
A Framework for Synchronization Between Feature
Configurations and Use Cases Based on

Bidirectional Programming

Weize Zhao
Peking University

Beijing, China

Email: zhaoweize@pku.edu.cn

Haiyan Zhao
Peking University

Beijing, China

Email: zhhy.sei@pku.edu.cn

Zhenjiang Hu
National Institute of Informatics

Tokyo, Japan

Email: hu@nii.ac.jp

Abstract—Model-Driven Development (MDD) is a widely
adopted approach to Requirement Engineering (RE). One ba-
sic research issue in Model-Driven Requirement Engineering
(MODRE) is requirements validation, which focuses on how to
validate whether the requirements models meet stakeholders’
needs or not. Several lines of work have been performed on the
transformation between feature configurations, which are respon-
sible for specifying a software in feature-oriented approach, and
use cases, which are easy to understand and often used to describe
system behaviors to stakeholders. However, most of the existing
automated derivation methods about feature configurations and
use cases are either in one direction or the other. Therefore, after
validating the use cases, the adjustment made by stakeholders
cannot be traced back to feature configurations automatically.
In this paper, we focus on synchronization between these two
vital software artifacts. And we propose a framework that
uses putback-based bidirectional programming to guarantee the
correctness of this synchronization.

Index Terms—Feature model, Use case, Synchronization, Bidi-
rectional Programming.

I. INTRODUCTION

Requirement validation has been one of the important issues

in requirement engineering, especially in systematic software

reuse. Requirement models of software reuse approaches are

usually highly abstract and difficult for untrained users to

read and understand. As an instance, Feature-Oriented Domain

Analysis (FODA) method [1] is a widely adopted software

reuse approach in business and technical domains which uses

a feature model to capture commonalities and variabilities of

a domain, and a feature configuration to describe a specific

product in the domain. Although feature-oriented approach

has been greatly developed since it was orignally proposed,

feature configurations are still too abstract for untrained users

to understand.

In the other hand, use cases model the functionality of

systems at a similar level of abstraction but from a user

perspective. They are also widely adopted as requirement

models, especially to communicate with stakeholders.

To achieve the advantages of both sides, several lines of

work have been performed on the transformation between

feature configurations and use cases. But the transformation

process proposed in these works are mostly unidirectional.

For example, Griss et al. [2] provide high-level guidelines to

derive feature models from use cases. The transformation in-

formation, which is obtained as a by-product of the derivation,

is not formally specified. It is hard to apply the information

for bidirectional transformation between feature configurations

and use cases. In Bonifacio et al.’s work [3], they propose

an approach to building transformation information between

features and use case fragments. Applying the transformation

information, use cases can be derived from a feature model

configuration, whose main drawback is that the transformation

is unidirectional. The feature configuration can not be updated

with a modified use case in this framework. Cazrnecki and

Antkiewicz’s [4] propose a general template-based approach

for mapping feature model configuration to other kinds of

models, including use cases. The main limitation of this work

is that the process of derivation is not specified explicitly, and

the derived model can not be transformed backward to the

feature configuration.

In our previous work, we propose a transformation de-

scription language (TDL, Section III-A) to specifying the

transformation information from feature models to use cases

[5]. Rules written in TDL can be applied to derive use

cases from feature configurations. However, there is still no

corresponding part to derive feature configurations from use

cases, which means if a stakeholder modifies the derived

use cases, the corresponding feature configuration has to

be updated manually. Moreover, transformation information

written in TDL implies variability inside use cases. One feature

configuration can correspond to variant use cases depending on

different excution order of the transformation information, and

our previous work just applied the transformation in the default

order without considering the variability. There are also some

approaches that allows modeling vairability directly in use

case. Hajri et al. [6] [7] propose a product line methodology for

documenting variability in use cases. However it can’t describe

the variability within a use case.

In this paper, we propose a framework focusing on the

synchronization between feature configurations and use cases

based on TDL. Through our framework, a feature configura-

tion can be automatically updated with an adjusted use case,

2016 IEEE 24th International Requirements Engineering Conference Workshops

978-1-5090-3694-3/16 $31.00 © 2016 IEEE 170

2016 IEEE 24th International Requirements Engineering Conference Workshops

978-1-5090-3694-3/16 $31.00 © 2016 IEEE
DOI 10.1109/REW.2016.45

170

2016 IEEE 24th International Requirements Engineering Conference Workshops

978-1-5090-3694-3/16 $31.00 © 2016 IEEE
DOI 10.1109/REW.2016.45

170

RE 2016 Workshops, Beijing, China
MoDRE Workshop Paper

and vise versa. The synchronization is not a trivial task to

manually carry out, especially considering the following three

factors:

• Transformation information written in TDL is unidirec-

tional;

• Variability also exists inside the use cases (as activities

in this paper);

• The variability of activities is order-sensitive.

