
A Dynamic-Priority based Approach to Fixing
Inconsistent Feature Models

Bo Wang1,2, Yingfei Xiong3, Zhenjiang Hu4, Haiyan Zhao1,2?,
Wei Zhang1,2, and Hong Mei1,2

1Key Laboratory of High Confidence Software Technologies,
Ministry of Education, China

2Institute of Software, School of EECS, Peking University, Beijing, 100871, China
{wangbo07,zhhy,zhangw}@sei.pku.edu.cn, meih@pku.edu.cn

3Generative Software Development Lab, The University of Waterloo, Canada
yingfei@swen.uwaterloo.ca

4GRACE Center, National Institute of Informatics, Japan
hu@nii.ac.jp

Abstract. In feature models’ construction, one basic task is to ensure
the consistency of feature models, which often involves detecting and
fixing of inconsistencies in feature models. Several approaches have been
proposed to detect inconsistencies, but few focus on the problem of fixing
inconsistent feature models. In this paper, we propose a dynamic-priority
based approach to fixing inconsistent feature models, with the purpose
of helping domain analysts find solutions to inconsistencies efficiently.
The basic idea of our approach is to first recommend a solution auto-
matically, then gradually reach the desirable solution by dynamically
adjusting priorities of constraints. To this end, we adopt the constraint
hierarchy theory to express the degree of domain analysts’ confidence on
constraints (i.e. the priorities of constraints) and resolve inconsistencies
among constraints. Two case studies have been conducted to demon-
strate the usability and scalability of our approach.

Key words: Feature Model, Priority, Inconsistency Fixing

1 Introduction

Feature models [1, 2] have been widely adopted to reuse the requirements of a
set of similar products in a domain. During the process of requirements reuse,
specific products that satisfy all the constraints are derived from feature models.
However, inconsistent feature models (called IFMs) contain contradictory con-
straints that cannot be satisfied at the same time, leading to no valid products
derivable from IFMs [3]. Therefore, in the construction of feature models, one
basic task is to ensure the consistency of feature models, which often involves
the detecting and fixing of inconsistencies in feature models.

? corresponding author

2 Bo Wang et al.

Although several approaches have been proposed to detect inconsistencies,
there lacks an effective approach to aiding domain analysts to fix the incon-
sistencies of feature models. Finding a solution to fix inconsistencies requires
quantitative analysis of certain parts of the IFMs. Even if one solution is found,
it is still unclear whether there exist alternative or better solutions. Moreover,
finding solutions becomes more and more difficult when feature models grow
large. The largest feature model [4] reported in academy has more than 5000
features. In industry, feature models often grow up to thousands of features [5].

In this paper, we propose a dynamic-priority based approach to the interac-
tive fixing of inconsistencies in feature models, and report an implementation of a
system that not only automatically recommends a solution to fixing inconsisten-
cies, but also supports domain analysts to gradually reach the desirable solution
by dynamically adjusting priorities of constraints. To this end, we adopt the
constraint hierarchy theory [6], a known practical theory in user interface con-
struction [7], to express the degree of domain analysts’ confidence on constraints
(i.e. the priorities of constraints) and resolve inconsistencies by deleting one or
more weaker constraints.

The main contributions of our paper are summarized as follows:

– We show the importance of the constraint hierarchy theory in fixing IFMs,
and implement an efficient constraint hierarchy system1 for fixing IFMs by
adapting and extending an existing incremental algorithm, SkyBlue [7, 8].

– We extend the constraint hierarchy theory with a dynamic-priority based
mechanism to help domain analysts find the desirable solution; if domain
analysts are not satisfied with the solution the system recommends, they
can declaratively adjust the priorities of weaker constraints so that a new
solution can be produced.

– We successfully apply our system to check and fix the feature model of
the web store domain and the randomly generated feature models, which
indicates that our approach is promising and potentially useful in practice.

The rest of this paper is organized as follows. Section 2 introduces some pre-
liminary knowledge. Section 3 gives an overview of our approach and illustrates
it with an example. Section 4 amplifies the whole process of our approach. Sec-
tion 5 illustrates usability and scalability of our approach through case studies.
Section 6 describes the related work, and Section 7 concludes the paper and
highlights the future work.

2 Preliminaries

In this section, we first give a short introduction to feature models, and then
introduce the theory of constraint hierarchies and a constraint solver-SkyBlue.
The three above are the fundamentals for fixing inconsistencies in feature models.

