
Deterministic Second-order Patterns in Program
Transformation

Tetsuo YOKOYAMA1, Zhenjiang HU1,2, and Masato TAKEICHI1

1 Department of Mathematical Informatics, Graduate School of Information Science
and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656,

JAPAN
yokoyama@ipl.t.u-tokyo.ac.jp, {hu,takeichi}@mist.i.u-tokyo.ac.jp

2 PRESTO21, Japan Science and Technology Corporation

Abstract. Higher-order patterns, together with higher-order matching,
enable concise specification of program transformation, and have been
implemented in several program transformation systems. However, higher-
order matching generally generates nondeterministic matches, and the
matching algorithm is so expensive that even second-order matching is
NP-complete. It is orthodox to impose constraint on the form of pat-
terns so as to obtain the desirable matches satisfying certain properties
such as decidability and finiteness. In the context of unification, Miller’s
higher-order patterns have a single most general unifier, while unification
of general patterns is nondeterministic (and even undecidable). We re-
lax the restriction of his patterns without changing determinism in the
context of matching instead of unification. As a consequence, our deter-
ministic second-order pattern covers a wide class of useful patterns for
program transformation. Our deterministic matching algorithm is as fast
as the first-order matching algorithm, almost in proportion to the size of
the term.

Keywords: Higher-order pattern matching, Functional Programming,
Program Transformation, Fusion Transformation.

1 Introduction

Patterns, together with pattern matching algorithms, play an important role in
specification of transformation rules as well as implementation of transformation
systems. Usually, the more flexible the patterns are, the more difficult it is to
design efficient matching algorithms. The first-order patterns are simple and the
first-order matching algorithms are cheap and deterministic, but the first-order
patterns lack descriptive power. In contrast, the second- (or higher-) order pat-
terns [1–3] are flexible enabling concise specification of powerful transformation,
but the second-order matching algorithms are expensive and nondeterministic.

Consider, as an example, the (cheap) fusion transformation [4, 5], which is
to optimise programs by eliminating unnecessary intermediate data structures

passed between functions. The basic fusion transformation rule (in Haskell like
notation [6]) is:

a⊗ f r = f(a⊕ r)
f . foldr (⊕) e = foldr (⊗) (f e)

which says that a composition of function f with a foldr can be fused into
a single foldr, provided that one can find a function ⊗ satisfying the fusible
condition, namely a⊗f r = f (a⊕r) holds. However, specification of this simple
transformation rule with the first-order pattern has proved to be a challenge [7].

Notice that the key step in fusion transformation is to find a function ⊗
meeting the fusible condition. This is actually a higher-order matching problem:
matching the higher order pattern λa r. a⊗ f r with the term3 λa r. f (a⊗ r) to
obtain a substitution (definition) for the pattern variable⊗. To be more concrete,
let us see the fusion of the following program for computing the sum of squares
of each element of a list4.

sumsq = sum . foldr (λa r. a ∗ a : r) []
where sum [] = 0

sum (a : x) = a + sum x

With the fusion rule, we can obtain sumsq = foldr (⊗) 0, if we can find a function
⊗ such that the pattern λa r. a⊗sum r can match with the term λa r. a∗a+sum r,
the normalised form of λa r. sum (a⊕ r) where ⊕ = λa r. a ∗ a : r. Applying the
second-order matching algorithm immediate yields the match:

{⊗ 7→ λx y. x ∗ x + y}.

It is worth noting that while the second-order matching is powerful enough to
find the solution, the first-order matching will give no solution.

Despite the attractive power of higher-order patterns and higher-order match-
ing, there are several significant objections to the use of higher-order matching
for implementing program transformation, particularly in functional languages.

– First, higher-order matching is known to be so expensive that even second-
order is NP-complete [8]. Therefore, a real efficient implementation is out of
the question.

– Second, higher-order matching algorithms are generally nondeterministic,
resulting in more than one solution. Unlike logic languages such as Prolog
which deal with this sort of nondeterminism by means of backtracking, it
cannot be directly handled by functional languages.

– Lastly, although there is a clear specification of the solutions to the matching
problem, nondeterminism makes semantics complex and it is often difficult
to explain why a particular match was not produced.