To ensure the consistency between feature configurations

and use cases, we synchronize them by using bidirectional

transformation (BX, Section III-B) [8] techniques. A BX

consists of a pair of functions: a forward one, which generates

a view from a source, and a backward one, which takes the

original source and an updated view as input, and outputs

an updated source where the view has been embedded in.

We have implemented the BXs with BIGUL [9], a putback-

based bidirectional programming language. With BIGUL, we

describe only the behavior of put, and the pair of get function

and put function will be generated by the BIGUL compiler.

The well-behavedness of the pair of functions is guarenteed

by BIGUL.

The remainder of this paper is organized as follows: Sec-

tion II provides a practical example of the problems our

framework addressed. Section III gives some preliminaries on

TDL and BXs. Our framework is presented in Section IV.

In Section V, we examine threats to the validity. After dis-

cussing related work in Section VI, we conclude the work in

Section VII.

II. A RUNNING EXAMPLE

Let’s consider such a scenario: A stakeholder, who owns a

pizza store, finds that ordering pizzas by phone is an inefficient

way, especially at a peak time. Inspired by the boom of

O2O (Online to Offline) business model, he plans to build

an online store so that customers can order the pizzas through

the internet.

The project is contracted to a software company that adopts

feature-oriented approach to achieve software reuse. In the

approach, the characteristics of online stores are denotes by

features, and a feature model is built to organize all the

mandatory features and optional features of online stores.

Fig. 1 shows a fragment of the feature model. The features

in the fragment are related with the function check out.
After meeting and discussing with the stakeholder, a re-

quirement analyst generates a configuration of the feature

model. Fig. 2 gives the configuration, where only the features

in Fig. 1 is explicitly presented.

Given the feature configuration, the stakeholder complains

that the configuration is too abstract for him to understand

precisely. It’s hard to validate whether the captured require-

ment meets his need or not. Therefore, an automated use

case derivation approach based on TDL (Section III-A) is

used to generate the corresponding use cases for validating

the captured requirement with the stakeholder. Fig. 3a shows

one of the automated derived use cases which describes the

scenario of checking out.

Check out

PaymentShipping

Delivery
range

Address Credit
card

Cash on
delivery

Virtual
goods

Real
goods

Goods

Online store

Legend Feature

Refine

Mandatary

Optional

Or

Xor

Require

Exclude

……

Fig. 1: A fragment of the feature model “online store”

Check out

PaymentShipping

Delivery
range

Address

Real
goods

Goods

Online store

……

Credit
card

Fig. 2: A fragment of the feature configuration of online store

Start

User: Input address info

System: Send order to server

User: Click check out

System: Check if the
address is in scope

False

End

User: Input credit card info

(a) auto derived

Start

User: Input address info

System: Send order to server

User: Click check out

System: Check if the
address is in scope

False

User: Input credit card info

End

User: Pick a
payment method

Credit card

Cash on
delivery

(b) adjusted

Fig. 3: use case UC check out

After validating the use cases, the stakeholder is unsatisfied

with the process of checking out and want to modify the

use case. He thinks that although credit card has become

a popular payment method, plenty of customers still prefer

cash on delivery. In the other words, he’d like to change the

requirement.

171171171

Check out

PaymentShipping

Delivery
range

Address

Real
goods

Goods

Online store

……

Credit
card

Cash on
delivery

Fig. 4: A fragment of the updated feature configuration

The feature model that given in Fig. 1 seems so simple

that the stakholder can easily understand the model and adjust

the feature configuration directly, it’s only a small part of the

whole feature model. In fact, even a small scale feature model

in practise is usually contains more than one hundred features

and dozens of constraints. On the other side, the requirements

of adjustment will also be more complicated than just add a

“Cash on delivery” in most cases. Therefore, for a stakeholder,

adjusting the use case directly is a more feasible solution.

