists the type judgment (φ3 e∗ (t1, s1) (t2, s2) s)
described in Section 4.1 that checks the type as soon as possible. The second
element of the triplet (f e∗ ⊕ w1 ⊕ w2) makes use of f and ⊕ which are the
components of weight function as in Section 4.2. The last element of the triplet
records the marked subtree under current node to return as result.

The function eachmax aggregates the list to reduce intermediate results. If
there are plural elements of the same staged type, eachmax returns the one
having the maximum weight. Thus the length of the list returned by ψi is at
most |Type|, though it is usually much smaller.

5 Conclusion

We have developed an efficient algorithm to solve staging problems as maximum
marking problems. The optimization theorem has played an important role to
derive efficient solutions. The complexity of running time is certainly reduced
though the constant factor is rather big. We should also reduce the constant by
improving both algorithm and implementation.

Due to the optimization theorem, our algorithm runs in

O
(
(|Type| × |Stage|)3 × |Mark| × n

)
.

Here |Stage| is a small number (2 for static and dynamic case) and |Mark| is
2 (bracket and escape). |Type| is the maximum arity of all functions within
the analyzed program. It is naturally finite for any programs and usually small
number which seldom exceeds 8.

Besides the reduced running time our algorithm can be extended in some
directions. We already have extended Stage from 2 stages to 3 stages. Thanks to
the optimization theorem, we just needed to rewrite stages = [0..1] to stages =

core :: Type → E α → E α∗

core t0 e =
let opts = ([ψ1, ψ2, ψ3, ψ4]) e
in snd (reduce (↑fst) [(w, r∗) | (((t, s),), w, r∗) ← opts, accept (t, s)])

where ψ3 e cand1 cand2 =
eachmax [((φ3 e∗ (t1, s1) (t2, s2) s, s), f e∗ ⊕ w1 ⊕ w2, A e∗ r∗1 r∗2)

| e∗ ← marks e, s ← Stage,
(((t1, s1), s1), w1, r

∗
1) ← filter (stageEq (δ e∗ s)) cand1,

(((t2, s2), s2), w2, r
∗
2) ← filter (stageEq (δ e∗ s)) cand2]

marks e = [(e, m) | m ← Mark]
stageEq s (((,), s′), ,) = s == s′

δ e∗ s = s
accept (t, s) = t == t0 && s == 0
φ3 e∗ (t1, s1) (t2, s2) s = type judgment in Section 4.1
(f,⊕) = a part of weight function in Section 4.2

Fig. 4. Core algorithm of staging

[0..2] in our Haskell program to obtain the 3-stage algorithm. In this case one
node cannot have more than one mark, so 〈〈x〉〉 is not allowed. It can be addressed
by adding the new mark <<>> to Mark. Another opportunity of extending Mark
is to support more syntaxes on stages. Our system actually supports the mark
lift that corresponds the keyword lift in MetaML. All the extensions are in the
framework of MMP so that the optimization theorem is applicable.

The last point is the weight function. Because of the modularity of the al-
gorithm we can easily redefine the weight function and apply the optimization
theorem to get an improved staging algorithm. The optimization theorem guar-
antees that the derived algorithm always computes the optimal solution with
respect to the given weight function, hence the refinement of the weight function
is the key of our algorithm to get more accurate staging algorithms. Although
current system employs rather simple weight function, we are trying out other
measurements of optimality. For example, we can consider another weight func-
tion which takes account of the number of child nodes.

References

1. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall (1993)

2. Jones, N.D.: An Introduction to Partial Evaluation. ACM Computing Surveys 28
(1996) 480–503

3. Consel, C.: Binding Time Analysis for Higher Order Untyped Functional Lan-
guages. In: Proceedings of the 1990 ACM conference on LISP and functional
programming, ACM Press (1990) 264–272

4. Henglein, F.: Efficient Type Inference for Higher-Order Binding-Time Analysis.
In: Proceedings of the Fifth International Conference on Functional Programming

Languages and Computer Architecture. Volume 523 of Lecture Notes in Computer
Science., Cambridge, USA, Springer-Verlag (1991) 448–472 Lecture Notes in Com-
puter Science, Vol. 523.

5. Glück, R., Jørgensen, J.: Fast Binding-Time Analysis for Multi-Level Specializa-
tion. In: Proceedings of Perspectives of System Informatics. (1996) 261–272

6. Sheard, T., Linger, N.: Search-Based Binding Time Analysis using Type-Directed
Pruning. In: Proceedings of the ACM SIGPLAN Asian Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, Aizu, Japan (2002) 20–
31

7. Sasano, I., Hu, Z., Takeichi, M., Ogawa, M.: Make it Practical: A Generic Linear-
Time Algorithm for Solving Maximum-Weightsum Problems. In: Proceedings of
the Fifth ACM SIGPLAN International Conference on Functional Programming,
Montreal, Canada (2000) 137–149

8. Sasano, I., Hu, Z., Takeichi, M.: Generation of Efficient Programs for Solving
Maximum Multi-Marking Problems. In: Workshop on the Semantics, Applications,
and Implementation of Program Generation. Volume 2196 of Lecture Notes in
Computer Science. Springer-Verlag, Firenze, Italy (2001) 72–91

9. Sheard, T.: Using MetaML: A Staged Programming Language. In: Advanced
Functional Programming. Volume 1129 of Lecture Notes in Computer Science.,
Springer-Verlag (1998) 207–239

10. Bird, R., de Moor, O.: Algebra of Programming. Prentice Hall (1997)
11. Bird, R.: Introduction to Functional Programming using Haskell (2nd edition).

Prentice Hall (1998)