3 Strictly speaking, the term should be normalised before being matched with a pat-
tern.

4 Here binary operators (.), (∗), (:), (+) are constants.

Fortunately, the experience of implementing program transformation systems
tells that it is not really necessary to have full flexibility of higher-order patterns
and higher order matching in practice. We may, therefore, think of imposing
reasonable restriction on the form of patterns to generate desirable higher-order
matching that is both deterministic and efficient. It is known that by restricting
the form of patterns, one can make possibly undecidable fifth-order matching be
decidable [9], and infinite third-order matching be finite [3].

We shall focus on the second-order matching [1], a useful matching partic-
ularly useful for program transformation, and we aim to provide a reasonable
restriction on the second-order patterns so as to make the second order match-
ing be not only deterministic and efficient, but also powerful enough to specify
transformation rules. As a matter of fact, in the context of unification, Miller
has defined a class of deterministic higher-order pattern [10]. In his higher-order
patterns, each occurrence of free variable should be applied to a sequence of
distinct bound variables. For example, the pattern

λx y. p y x

is valid, since the free variable p appears at the head of the application p y x and
the arguments of p, namely x and y, are distinct bound variables. However, the
patterns of λx y. p x x where p has the same bound variable x, λx y. p (x + x) y
where the argument (x + x) of p is not a variable, and λx y. p q x where the
argument q of p is not a bound variable, are all invalid. It has been proved that
the general higher-order unification (matching) with respect to these patterns is
deterministic, and an implementation has been given [11]. Miller’s patterns are,
however, too restrictive to describe program transformation rules. For instance,
the arguments of free variables in a pattern may be complicated terms instead
of variables, as seen in the fusion law where the arguments of the free variable
⊗ in the pattern are a and f r.

In this paper, we relax the restriction of Miller’s higher-order patterns by
allowing the arguments to be terms, and propose a class of deterministic second-
order patterns, called DSP, with the following features.

– DSP covers a wider class of patterns that are often used in specification
of program transformation and program calculation. It enables concise de-
scription of the fusion law. This is very important, the fusion law plays an
essential role in program transformation and calculation [12, 13] and many
other transformations can be formalised using the fusion law.

– DSP leads to a deterministic and efficient algorithm for second-order match-
ing. Our main idea of DSP is the deterministic choice of discharging, with
which the second-order matching problem is boiled down to the first-order
one. It is our hope that our approach would provide a new and effective way
to incorporate higher-order patterns into functional languages [14].

The organisation of the paper is as follows. In Sect. 2, We give a formal
definition of our deterministic second-order patterns. In Sect. 3, we prove the

determinism of our matching algorithm with respect to deterministic second-
order patterns. In Sect. 4, we present an efficient algorithm, and prove soundness
and efficiency of the algorithm. In Sect. 6, we briefly explain related works and
conclude the paper.

2 Deterministic Second-order Patterns

We consider simply-typed lambda terms defined as follows.

T = c { constant }
| v { variable }
| T T { application }
| λx . T { lambda abstraction }

Let FV be a function mapping from a term to a set of free variables in the term.
For example, FV (λx. p x) returns p. We call a term E closed if FV (E) = { }.
For readability we sometimes use the infix notation, so x + y denotes the term
(+) x y. We call a term β-normal if the term does not contain any β-redex, and
we call term η-normal if the term does not contain any η-redex. We sometimes
write λx̄. p Ē for λx1 · · ·λxl. p E1 · · ·Em.

We say that a term E1 is a subterm of E2, denoted by E1 E E2, if E1 ∈
subTerm(E2) (here α-renaming is implicitly assumed), where subTerm is defined
below.

subTerm(c) = {c}
subTerm(v) = {v}
subTerm(E1 E2) = {E1 E2} ∪ subTerm(E1) ∪ subTerm(E2)
subTerm(λx.E) = {λx.E} ∪ subTerm(E)

Let v t1 · · · tn be a subterm and v be a variable. We call t1, . . . , tn be arguments
of v, and call v head of the subterm.