1 See http://sei.pku.edu.cn/˜ wangbo07/ for more detail

A Dynamic-Priority based Approach to Fixing Inconsistent Feature Models 3

Mobile Phone

Call GPS Screen Media

Basic Color
High

Resolution
Camera MP3

Composite Constraints:
All-Set(Screen) composite-requires Single-Set(Basic, Color, High Resolution)
All-Set(Media) composite-requires Or-Set(Camera, MP3)

Legend

Mandatory Feature

Optional Feature

Require

Exclude

Fig. 1. A simplified feature model of the mobile phone domain

2.1 Feature Model

A feature model defines a set of possible products of a domain, in terms of
features and the relationships between them. Fig. 1 shows a simplified feature
model of the mobile phone domain (used in [9]), which adopts our meta-model
of feature models [10]

A feature model is hierarchically organized. Features with different abstract
levels and granularities form a hierarchy structure through refinement relation-
ships between them. Refinements relationships bring constraints on features.
The root feature should be bound in all products. In feature models, if a feature
is bound (i.e. selected in a specific product), so it is parent. A mandatory fea-
ture means that it should be bound, if its parent is bound. An optional feature
indicates that it can be unbound (i.e. deselected in a specific product), even if
its parent is bound.

There are three kinds of simple constraints on two features, namely require,
m-requires, and excludes. If feature A requires feature B, it means that B cannot
be unbound when A is bound. If feature A m-requires feature B, it means that
A and B should be bound or unbound at the same time. If feature A excludes
feature B, it indicates that at most one of them can be bound. A mandatory
feature or optional feature brings constraints with their parents, m-requires and
requires, respectively.

There are three kinds of predicates on a set of features, namely All, Alterna-
tive and Or. Predicates All, Alternative, and Or mean these predicates are true
only if all, one, and at least one features are bound in their feature sets, respec-
tively. For example, Or-Set(Camera, MP3) indicates that the Or predicate is
true when at least one features from this set are bound.

Based on predicates, there are three kinds of composite constraints on two
feature sets, composite-requires, composite-m-requires, and composite-excludes.
For example, All-Set(Screen) composite-requires Single-Set(Basic, Color, High
Resolution) means if Screen is bound, one feature of the single feature set should
be bound. For the details of the composite constraints, see Section 4.1.

Inconsistent Feature Models A feature model is inconsistent if it cannot
produce any valid product that satisfies all the constraints of the feature model

4 Bo Wang et al.

[3]. Inconsistency is a severe problem, since we reuse feature models by deriving
products from them. The inconsistencies in feature models happen when some
elements of feature models are overconstrainted by contradictory constraints.

2.2 Constraint Hierarchies and SkyBlue

When overconstrainted models are checked by a constraint solver, it is not
enough for the solver to signal an inconsistency and wait the modeler to fix
the detected inconsistency. The constraint hierarchy theory [6] provides a way
to specify how the overconstrainted model should be handled by maintaining
constraint hierarchies. A constraint hierarchy contains a set of constraints, each
assigned with a priority, indicating the importance of the constraint. Given an
overconstrainted model, the constraint solver can leave weaker constraints un-
satisfied in order to satisfy stronger constraints.

SkyBlue is an incremental, scalable, and efficient constraint solver that uses
local propagation to maintain the constraints hierarchy. The input of SkyBlue
is a set of variables and constraints on these variables. The output of SkyBlue is
a set of values that satisfy stronger constraints and leave contradictory weaker
constraints unsatisfied.

In SkyBlue, each constraint is equipped with one or more methods; Sky-
Blue satisfies a constraint by selecting and executing one of its methods. For
example, “feature B excludes feature C ” has two methods: 1) Unbind(B); 2)
Unbind(C)(see Fig. 2(b)). This constraint can be satisfied by executing any one
of these two methods. A constraint is enforced if it has a selected method, other-
wise, it is unenforced. Choosing one method for a constraint is known as enforc-
ing. Choosing no methods for a constraint is known as revoking. The variables
and constraints form the constraint graph. The constraint graph, together with
the selected methods, form the method graph.

The output of SkyBlue, the value set for constraints, is calculated through
constructing and executing a locally-graph-better (called LGB) method graph.
A method graph is LGB if there are no method conflicts and there are no un-
enforced constraints that could be enforced by revoking one or more weaker
constraints (and possibly changing the selected methods for other enforced con-
straints with the same or stronger strength) [8].