In this case, the use case in Fig. 3a is modified into Fig. 3b.

A new decision node User: Pick a payment method is inserted,

and activity User: Input credit card info becomes one of its

branch. Another branch which denotes Cash on delivery is

also added, but with no activities on this branch.

As the core artifact of feature-oriented software product line

method, the feature configuration should be updated to satisfy

the adjustment of the use case. However, as far as we know,

rare work has been done to automatically achieve this goal. We

have to manually add features which correspond to the new

activities, remove features which correspond to the deleted

activities, and apply further adjustment to keep the validity

of the feature configuration. In this case, we add feature Cash
on delivery into the original configuraion. The updated feature

configuration is showed in Fig. 4.

It is not a trivial work to manually update a feature configu-

ration with adjusted use cases, even for a simple instance like

the above one. Considering not only the consistency between

the configuration and the use case should be hold, but also

all the constraints of the feature model need to be satisfied,

the difficulty and comlexity will be greatly increased when

dealing a larger-scale domain.

III. PRELIMINARY

A. Transformation description language

The transformation description language (TDL) is designed

for precisely specifing the transformation information from a

feature model to a set of use cases [5]. The feature model

adopted in TDL, which is proposed in FeatuRSEB [2], consists

of two categories of elements, i.e. features and relations.

A feature is a user-visible capability of a software system,

denoting a cohesive set of individual requirements[10]. By

selecting a set of features in a feature model, we can get a

 guard

:

Legend

∧

Feature

¬

Operation

;

.

 operation-sequence

Terminal symbol

Nonterminal symbol

Concept

Fig. 5: Core syntax of TDL

feature configuration that describes the capability of a specific

software product.

Relations fall into two kinds: refinement and constraint.
Refinement relations integrate the features into a tree structure.

Constraint relations are further classified into require, exclude,

OR and XOR. In the feature model showed in Fig. 1, as an

instance, Real goods requires Shipping. Virtual goods excludes

with Cash on delivery. Cash on delicery and Credit card share

an OR relation, which means if their parent feature Payment
is selected, at least one of them should be selected as well.

Virtual goods and Real goods are in an XOR relation , which

means if Goods is selected, one and only one of them has to

be selected.

To be valid, a feature configuration has to satisfy all the

constraints of the feature model, including the ones explicitly

indicated in constraint relations and those implicitly implied

in refinement relations.

A use case specifies a set of behaviors performed by the

software, which yields an observable result that is of value

for stakeholders. It can be denoted in various forms: natural

language, pseudocode, activity diagram, etc. [11]. Since we

focus on the sequence of interactions inside a use case in

this paper, and considering the needs of formal specification,

we use structured activity diagrams. And the activities can be

further classified into three categories: Single, Branch and

Loop, where both Branch and Loop are compound activities.

TDL formally specifies the transformation information from

a feature model to use cases into a set of transformation rules

(X-rules). According to the core syntax of TDL showed in

Fig. 5, each X-rule consists of a guard and a sequence of

operation. The guard is a conjunction of features’ binding

states: a and ¬a respectively indicate feature a is selected or

removed. The guard specifies the kinds of feature configuration

in which the X-rule will be active. The operation sequence of

an active X-rule will be excuted.

TDL supports two categories of operations: create and

insert. Use cases and activities can be created with create
operations, and insert operations is used to insert activities

into use cases at the right position relatively. Both the create
operation and the insert operation of each activity will only

appear once in the whole set of X-rules. TABLE Ib represents

the X-rules related with UC check out. The create operations
of activities are omitted and the detailed attributes of activities

are extracted and listed in TABLE Ia.

172172172

TABLE I: The X-rules of UC check out

(a) activity list

Id Type Actor Behavior

A1 Single User Click check out

A2 Single System Send order to server

A3 Single User Input address info

A4 Single User Input credit card info

B1 Branch User Pick a payment method

C1 Condition False
C2 Condition Cash on delivery
C3 Condition Credit card
L1 Loop System Check if the address is in scope

(b) rule list

No. Guard Operations (... in UC check out)
1 Check out create use case UC check out

with activity Start, End;

insert A1 before End;

insert A2 after A1;

2 Shipping insert L1 with C1 before A1;

insert A3 after C1;

3 Payment insert B1 before A1;

4 Cash on delivery insert C2 as a condition of B1;

5 Credit card insert C3 as a condition of B1;

insert A4 after C3;

For a detailed description of the TDL’s syntax, use and case

studies please refer to [5].