We write substitutions (or called matches) as a mapping from variables to
closed terms like

φ = {p 7→ λx. x b}.
We denote domain of substitution φ as dom(φ) and range of the substitution as
range(φ). The composition of substitutions φ and ψ is defined if the substitutions
are compatible, i.e., the same variables in domains do not have different ranges:

∀v ∈ dom(φ) ∩ dom(ψ) . φ v =αβη ψ v

where the equality operator (=αβη) is modulo αβη-conversion. Otherwise, it
will return the special match fail. Note that fail is the zero unit of match
composition, that is, fail . m = m . fail = fail. For example, the composition
of substitutions {p 7→ c} . {p 7→ λx. x} is fail.

Types are constructed in the usual way in simply typed lambda calculus. Let
T0 be a set of base type. A type set T are defined as follows.

α ∈ T0 ⇒ α ∈ T
α, β ∈ T ⇒ α → β ∈ T

The order of a type τ ord(τ) is defined as follows.

ord(α) = 1, if α ∈ T0

ord(α → β) = max{ord(α) + 1, ord(β)}
The order of any base types is 1. The order of a function types is the maximum
of one plus the order of the argument type and the order of the result type. The
order of a term is defined as the order of its type.

Terms with free variables are called patterns. Given a pattern P and a closed
term T where P and T are βη-normal, a rule is a pair of terms written as P → T .

We are now ready to define our class of patterns. We call them deterministic
second-order patterns, because as we will see later matching a pattern belonging
to this class with a closed term will give at most one match. The class of patterns
is a simple extension of Miller’s higher-order patterns which has at most single
unification; the arguments of every free variables in the pattern must be distinct
and bound variables.

Definition 1 (Deterministic Second-order Patterns). A term P is said to
be a deterministic second-order pattern DSP , if (1) maximum {ord(v) | v ∈
FV (P)} ≤ 2, and (2) the arguments E1, . . . , Em of any free variable occurring
in the pattern satisfy the following conditions.

i ∀i. FV (Ei) 6= { }
ii ∀i, j. i 6= j ⇒ Ei /E Ej

iii ∀i. v ∈ FV (Ei) ⇒ v /∈ FV (P) ut
The condition (1) simply requires that free variables in the pattern should

have the order of at most 2, due to our focus on the second-order case. It follows
that each Ei should be a first-order term; p (λx. x) is not a valid pattern because
the argument is a function which is not a first-order term. The condition (2) on
the arguments is a relaxation of Miller’s idea from “distinct and bound variables”
to “non-mutually embedded terms containing bound variables”: (i) Ei should not
be a closed term, so the term p 1 is not a valid pattern because the argument 1
of the free variable p is a closed term, which does not contain any free variable;
(ii) For all i, j(i 6= j), Ei is not a subterm of Ej , so λx. p x (x + 1) is not a valid
pattern since the argument x is a subterm of another argument x + 1; (iii) Ei

should not contain any pattern (free) variable, i.e., free variables in Ei should
not be free in the pattern P , so p q is not a valid pattern.

DSP covers a wide class of useful patterns for describing transformation
rules. The pattern λa r. a⊗ f r in the fusion law discussed in the introduction is
a DSP. Another example is, the following DSP pattern

λw x. if p x then q x else r (Car x) (w (Cdr x))

which is used to extract a specific program structure. This pattern is beyond
Miller’s higher-order patterns since the arguments of free variable r are not
variables. Matching this pattern with the program

λreversex. if Null x then x else
Append (reverse (Cdr x)) (Cons (Car x) Nil)

gives the unique match

{p 7→ Null, q 7→ λx. x, r 7→ λz w.Append w (Cons z Nil)},

and matching the pattern with the program

λmapsquarex. if Null x then x else
Cons (square (Car x)) (mapsquare (Cdr x))

gives another but unique match

{p 7→ Null, q 7→ λx. x, r 7→ λz w.Cons (square z) w}.