As a simple example, consider the IFM (in Fig. 2(a)) and its corresponding
constraint graph (in Fig. 2 (c)). Each constraint in the feature model (C1 -C4)
has one or more methods to make the constraint hold. (in Fig. 2 (b)). To satisfy
every constraint, SkyBlue tries to select a method from each constraint, as shown
in the upper of Fig. 2 (c), but there is a method conflict: variable C is determined
by two methods (i.e. Bind(C) and Unbind(C)) and determined to different value,
from C3 and C4, respectively. To resolve this conflicts, SkyBlue finds the stronger
constraints that can be enforced, while leaving the weaker constraints unenforced
by constructing LGB method graph. The LGB method graph of this example
is shown in the lower of Fig. 2 (c), in which C4 is revoked. After executing the
selected methods in the LGB method graph, A, B and C equal bound (selected

A Dynamic-Priority based Approach to Fixing Inconsistent Feature Models 5

C3
Strong

C1
Strongest

C4
Medium

A C

Unselected
Method

Unenforced
Constraint

C1: Root A
(Strongest)
Methods:
1) Bind(A)

C2:Mandatory B
(Strong)
Methods:
1)Bind(A)

and Bind(B)
2) Unbind(A)

and Unbind(B)

C3: Mandatory C
(Strong)
Methods:
1) Bind(A)

and Bind(C)
2) Unbind(A)

and Unbind(C)

C4: B excludes C
(Medium)
Methods:
1) Unbind(B)
2) Unbind(C)

Constraint

Variable

Legend

Method
Conflicts

BC2
Strong

C3
Strong

C1
Strongest

C4
Medium

A C

BC2
Strong

Bind

Unbind

A

B C

(a) (b) (c)

C1

C2 C3

C4

Fig. 2. A simple example for SkyBlue

in the product), which satisfy the three stronger constraints, namely C1, C2 and
C3.

3 Approach Overview

In this section, we give an overview of our approach, before using an example to
illustrate how to fix inconsistencies.

3.1 Dynamic-Priority based IFM Fixing Process

In our approach, we detect and fix inconsistencies of feature models incremen-
tally; we start with an empty feature model and then add constraints one by
one. Every time a constraint is added into the feature model, we check inconsis-
tencies, recommend a solution and help domain analysts find a more desirable
solution. An overview of our approach is shown in Fig. 3.

Check
Inconsistency

Recommend a
Solution

N

Y

Change the
Priorities

N

Y

Automatic Step

Manual Step

Add a
Constraint

Inconsis
tent?

Satisfi
ed?

Fig. 3. The dynamic-priority based IFM fixing process

After a constraint is added to the feature model, the feature model may
become overconstrainted because of the newly-added constraint. We check the
inconsistency by first mapping the newly-added constraint to a SkyBlue con-
straint (called SBC), then trying to enforce the SBC through constructing a
LGB method graph. If the constructed LGB method graph does not contain any
unenforced constraints, the feature model is consistent.

6 Bo Wang et al.

If the constructed LGB method graph contains unenforced constraints and
the newly-added SBC is enforced in this LGB, the feature model becomes incon-
sistent because of the newly-added SBC. We recommend a solution to domain
analysts to fix the inconsistent feature model. This solution is composed of the
unenforced constraints in the LGB method graph, and can be executed to fix
the inconsistencies by deleting the unenforced constraints.

Domain analysts can examine the recommended solution. If they do not
want some unenforced constraints deleted because of the newly added constraint,
they can raise the priorities of these unenforced constraints, with the help of
the dynamic-priority mechanism provided in our approach. We will recommend
another solution according to the new priorities. When domain analysts are
satisfied with the solution, the solution is performed, and the feature model
becomes consistent again.

If the newly-added SBC is unenforced in the constructed LGB method graph,
the newly-added SBC conflicts with some same or stronger constraint in the fea-
ture model. Our approach will recommend dropping this newly-added constraint.

For all the unenforced constraints in the LGB, we provide constraints with
the same or higher priorities as potential conflict information to domain analysts,
with the purpose of aiding them find desirable solutions.

Note that our approach not only supports the checking and fixing of feature
models from scratch, but also supports these of a feature model that has already
been constructed. Given a constructed feature model, we extract all its con-
straints, and map them to the SBCs. We first add and enforce the root feature
to the constraint graph and then the other SBCs, according to their priorities,
from weaker constraints to stronger constraints. After each SBC is added, we
recommend solutions when inconsistencies detected, help domain analyst find
desirable solutions according to their feedback, perform the solutions to fix in-
consistencies. After all the SBCs are added, the feature model is checked and
fixed completely.