B. Bidirectional transformation

Bidirectional transformations (BX) provide a novel mecha-

nism for synchronizing the contents of two related pieces of

data, one as source and the other as view [12]. One of the

BX frameworks is called lenses which focus on the view-

update problem [13]. In this paper, whenever bidirectional

transformation is mentioned, we refer to the lenses framework.

A BX consists of a pair of transformations: a forward trans-

formation named get, which extracts a part of information from

a source to construct the view, and a backward transformation

named put, which takes the source and an updated view as

input to produce an updated source embedding information

from the updated view [14]. The pair of transformations should

be well-behaved, i.e., they should satisfy two round-tripping
laws which are defined as follows:

put s (get s) = s (GetPut law)

get (put s v) = v (PutGet law)

where s and v respectively indicate a source and a view.

In this work, we adopt a putback-based bidirectional pro-

gramming language called BIGUL (for Bidirectional Generic

Update Language), which is formally verified in the depen-

dently typed programming language AGDA [15], [16] to

guarantee that any putback transformation written in BiGUL

is well-behaved [9]. And for use in practical applications,

BIGUL is ported to Haskell. Following the putback-based

approach, a BIGUL program can be evaluated as either a put
or a get by only describing the put function of bidirectional

transformations.

At present, BIGUL provides seven basic programs called

constructors: Skip, Replace, Prod, RearrV, RearrS,

Case and Fail. The semantic of Skip’s get function is take

anything as input (source) and output nothing (view). Its put
function is remaining the source unchanged. The semantic of

Replace’s get function is output what is inputted. And the

put function ignore the source and return the view. Prod uses

two sub programs, bx1 and bx2, to transform between two

pairs. bx1 is reponsible for the first elements of the pairs, and

bx is responsible for the second ones.

Here is a simple BIGUL program:

rplFst :: BiGUL (Int,Int) (Int, ())
rplFst = Prod Replace Skip

The source is a pair of Int variables, and the view is an Int
variable with an empty unit. The first elements of both pairs

are associated by Replace, while the second by Skip. There

are two running examples for this BIGUL program which

respectively show the behavior of both get and put function:

>> get rplFst (3,5)
Right (3,())

>> put rplFst (3,5) (9,())
Right (9,5)

The Right in the result means no error occurs, otherwise it

will be a Left.

As the sample program shows, constructors can be com-

posed to constitute more complicated BIGUL programs. To

see the introduction of the rest constructors and the other

details, as well as the latest updates, about BIGUL, please

refer to [17].

IV. FRAMEWORK FOR SYNCHRONIZATION

We propose a framework, showing in Fig. 6, to synchronize

between feature configurations and use cases, i.e., a feature

configuration can be automatically updated with an adjusted

use case, and vise versa. This work is based on our previous

work [5], called TDL, which focuses on specifying the trans-

formation information used for automated derivation of use

cases.

The framework consists of three BXs implemented in

BIGUL: 1) sync FC guards is responsible for synchronizing

a feature configuration with a set of guards that belong to

active X-rules; 2) sync guards activities takes responsibility

for the synchronization between guards and the corresponding

activities according to the rules; 3) sync activities UC syn-

chronizes a use case with a set of activities by rearranging

them into a proper order. The three sychronizations are all

based on the knowledge provided by the feature model and

the X-rules.

A. Knowledge base

We treat a feature configuration as a set of features that

conforms to the constraints imposed on them in the feature

173173173

Feature
configuration

Active X-rules

Guards Activities Use case

Feature
model

Constraints

Features1

2

X-rules

Guards

Mapping

Activities

Insert
locations

3

4

5

6

1, 2, 3 3, 4, 5 5, 6

sync_FC_and_guards sync_activities_and_UC
sync_guards_and_activities

X-rules

Guards

Mapping

Activities

Insert
locations

3

4

5

6

 Knowledge base

 Synchronization

Fig. 6: Framework of the approach

model. Here we use the constraints to stand for both the ex-

plicit constriants and constraints implicated by the refinements

in the feature model.

X-rules, which related with a paticular use case are decom-

posed into guards, mapping, activities and insert locations.