We will discuss the matching algorithm later.
In the rest of the paper, we will use the following notational convention. We

will use a, b, c, d and ones starting from capital letters to represent constants,
use other small letters such as p, q, v, x, y, z represent variables. To distinguish
free variables and bound variables in a pattern, we will use p, q to denote the free
variables and x, y, z to denote bound variables. We will use the Greek identifiers
φ, ψ, σ to represent matches (environments), and the capital letters to represent
terms, or patterns.

3 Deterministic Second-order Matching

So far we have given the definition of our patterns. We call it deterministic
second-order pattern, because matching a term with this pattern will guarantee
to produce a unique match if there exists. We prove this in this section, and
show how to do this matching efficiently in Sect. 4.

The general matching problem is defined as follows. Given a rule P → T , find
all the substitutions φ such that φ P =αβη T . We call this substitution match,
and write

φ ` P → T

to indicate that φ is a match of the rule P → T . If a matching produces at most
one φ such that φ ` P → T , we say it is deterministic, or simply say that φ `
P → T is deterministic. If the free variables in P have the order of more than one,
we say that the matching problem is of higher-order. Generally, a higher-order
matching returns infinite solutions and may be undecidable and incomplete. It is
known that the second-order matching is nondeterministic, although there exists
a complete matching algorithm [1] computing all the matches.

discharge s c = c
discharge s v = replace s v
discharge s (λx. T1) =

let T ′ = replace s (λx. T1)
in if T ′ = (λx. T1) then λx. (replace s T1) else T ′

discharge s (T1 T2) =
let T ′ = replace s (T1 T2)
in if T ′ = (T1 T2) then ((discharge s T1) (discharge s T2)) else T ′

replace [] T1 = T1

replace ((y, E) : s) T1 = if E = T1 then y else replace s T1

Fig. 1. Discharging Algorithm

We call a transformation (discharge [(y1, E1), . . . , (ym, Em)] T) discharging,
or discharging E1, . . . , Em from T by y1, . . . , ym where the function discharge
is defined as Fig. 1. Note that (discharge [(y1, E1), . . . , (ym, Em)] T) does not
contain E1, . . . , Em as subterms. For example, discharging 1 : [] from 1 : 1 : []
by y results in 1 : y, and discharging x : [] from 1 : x : [] by y results in 1 : y.
Note that the above definition of discharging is only syntactical replacement.

If we restrict patterns to be DSP, the second-order matching becomes de-
terministic, returning at most one match for any rule. We start with a simple
case.

Lemma 2. Let P1 = λx1 · · ·xl. p E1 · · · Em be a DSP where p ∈ FV (P1), and
T1 be an arbitrary closed term. Then, φ ` P1 → T1 is deterministic.

Proof. There is no match if T1 is not in the form of λx1 · · ·xl. T2 (after αβη-
conversion). To obtain a target of a mapping from p of a match of a rule
λx1 · · ·xl. p E1 · · · Em → λx1 · · ·xl. T2, we have to discharge all the occurrences
of E1, . . . , Em in T2 by y1, . . . , ym exhaustively and enclosing it by y1, . . . , ym,
since Ei(1 ≤ i ≤ m) contains free variables (Def.1.(2)i) and if we leave some
occurrences in T2 then we will not be able to find a map from p to a closed term.
For a DSP, syntactical replacement is sufficient to realize discharging since the
order of Ei is 1(Def.1.(1)).

Moreover, since ∀i, j. i 6= j ⇒ Ei /E Ej(Def.1.(2)ii), the order of discharging
Ei does not affect the result of the match. Because of this unique way for ex-
haustively discharging, φ ` P1 → T1 is deterministic. ut

We now give our main theorem that matching for the rule of the pattern of
DSP and an arbitrary closed term is deterministic.

Theorem 3 (Deterministic Second-order Matching). If P is a DSP, φ `
P → T is deterministic.

Proof. We prove it by induction on the structure of pattern.

Case (P = λx̄. c E1 · · · Em). There is no match if the corresponding term is not
transformed into T1 = λx̄. c F1 · · · Fm by αβη-conversion. And the matching
decomposed into m matchings φi ` λx̄. Ei → λx̄. Fi for i = 1 . . .m. By
induction hypothesis, each matching φi ` λx̄. Ei → λx̄. Fi is deterministic,
so φ′ ` P → T is deterministic and φ′ = φ1 ◦ · · · ◦ φm.