3.2 An Example

To demonstrate the process of dynamic-priority based IFM fixing, let us see how
to fix the inconsistent feature model in Fig. 4.

Suppose all the constraints have been added into the feature model except
“feature C excludes feature D” (the red part in Fig. 4). These constraints are
first transformed into SBCs, according to the concrete rules in Tables 1 and
2. They are then added to the constraint graph by enforcing themselves and
construing LGB method graph one by one. The feature model is consistent before
adding “feature C excludes feature D”, since the LGB method graph shown in
Fig. 4(b) contains no unenforced constraints. Note that even some variables are
determined by more than one method in the LGB method, there is no conflicts,
because these variables are set to a same value (see Section 4.2 for our definition
for method conflicts in feature models).

A Dynamic-Priority based Approach to Fixing Inconsistent Feature Models 7

Add excludes
between C and D

A

C B D E

F G

Composite Constraint:
All-Set(B) composite-requires Single(F,G) Priority: 4

Priority: 1 3 6

Confidence : Low Medium High

Default Priority: 3

Legend:

Unbind

Bind A

B

C D E

F G

Root Feature
Priority 6

3

3

3

4

3 5

5

4 3 3 3 4

6

5 3

5 3

4

(a) (b)

Add excludes
between C and D

4

3

Fig. 4. An example of dynamic-priority based IFM fixing

After the “exclude” constraint is added, the feature model become inconsis-
tent. In the generated LGB method graph, constraint “feature B requires feature
C ” is unenforced. We recommend deleting this constraint to fix inconsistencies.

If domain analysts are not satisfied with the recommended solution, they
adjust priorities of the unenforced constraints to find the desirable solution with
the help of the potential conflict information, and then we recommend other
solutions according to the new priorities. For example, if the domain analysts
think the “require” constraint should not be deleted, they raise the priority
of it to 4, then we recommend another solution by constructing a new LGB
method graph, in which the “Mandatory feature B” is unenforced. Therefore
this constraint is recommended to be deleted.

4 Fix IFM with Dynamic Priority

In this section, we first describe how we implement the constraint hierarchy
theory in fixing IFMs, through revising and extending SkyBlue. Then we show
how to reach the desirable solution by adjusting priorities.

4.1 Map Feature Models to Constraint Graphs

To use SkyBlue to detect and fix inconsistencies, the first thing is to map the
elements of feature models to the elements of SkyBlue constraint graphs.

Generally speaking, the mapping consists of two steps: 1) each feature of the
feature model is mapped to a variable of the SkyBlue constraint graph; 2) each
constraint of the feature model is mapped to a SkyBlue constraint (called SBC)
that is represented by a set of methods. In feature models, each feature can
have only two states: 1) bound; 2) unbound. Therefore, it is possible to derive
methods from the constraints through combinations of the states of features.
Concrete rules for the mapping from constraints of feature models to SBCs are
listed in Tables 1 and 2.

Bind(feature) means the bind state of the feature is bound, and Unbind(feature)
means the bind state of the feature is unbound. Predicate(feature-set) represents
the value (True or False) of the predicate on the feature set.

8 Bo Wang et al.

Table 1. Methods for constraints

Relationship
Number of

Methods
Methods

2
{Bind(A), Bind(B)} or

{Unbind(A), Unbind(B)}

2
{Bind(A)} or

{Unbind(B)}

2
{Predicate(Set-A) = False} or

{Predicate(Set-B) = True}

2

{Predicate(Set-A) = False,

Predicate(Set-B) = False} or

{Predicate(Set-A) = True,

Predicate(Set-B) = True}

2
{Predicate(Set-A)= False} or

{Predicate(Set-B)= False}

B

A

A

B

Mandatory

Optional

Composite-Requires

Composite-M-requires

Composite-Excludes

Set-A Set-B

Predicate Predicate

Set-A Set-B

Predicate Predicate

Set-A Set-B

Predicate Predicate

Table 2. Methods to determine the values of predicates

Predicate Value
Number

Of Methods
Methods

True 1 {Bind(A1),Bind(A2) …Bind(An)}

False n
{Unbind(A1)} or {Unbind(A2)} or …

{Unbind(An)}

True n

{Bind(A1),Unbind(A2),Unbind(A3)…Unbind(An)}

{Bind(A2),Unbind(A1),Unbind(A3)…Unbind(An)} or …

{Bind(An),Unbind(A1),Unbind(A2)…Unbind(An-1)}

False 1+(n2-n)/2
{Unbind(A1),Unbind(A2)…Unbind(An)} or

Any two of the features in the group are bound

True n {Bind(A1)} or {Bind(A2)} or … {Bind(An)}

False 1 {Unbind(A1), Unbind(A2) …Unbind(An)}

All

Set-A

{A1,A2…An}

Alternative

Set-A

{A1,A2…An}

Or

Set-A

{A1,A2…An}

In our approach, a simple constraint (i.e., require and exclude) can be repre-
sented by a composite constraint. For example, “feature A requires feature B”
can be represented as “All-Set(A) composite-requires All-Set(B)”. Therefore, we
can map simple constraints to SBCs according to these rules.