• Guards consists of all the related X-rules’s guards. Since

each guard is a conjunction of features and ¬features,

as the syntax showed in Fig. 5, the ∧ operators can

be omitted, and the guard can be denoted as a set of

features and ¬features.

• Mapping denotes the relations between guards and ac-
tivities. Each record of Mapping, which takes the form

of (Guard, Activity), indicates when the guard is

true, the activity has to be inserted into the use case.

• Activities includes all the activities that can be inserted

into the particular use case. The activities are declared in

Haskell as follows:

type Actor = String
type Behavior = String
type Act = (Actor, Behavior)
data Activity = Single Act

| Branch Act [Activity] [Activity]
| Loop Act [Activity]

A Single activity is a tuple (Actor, Behavior),

with Actor denotes the excutor of the Behavior, like

Click check out (A1) (TABLE Ia, Fig. 3a) is a basic

behavior, and User is its Actor.

A Branch activity is a compound activity with two

branches. The activity is a decision node followed with

two conditions. Each condition leads a branch that is a

sub-list of activities. In Fig. 3b, Pick a payment method
(B1) is the dicision activity. One of the conditions is

Credit card (C2) followed with Input credit card info
(A4), and the other one is Cash on delivery (C3) followed

with an empty branch.

A Loop activity denotes an iteration. It consists of a

decision activity, a condition, and a loop body that is also

Start End

A1

A2L1

C1

A3

B1

UC_check_out L1

C3

A4

B1 C2

Legend
x

y insert y after x
x

y insert y before x

Fig. 7: Insert locations of UC check out

a sub-list of activities. Check if the address is in scope
(L1), False (C1) and Input address info (A3) constitute a

simple Loop activity in Fig. 3b.

• Insert locations records the relative position information

of insert operations in X-rules (TABLE Ib). For each

activity, there are only one operation that is responsible

for its insertion, and one unique corresponding record in

insert locations.

We further form insert locations into tree structure. If the

insert operation of feature x is “Insert x after/before x’”,

then x’ is the parent of x in the insert locations trees.

The relative positions are denoted with different type of

lines: solid lines for “after” and dashed lines for “before”.

We define tree x denotes the sub-tree of insert locations
trees where x is the root node of the sub-tree. The

compound activity is denoted as one node in the trees.

The insert locations trees of its subordinate activities are

built seperately. One thing to note is that the subordinate

activities are regarded as descendants of the compound

activity as well in this work. Fig. 7 shows the insert
locations trees of UC check out. Activity A1 should

inserted before End. L1 and B1 should inserted before

A1, while A2 should inserted after A1. The subordinate

activities of L1 and B1, including C1, A3, C2, etc, form

the sub-trees respectively in the right part of Fig. 7.

The insert locations trees satisfy the following properties:

– Completeness: All the activities in the trees, except

Start and End, are in the set of activities, and vice

versa;

– 2Roots: Each activity in activities is a descendant of

either Start or End;

– Reverse Heredity: If an activity is in a use case, then

its parent has to be in the use case as well; (This

property can be generalized to all its ancestors.)

– Heredity: Assuming activity x should be inserted

after(/before) its parent x’, then all the descendants

of x will be after(/before) x’ in the use case if they

are included;

– continuity: Given a valid use case, activities belong

to the same sub-tree are continuous in the use case.

In other words, for any two activities x and y in the

use case, assuming they both belong to tree z, then

all the activities between x and y in the use case all

belong to tree z.

174174174

B. Synchronization between feature configuration and guards

Given a valid feature configuration, the corresponding set

of guards in the active X-rules (abbr. to active guards) is

determined. At the same time, the active guards can be ex-

tracted from the feature configuration. Accordingly, the feature

model and the active guards can be regarded as the source

and view in the bidirectional model transformation, and the

synchronization between them can be implemented in BIGUL.

BIGUL is in nature a putback-based language, which

enables us to describe only the behavior of the backward

transformation, i.e., updating the original feature configuration

with updated active guards.

State is a boolean attribute of a feature, which denotes

whether the feature is selected (true) or removed (false) in

a configuration. A feature configuration is an assignment to

the state of all features in a feature model. Assuming fm is

the set that contains all the features in the feature model, we

define the following sets:

Select = {x|x ∈ fm, x.state = true}
Remove = {x|x ∈ fm, x.state = false}

Both sets are initialized to empty sets. Noticing that all

active guards have to be true, in the sense that each feature

appearing in these guards needs to be selected in the updated

feature configuration. These features are inserted into Select.
Select and Remove are iteratively constructed depending on

the require relations, the exclude relations and the inactive

guards (at least one feature in an inactive guard should be

removed) until no more features can be added in Select or

Remove until the state of features that belong to either sets

are determined.