Case (P1 = λx̄. xi E1 · · · Em). The case is similar to the first case. There is no
match if the corresponding term is not transformed into T1 = λx̄. xi F1 · · · Fm

by αβη-conversion. Then, φ′ ` P1 → T1 is deterministic, since by induction
hypothesis for all i(1 ≤ i ≤ m), φi ` λx̄. Ei → λx̄. Fi is deterministic.

Case (P1 = λx̄. p Ē ∧ p ∈ FV (P)). By Lemma 2, the match generated by the
pattern is deterministic. ut

4 An Efficient Deterministic Second-order Matching
Algorithm

Second-order matching is generally NP-complete [8], but our restriction on pat-
terns enables us to obtain a very efficient polynomial algorithm.

Given a rule P → T where P is a DSP, the match of a rule P → T is
computed by M(P → T). That is M(P → T) ` P → T . The efficient matching
algorithm M is defined in Fig. 2. M returns the unique match if it exists, other-
wise returns the special match fail. For example, M(sum → λx. 0) returns fail.
In Fig.2, the first case acts as η-expansion, so, M(λx. p (sum x) → sum) returns
M(λx. p (sum x) → λx. sum x). The second and the third cases correspond to
the cases in our proof of Theorem 3. If the heads of the pattern and the term are
equal and the lengths of their arguments are the same, the rule is decomposed
into smaller ones. If m = 0, then it returns the identity substitution, i.e., { }.
The fourth case corresponds to Lemma 2 which calls the function discharge for
exhaustive discharging. M(λa r. a⊗ sum r → λa r. a ∗a+ sum r) is the example
of the fourth case and computes

{(⊗) 7→ λx y. discharge [(x, a), (y, sum r)] (a ∗ a + sum r)}
which is

{(⊗) 7→ λx y. x ∗ x + y)}
The function discharge traverses the term x ∗ x + sum y and replaces x and

sum y with y1 and y2 respectively. As seen in Introduction (although bound
variables are renamed), the returned deterministic match is

{p → λy1 y2. y1 ∗ y1 + y2}.

Formally, we can prove the soundness of the algorithm M, i.e., if there is a
match (at most one) for a rule, M will return the match as the result.

Theorem 4 (Soundness). Given a rule P → T where P is DSP, the following
holds.

φ ` P → T ⇔ φ = M(P → T)

M(λx1 · · ·xl. P1 → λx1 · · ·xo. T1) =
M(λx1 · · ·xl. P1 → λx1 · · ·xl. T1 xo+1 · · ·xl)
if o < l ∧ P1 and T1 are not λ-abstraction

M(λx̄. c E1 · · · Em → λx̄. d T1 · · · Tm) =
M(λx̄. E1 → λx̄. T1). · · · .M(λx̄. Em → λx̄. Tm) if c = d

M(λx̄. xi E1 · · · Em → λx̄. xj T1 · · · Tm) =
M(λx̄. E1 → λx̄. T1). · · · .M(λx̄. Em → λx̄. Tm) if i = j

M(λx̄. p E1 · · · Em → λx̄. T1) =
{p 7→ λy1 · · · ym. discharge [(y1, E1), . . . , (ym, Em)] T1}
where y1, . . . , ym are fresh variables

M() = fail

Fig. 2. The Matching Algorithm

Proof. We prove it by induction on the structure of pattern.
For the first case of the matching algorithm M, we calculate as follows

φ = M(λx1 · · ·xl. P1 → λx1 · · ·xo. T1)
⇔ { η-conversion }

φ = M(λx1 · · ·xl. P1 → λx1 · · ·xl. T1 xo+1 · · ·xl)
⇔ { induction hypothesis }

φ ` λx1 · · ·xl. P1 → λx1 · · ·xl. T1 xo+1 · · ·xl

⇔ { η-conversion }
φ ` λx1 · · ·xl. P1 → λx1 · · ·xo. T1

For the second case, we assume

φ = φ1. · · · .φm

and we derive

∃φ. φ = M(λx̄. c E1 · · · Em → λx̄. d T1 · · · Tm) ∧ c = d
⇔ { definition of M }
∃φ. φ = M(λx̄. E1 → λx̄. T1). · · · .M(λx̄. Em → λx̄. Tm)
⇔ { assumption }
∃φ1, . . . , φm. φ1 = M(λx̄. E1 → λx̄. T1), . . . , φm = M(λx̄. Em → λx̄. Tm)
⇔ { induction hypothesis }
∃φ1, . . . , φm. φ1 ` λx̄. E1 → λx̄. T1, . . . , φm ` λx̄. Em → λx̄. Tm