In order to derive combinations of the states of a composite constraint’s
features(i.e. methods), our system 1) finds the combinations of values of the
composite constraint’s predicates according to the last three rows of Table 1; 2)
derive the combinations of the bind states of each predicate’s features to hold
the predicate value determined in the first step, according to Table 2.

For example, given “All-Set(A) composite-m-requires Alternative-Set(B,C)”,
first two combination of predicates, namely, {All-Set(A) = True, Alternative-
Set(B,C) = True}, {All-Set(A) = False, Alternative-Set(B,C) = False}, are
generated. Then the combinations to hold the values of these predicates are
generated. After that, the derived methods for this composite constraint are:
{Bind(A), Bind(B), Unbind(C)}, {Bind(A), Unbind(B), Bind(C)}, {Unbind(A),
Bind(B), Bind(C)}, {Unbind(A), Unbind(B), Unbind(C)}.

4.2 Recommend a Solution to Fix IFM

After one constraint is added to the feature model and in turn added to the
SkyBlue constraint graph by mapping it to a SBC, our system detect incon-

A Dynamic-Priority based Approach to Fixing Inconsistent Feature Models 9

sistencies and recommend a solution by two steps: 1) constructing a new LGB
method graph through enforcing the newly-added SBC and other SBCs; 2) using
the LGB to recommend a solution. Our system uses SkyBlue’s LGB construction
algorithm, and we extend SkyBlue by redefining method conflicts and specializ-
ing the method execution process.

Constructing a LGB method graph involves enforcing the constraints in the
constraint graph. To enforce a constraint, SkyBlue selects a method for it, change
the methods of same and stronger constraints, or revoke one or more weaker
constraints. This process is called constructing a method vine or mvine. When
an mvine for a SBC is build, they are successfully enforced.

Note that each time a constraint is successfully enforced (i.e. an mvine is
constructed), one or more weaker constraints may be revoked. To construct
a LGB method graph, these revoked constraints are added to the unenforced
constraint set. Then our algorithm repeatedly tries to enforce all of them by
constructing mvines for these constraints, until none of the constraints can be
enforced. This process terminates because of the finite number of constraints.
The pseudo code of constructing a LGB method graph is shown below.

Construct a LGB method graph

constructLGB(Constraint SBC){
//clean the unenforced constraint set
clearUnenforcedCnSet ();
addToUnenforcedCnSet(SBC);
While(UnenforcedCntSet != null){

unenforcedCn = UnenforcedCnSet.get();
// enforce the unenforced constraint ,
//add the revoked constraints to the unenforced constraint set

buildMvine(unenforcedCn , unenforcedCnSet);
}

}

SkyBlue uses a backtracking depth-first search to build mvines. The pseudo
code of building an mvine is shown as follows:

Build an Mvine for a unenforced constraint

buildMvine(Constraint root){
While (root has methods){

Method m = getMethodFromConstraint(root);
If(! checkConflicts ()){

return true;
}Else{

Constrint cn = getConflictsConstraint ();
If(cn weaker than root){

revokeConstring(cn);
return true;

}Else{
buildMvine(cn);

}
}

}
return false; // start backtrack

}

The process of building an mvine for an unenforced constraint (called root
constraint in the building process) is actually a local propagation process, the
building process will end in the following situations:

10 Bo Wang et al.

– if this selected method does not conflict with other methods, this branch of
the depth-first search mvine does not extend any further;

– if this selected method conflicts with the selected methods of weaker enforced
constraints, SkyBlue just revokes these weaker constraints and adds them
into the unenforced constraints set and this branch of the mvine does not
extend any further;

– if this selected method conflicts with the selected methods of the same or
stronger enforced constraint, SkyBlue selects other methods of these con-
straints; if these selected methods conflict with yet other constraints, choose
other methods.