⇔ { definition of ` }
∃φ1, . . . , φm. φ1(λx̄. E1) =αβη λx̄. T1, . . . , φm(λx̄. Em) =αβη λx̄. Tm

⇔ { property of (.) }
∃φ. φ (λx̄. c E1 · · ·Em) =αβη λx̄. d T1 · · ·Tm

⇔ { assumption }
∃φ. φ ` λx̄. c E1 · · · Em → λx̄. d T1 · · · Tm ∧ c = d

as required. Since the third case is similar to the second case, we omit the proof.

Since the fourth case is rather complex, we prove sufficient and necessity
conditions separately.

(⇐) For the case, a rule is λx1 · · ·xl. p E1 · · · Em → λx1 · · ·xl. T1. Let

B = discharge [(y1, E1), . . . , (ym, Em)] T1.

Since discharge satisfies the property

(λy1 · · · ym. B) E1 · · ·Em = T1

the following matching property holds.

{p → λy1 · · · ym. B} ` λx1 · · ·xl. p E1 · · · Em → λx1 · · ·xl. T1

(⇒) To obtain φ ` λx1 · · ·xl . p E1 · · · Em → λx1 · · ·xl . T1, all the free vari-
ables in T1 must be discharged. For each Ei and each occurrence Ei in T1, we
can choose whether we discharge it or not. By the definition of DSP , ∀i, j(i 6=
j) . Ei /E Ej holds. Therefore if we don’t discharge it, some free variables in
T1 will remain, resulting in no match. Thus we must discharge all the occur-
rences of Ei in T . This operation matches discharge [(y1, E1), . . . , (ym, Em)] T1.

ut

The complexity of our matching algorithm is summarised in the following
theorem. Let size(t) be a function to compute a size of the term t.

size c = 1
size v = 1
size (t1 t2) = size t1 + size t2
size (λx. t) = 1 + size t

Theorem 5 (Efficiency). Let P be DSP, n be the size of term T , and m
be the maximum number of arguments of free variables in P . The algorithm
M(P → T) has the time complexity of O(mn).

Proof. Except for the second last case, it is straightforward that the time com-
plexity of M is in proportion to the size of the pattern. For the last case, the
function discharge traverses the term and the function replace checks for each
argument Ei. replace costs O(m) and therefore discharge costs O(mn). ut

It is worth noting that m is generally quite small and bound in practice, so our
algorithm is nearly linear with respect to the program to be transformed.

We have implemented this matching algorithm in Template Haskell [15], and
the experiments show that our matching algorithm is very fast. We have also
tested many transformation examples used in the MAG system [3], and it is
rather encouraging that almost all transformation rules (except for those using
the third-order patterns) can be concisely described in terms of our deterministic
second-order patterns.

5 Application to Program Transformation

DSP covers a wider class of patterns then Miller’s higher-order patterns as
you have seen in fusion transformation in Sect. 1 and Sect. 2. In this section,
we show how our matching algorithm can be useful for mechanise the tupling
transformation.

Tupling is a program transformation where several results are returned from
a single traversal of a data structure. For example, the function computing an
average of a list

average1 xs = sum xs / length xs

is transformed into

average2 xs = s/l
where (s,l) = sumLength xs

where s stores the summation and l stores the length of the list xs.
The definition of sumLength is defined as

sumLength [] = (0, 0)
sumLength (x:xs) = (x + s, 1 + l)
where (s,l) = sumLength xs

which is derived as follows. The base case is trivial.

sumLength []
= { spec. of sumLength }
(sum [], length [])

= { unfolding sum and length }
(0, 0)

The recursive case of sumLength is derived by

sumLength (x:xs)
= { spec. of sumLength }
(sum (x:xs), length (x:xs))

= { unfolding sum and length }
(x + sum xs, 1 + length xs)

= { introducing a new function p }
p x (sum xs) (length xs)

= { introducing a new function p’
s.t. p’ = \x (y,z) -> p x y z }

p’ x (sumLength xs)

In fact, finding p is the matching problem

λxxs. p x (sum xs) (length xs) → (x + sum xs, 1 + length xs)

which is resolved by our matching algorithm and the following substitution can
be automatically obtained.

{p 7→ λy1 y2 y3. (y1 + y2, 1 + y3)}

Substituting it into the definition of p’, we obtain the definition of sumLength
as

sumLength (x:xs)
= (\y1 (y2,y3) -> (y1+y2,1+y3)) x (sumLength xs)

As another example, to avoid repeated evaluation where a function generates
several identical calls to itself, the function fib defined as

fib 0 = 1
fib 1 = 1
fib (n+2) = fib (n+1) + fib n

is transformed into

fastfib n = v where (_,v) = fibt n
fibt 0 = (1,1)
fibt (n+1) = (u+v,u) where (u,v) = fibt n

The derivation is reduced into the matching problem of the rule

λn. p (fib n) (fib (n + 1)) → λn. (fib (n + 1) + fib n, fib (n + 1))

which is resolved with the match

{p 7→ λx y. (y + x, y)}

6 Conclusion

We have proposed a class of deterministic second-order patterns DSP which has
at most a single second-order match. Our matching algorithm is linear if we fix
patterns. Our pattern is a simple and natural extension of Miller’s higher-order
pattern [10] which has single most general unifier.

It is a classical approach to restrict the form of patterns to generate de-
sirable higher-order matching. For example, under some restriction, possibly
undecidable fifth-order matching is decidable [9], infinite third-order matches
are finite [3], and nondeterministic second-order matching is deterministic [10].
Second-order matching is NP-complete [8], whose efficient algorithm is proposed
by Curien et al. [16]. But restricting the form of patterns, there are known to
be fast matching algorithm [17]. For example, if any function variable appears
at most once in a pattern, it is linear.

Pattern matching plays an important role in program transformations. Many
systems use first-order patterns [18–20] and most of them use first-order match-
ing [15, 21–23]. Exceptions are MAG [24] and KORSO [2]; they use higher-order
matching, which enables concise specification of program transformation, and
make transformation more abstract and more reusable. One of the matching algo-
rithms used in MAG is one-step matching [3, 25] which returns at least complete
second-order match for arbitrary second-order patterns; our matching algorithm
covers only a restricted class of second-order patterns DSP.

There is a trade-off between completeness and efficiency of matching algo-
rithm. Since the type of patterns are statically distinguished in program trans-
formation to some extent, we might want to choose algorithm for each patterns.
Our prototype implementation of the deterministic matching algorithm, together
with the experiments on using it to code the examples tested in the MAG system,
shows that our approach is promising. Actually, our patterns cover 91% of pat-
terns in transformation rules in example transformations of MAG(ver.2.1) while
Miller’s higher-order patterns cover 71% and first-order patterns cover 69%.

In this paper, we focus on the second-order patterns. We believe the technique
is applicable to higher-order patterns. We are now working on this.

References

1. Huet, G., Lang, B.: Proving and applying program transformations expressed with
second-order patterns. Acta Informatica 11 (1978) 31–55

2. Bruckner, B., Liu, J., Shi, H., Wolff, B.: Towards correct, efficient and reusable
transformational developments. In: KORSO: Methods, Languages, and Tools for
Construction of Correct Software. Volume 1009 of LNCS., Springer-Verlag (1995)
270–184

3. de Moor, O., Sittampalam, G.: Higher-order matching for program transformation.
Theoretical Computer Science 269 (2001) 135–162