Our system redefines method conflicts and revises the corresponding part of
the SkyBlue algorithm for building mvines. In SkyBlue, method conflicts happen
when a variable is determined by more than one methods. However, in method
graphs of feature models, the variables in constraint graphs can only be bound
and unbound. Therefore, even if a variable is determined by more than one
methods, it may not cause a conflict (e.g. see variable B in Fig. 4 (b)). Conflicts
happens only when a variable is set to different values.

Our algorithm can also handle graphs that contain directed cycles, when
executing methods to satisfy the constraints in the cycle. In SkyBlue, it is not
possible to find an execution sort to satisfy the constraints in a cycle. In our
system, however, methods that determine a variable set the variable to one fixed
value. Therefore, our system can just execute all the methods to satisfy all the
constraints.

SkeBlue provides two techniques [8], namely, Local Collection and Walkabout
Strength to optimize the performance when constructing LGB method graphs.
Our system successfully implement the Local Collection technique based on the
new definition of method conflicts. The Walkabout Strength technique for feature
models is still under construction. However, our scalability case study in Section
5.2 shows that our system can scale up to large feature models without the
Walkabout Strength technique.

After a LGB method graph is constructed, we recommend a solution to do-
main analysts. How to analyze the LGB method graph to find a solution is
described in Section 3.1.

4.3 Choose other Solutions through Dynamic-Priority

After a solution is recommended to fix inconsistencies, domain analysts may not
be satisfied with this solution. In our approach, they can choose other solutions to
fix the inconsistencies, by raising the priorities of the constraints in the solution.

The recommended solution consists of a set of weaker unenforced constraints
to be deleted. These constraints conflict with some enforced constraints that have
the same or higher priorities. Provided with the solution, domain analysts may
not want some of the constraints in the solution to be deleted. To get a solution
that does contain this constraint, domain analysts should increase the priority of
the constraint. After the priority is adjusted, we construct a new LGB method

A Dynamic-Priority based Approach to Fixing Inconsistent Feature Models 11

graph, with the hope of re-enforcing the raised constraint and recommending a
new solution based on this new LGB method graph. This process continues until
domain analysts are satisfied with the solution. The pseudo code of changing
priorities is listed as follows:
Changing a constriaint’s prioritiy

changePriority(Constraint SBC , Priority p){
oldPriority = SBC.priority;
SBC.priority = p;
If (oldPriority <p){

If (!SBC.isEnforced ())
ConstructLGB(SBC);

}
Else If(oldPriority >p){

If (SBC.isEnforced ())
ConstructLGB(SBC);

}
}

5 Case Studies

To investigate whether our approach is useful to fix inconsistencies in feature
models, we undertook two case studies. The first one is a preliminary case study
that focused on whether our approach helps domain analysts fix IFMs efficiently.
The second case study investigated whether our approach is scalable to large
feature models.

5.1 Usability

In the following, we first describe the process of the usability case study, then
give an analysis to the results.

Study setup. In this case study, five participants were asked to build a feature
model of the web store domain using our system, which is integrated into a
Feature Model Graphical Editor we developed before. These participants have
diverse backgrounds: two of them are senior undergraduate students who have
little experience with domain engineering. The other three are graduate students
whose research interests are software reuse. None of them know the approach
until the case study and they are familiar with web store systems.

The five participants took the role of domain analysts to identify main fea-
tures, refinements, simple constraints, composite constraints of the web store
feature model. During the case study, our system recorded usage logs that in-
clude the scale of feature models, the number of the detected inconsistencies and
the number of the recommended solutions. After the case study, the efficiency
of our system is investigated through questionnaires.

Results. The usage log is summarized in Table 3. (The constraints showed in
the results are the constraints explicitly modeled into the feature model, they

12 Bo Wang et al.

Table 3. Usage log of the usability case study

Particip
ants

Features
Simple

Constraints
Composite
Constrains

Number
of

Inconsist
encies

Average
Recommend
ation times

Max
Recommend

ation
times

Average
Deleted

Constraints

Max
Deleted

Constraints

P1 53 17 0 7 2.57 6 1.71 2

P2 50 6 1 5 1.4 2 1.8 3

P3 57 7 3 6 2.5 3 1.5 2

P4 34 8 3 6 3.17 6 1.83 4

P5 50 6 3 3 1.33 2 1.67 2

do not contain the simple constraints that are brought with the Mandatory and
Optional features.)

Most of the participants built the web store domain feature model contain-
ing about 50 features. For all the constructed feature models, there are few
composite constraints. On average, when an inconsistency is detected, about 2
recommendations are needed to find the desirable solution, except for participant
4. The relatively small feature model conducted by participant 4 has more con-
straints. More recommendations are needed to find the desirable solution when
inconsistencies detected.