4. Gill, A., Launchbury, J., Jones, S.L.P.: A short cut to deforestation. In: Proceedings
of the 6th International Conference on Functional Programming Languages and
Computer Architecture (FPCA’93), Copenhagen, Denmark, ACM Press (1993)
223–232

5. Sheard, T., Launchbury, J.: Warm fusion: Deriving build-catas from recursive
definitions. In: Conference on Functional Programming Languages and Computer
Architecture, ACM (1995) 314–323

6. Bird, R.: Introduction to Functional Programming using Haskell (second edition).
Prentice Hall (1998)

7. Johann, P., Visser, E.: Warm fusion in stratego: A case study in the generation of
program transformation systems. Technical Report Technical Report UU-CS-2000-
43, Institute of Information and Computing Sciences, Utrecht University (2000)

8. Baxter, L.: The complexity of unification. PhD thesis, Department of Computer
Science, University of Waterloo (1977)

9. Schubert, A.: Linear interpolation for the higher order matching problem. In:
Theory and Practice of Software Development. (1996) 441–452

10. Miller, D.: A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation 1 (1991) 497–536

11. Nipkow, T.: Functional unification of higher-order patterns. In: 8th IEEE Sympo-
sium on Logic in Computer Science, IEEE Computer Society Press (1993) 64–74

12. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In: Proceedings of the 5th International
Conference on Functional Programming Languages and Computer Architecture
(FPCA’91). Volume 523 of LNCS., Cambridge, Massachusetts, Springer-Verlag
(1991) 124–144

13. Sheard, T., Fegaras, L.: A fold for all seasons. In: Conference on Functional
Programming Languages and Computer Architecture. (1993) 233–242

14. Heckmann, R.: A functional langauge for the specification of complex tree trans-
formation. In: Proc. ESOP. Volume 300 of LNCS. (1988) 175–190

15. Sheard, T., Peyton Jones, S.L.: Template metaprogramming for haskell. In: Haskell
Workshop. (2002)

16. Curien, R., Qian, Z., Shi, H.: Efficient second-order matching. In Ganzinger,
H., ed.: Proceedings of the 7th International Conference on Rewriting Techniques
and Applications, New Brunswick, New Jersey, Springer-Verlag LNCS 1103 (1996)
317–331

17. Hirata, K., Yamada, K., Harao, M.: Tractable and intractable second-order match-
ing problems. In: Computing and Combinatorics, 5th Annual International Con-
ference, COCOON ’99. Volume 1627., Tokyo, Japan (1999) 432–441

18. Guttmann, W., Partsch, H., Schulte, W., Vullinghs, T.: Tool support for the inter-
active derivation of formally correct functional programs. In: Journal of Universal
Computer Science. Volume 9. (2003) 173–188

19. Peyton Jones, S.L., Tolmach, A., Hoare, T.: Playing by the rules: rewriting as a
practical optimisation technique in ghc. In: Haskell Workshop. (2001)

20. Visser, E.: Stratego: A language for program transformation based on rewriting
strategies. system description of stratego 0.5. In Middeldorp, A., ed.: Rewriting
Techniques and Applications (RTA’01). Volume 2051 of LNCS., Springer-Verlag
(2001) 357–362

21. Bauer, F., Ehler, H., Horsch, B., Möller, B., Partsch, H., Paukner, O., Pepper, P.,
eds.: The Munich Project CIP—Volume II: The Program Transformation System
CIP-S. Volume 292 of LNCS. Springer-Verlag (1987)

22. Taha, W., Sheard, T.: Multi-stage programming with explicit annotations. In:
Proc. Conference on Partial Evaluation and Program Manipulation, Amsterdam,
ACM Press (1997) 203–217

23. Tullsen, M., Hudak, P.: An intermediate meta-language for program transforma-
tion. Research report yaleu/dcs/rr-1154, Department of Computer Science, Yale
University (1998)

24. de Moor, O., Sittampalam, G.: Generic program transformation. In: Proc. of the
3rd International Summer School on Advanced Functional Programming. Volume
1608 of LNCS., Braga, Portugal, Springer-Verlag (1998) 116–149

25. Sittampalam, G.: Higher-order matching for program transformation. PhD thesis,
University of Oxford (2001)