The concerns of the questionnaires are classified into three categories: 1)
whether the participants need recommended solutions when fixing inconsisten-
cies; 2) whether our system can help the participants fix inconsistencies; 3)
whether assigning priorities to constraints bring a lot of burden. Based on the
answers to these concerns, we conclude as follows:

– Three graduate students have experience with feature model construction
before. They pointed out that they often did not know how to fix the incon-
sistencies in relatively large and complex feature models. According to their
understanding, two factors lead to this difficulty. The first one is that they
have to first find out the meaning of the constraints, then analyze the incon-
sistencies and finally figure out how to fix them. The second factor is that
when analyzing the inconsistencies, some irrelevant features and constraints
disturb the domain analysts.

– Four out of five participants think our system is very helpful when fixing
inconsistencies, the rest one cannot be sure whether it is helpful. The partic-
ipants reported that our system helped them focus on where the inconsisten-
cies are and how to solve them, by providing recommendations. Adjusting
priorities can help them find alternative or better solutions. The time needed
to fix an inconsistency is also reduced greatly.

– All the participants think assigning priorities bring them trouble when con-
structing constraints, due to the lack of the standards for the priorities of
constraints. They think the default priority is rather helpful. They also point
out that adjusting priorities is relatively much easier, because they can adjust
priorities through comparing constraints.

A Dynamic-Priority based Approach to Fixing Inconsistent Feature Models 13

Time
(Seconds)

Number of Features
/Constraints

400 800 1200 1600 2000 2400 2800 3200 3600 4000

242
/30

425
/50

605
/70

765
/110

1023
/130

1364
/150

1705
/170

2046
/190

2387
/210

2728
/230

3069
/250

3410
/270

3751
/290

4092
/310

4400

4433
/330

10

20

30

40

50

60

70

With the
Same Priority

With different
Priorities

Fig. 5. Experiments results for fixing randomly generated feature models with the same
and different priorities, respectively

5.2 Scalability

In this case study, we investigate the scalability of our system. To evaluate the
scalability, we randomly generate feature models and fix the inconsistencies in
the generated feature models. We use generated models because it is very difficult
to get real world large feature models. Although there are publications about
large models, none of these models are publicly available. On the other hand,
industrial feature models are always confidential.

We implement an algorithm to generate feature models randomly2. Each
generated feature model contains a root feature. We can specify the number of
the subtrees that are connected to the root feature, the height of the subtrees, the
number of the chid features for each non-leaf feature in the subtrees, the number
of the constraints. The percentage of the variability of features are: Mandatory
(25%) and Optional (75%).

To make the study reflects the scalability of our system, we generate two
groups of feature model, with the same and different (randomly between 1 and
5) priorities. In our case study, we adopt the first recommended solution to fix
inconsistencies.

The environment for our experiments is a Win 7 PC with a 2.66GHz CPU,
2GB memory and the result is shown in Fig. 5. (The constraints showed in the
results are the constraints explicitly modeled into the feature model, they do
not contain the simple constraints that are brought with the Mandatory and
Optional feature.) Our system checks and fixes inconsistencies incrementally.
For example, in the second case, 425 mandatory or optional features are added
(each bring a constraint), and 50 constraints are explicitly modeled, we check
475 times in total and cost 0.8s in all.

From the result, we can see that, our system can handle feature models with
more than 4000 features and 300 constraints, which is a good support for domain
analysts when they fix inconsistencies in feature models.

2 See http://sei.pku.edu.cn/˜ wangbo07/ for the source code.

14 Bo Wang et al.

6 Related Work

Feature models are first proposed by Kang et al. [1] in the feature-oriented
domain analysis (FODA) method. Czarnecki et al. [11] proposed probabilistic
feature models, in which soft constraints express the conditional probability of
configurations to contain certain features. Our approach use priorities to de-
termine which constraints should stay in feature models, when inconsistency
happens.

Many studies focus on the automatic analysis of the deficiencies of feature
models [9]. Maßen and Lichter [3] proposed a deficiency framework of feature
model. They point out that inconsistency is one of the most severe deficiencies
in feature models. Mannion et al. [12] was the first to use propositional formulas
to analyze feature models. Batory [13] proposed an approach to detecting defi-
ciencies with SAT Solver. In his work, a Logic Truth Maintenance System was
designed to analyze feature models. Benavides et al. [14] were the first to use
constraint programming for analysis on feature models. Our previous work [15]
focused on how to analyze feature models using BDD.

However, all these works only focus on the detection of deficiencies. Egyed
[16] proposed an approach to fixing inconsistencies in UML models. Trinidad
et al. [17] focus on the explanation of deficiencies in feature models based on
constraint programming, but they do not give a solution to the deficiencies and
the scalability of his approach is also not clear. White et al. [18] focus on detect
errors on the configuration of a feature model, and propose changes in the con-
figuration in terms of features to be selected or deselected to correct the error.
Our approach focuses on the feature model itself, not the configuration of feature
models.

7 Conclusion and Future Work

In this paper, we adopt the constraint hierarchy theory and extend the con-
straint solver-SkyBlue to implement a system that can help domain analysts fix
inconsistent feature models effectively. When a constraint is added to the fea-
ture model, we automatically check the inconsistencies by constructing a LGB
method graph, and recommend domain analysts a solution for fixing the inconsis-
tencies by analyzing the constructed LGB method graph. Furthermore, we can
recommend other solutions so that a more desirable solution can be obtained
based on the feedback of domain analysts. The feedback is expressed declara-
tively through the adjustment to the priorities of constraints. Our future work
will focus on working on more practical examples, and investigating applicability
of our approach to inconsistency fixing of other models such as UML models.

Acknowledgments. The authors would like to thank Shin Nakajima (NII,
Japan) and Lu Zhang (Peking University, China) for discussing with us on model
inconsistency detection and fixing, and to Hiroshi Hosobe (NII, Japan) for in-
troducing Delta/Skyblue to us. This work is supported by the National Basic

A Dynamic-Priority based Approach to Fixing Inconsistent Feature Models 15

Research Program of China (973) under Grant No. 2009CB320701, the Science
Fund for Creative Research Groups of China under Grant No. 60821003, the
Natural Science Foundation of China under Grant No. 60703065, 60873059 and
the National Institute of Informatics (Japan) Internship Program.

References

1. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, CMU-SEI (1990)

2. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature
models and their specialization. Software Process: Improvement and Practice 10
(2005) 7–29

3. von der Maßen, T., Lichter, H.: Deficiencies in feature models. In: Workshop
on Software Variability Management for Product Derivation, in Conjunction with
SPLC. (2004)

4. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: The variability model
of the Linux kernel. In: VaMoS. (2010) 45–51

5. Batory, D.S., Benavides, D., Cortés, A.R.: Automated analysis of feature models:
challenges ahead. Commun. ACM 49 (2006) 45–47

6. Borning, A., Freeman-Benson, B.N., Wilson, M.: Constraint hierarchies. Lisp and
Symbolic Computation 5 (1992) 223–270

7. Sannella, M.: SkyBlue: A multi-way local propagation constraint solver for user
interface construction. In: ACM Symposium on User Interface Software and Tech-
nology. (1994) 137–146

8. Sannella, M.: The SkyBlue constraint solver and its applications. In: PPCP. (1993)
258–268

9. Benavides, D., Segura, S., Cortés, A.R.R.: Automated analysis of feature models
20 years later: a literature review. Information Systems (2010)

10. Zhang, W., Mei, H., Zhao, H.: Feature-driven requirement dependency analysis
and high-level software design. Requir. Eng. (2006) 205–220

11. Czarnecki, K., She, S., Wasowski, A.: Sample spaces and feature models: There
and back again. In: SPLC. (2008) 22–31

12. Mannion, M.: Using first-order logic for product line model validation. In: SPLC.
(2002) 176–187

13. Batory, D.S.: Feature models, grammars, and propositional formulas. In: SPLC.
(2005) 7–20

14. Benavides, D., Trinidad, P., Cortés, A.R.: Using constraint programming to reason
on feature models. In: SEKE. (2005) 677–682

15. Zhang, W., Yan, H., Zhao, H., Jin, Z.: A BDD-based approach to verifying clone-
enabled feature models’ constraints and customization. In: ICSR. (2008) 186–199

16. Egyed, A.: Fixing inconsistencies in uml design models. In: ICSE. (2007) 292–301
17. Trinidad, P., Benavides, D., Durán, A., Ruiz-Cortés, A., Toro, M.: Automated

error analysis for the agilization of feature modeling. J. Syst. Softw. 81 (2008)
883–896

18. White, J., Schmidt, D.C., Benavides, D., Trinidad, P., Cortés, A.R.: Automated
diagnosis of product-line configuration errors in feature models. In: SPLC. (2008)
225–234