The state of rest features are enumerated. In order to update

the feature configuration with minimal changes, when we

traverse a feature, we try its origin state first. For instance,

feature real goods is in the original configuration showed in

Fig. 2. When we traverse it, we first try to add it into Select
first. As a special case, if the updated active guards haven’t

changed at all, it which guarantee that the feature configuration

will stay the same through the transformation.

It’s worth mentioning that a use case only related to a small

part of the whole feature model and features irrelevant to the

updated use case can usually keep their original binding states.

Hence, the enumeration usaually stop quickly and can keep a

low cost in average, though it’s not efficient in theory.

The synchronization is defined in Haskell as:

sync_FC_guards :: BiGUL [Feature] [[Feature]]

Here’s an example. The configuration showed in Fig. 2 will

be represented by a sorted List of features:

fc = [address, check_out, credit_card,
delivery_range, goods, online_store,
payment, real_goods, shipping]

We use a sorted List of Features to indicate the feature

configuration intead of a Set of Features because BIGUL

supports List better.

Applying the get function of sync_FC_guards to fc,

we can get the corresponding active guards:

ag = get sync_FC_guards fc
= [[check_out], [credit_card], [payment],

[shipping]]

Each list in the result represent an active guard.

If a new guard [cash_on_delivery] is added into the

active guards, the feature configuration can be updated with

the put function of sync_FC_guards:

ag’ = [[cash_on_delivery], [check_out],
[credit_card], [payment], [shipping]]

fc’ = put sync_FC_guards fc ag’
= [address, cash_on_delivery, check_out,

credit_card, delivery_range, goods,
online_store, payment, real_goods,
shipping]

C. Synchronization between guards and activities

Each X-rule consists of a unique guard and a sequence

of operations. And the insert operation of each activity only

appear once in the whole set of X-rules. Therefore, mapping,

which denotes the relation between guards and activities, is an

1-to-n mapping.

Whereas, the mapping between the set of guards whose

values are true (active guards) and the set of activities which

should be inserted into the use case (active activities) is an

1-to-1 mapping. This is because when a guard is true, it will

activate the X-rule and all the corresponding activities should

be inserted into the use case.

Since the mapping is 1-to-1, either side can be regarded as

the source of the BIGUL program. We take active activities
as source and active guards as view in this framework.

The behavior of backward transformation simply follows the

mapping relationship from guards to activities according to

mapping.

The synchronization is defined in Haskell as:

sync_guards_activities ::
BiGUL [Activity] [[Feature]]

Here’s an example.

act = [A1, A2, A3, A4, B1, C1, C3, End, L1, Start]

where act represents the activities, including branches, loops

and conditions, which should be inserted into the use case

UC check out. We also use a sorted List to indicate a Set
here.

Applying the get function of

sync_guards_activities to get the corresponding

active gurads:

ag = get sync_guards_activities act
= [[check_out], [credit_card], [payment],

[shipping]]

Just like the example in Section IV-B, once we add

[cash_on_delivery] into ag, the activities could be up-

dated by the put function of sync_guards_activities:

175175175

ag’ = [[cash_on_delivery], [check_out],
[credit_card], [payment], [shipping]]

act’ = put sync_guards_activities act ag’
= [A1, A2, A3, A4, B1, C1, C2, C3,

End, L1, Start]

D. Synchronization between activities and use case

Given a set of activities and a use case, we split the activity

set according to whether each activity belongs to tree Start or

tree End in the insert locations trees. The use case, which is a

sequence of activities, is splitted in the similar way. According

to the continuity property, the two sub-sequences are both

continuous in the original use case.

We synchronize the subsets and the corresponding sub-

sequences respectively with a BIGUL program called

sub sync, which is responsible for updating a sub-sequence

with the corresponding subset. They both correspond to the

same subtree of insert locations (assuming x is the root of the

subtree). The behavior of sub sync is defined as follows:

• If the subset is empty: We remove the whole sub-sequence

from the use case;

• If the sub-sequence is empty: We insert x into the sub-

sequence and call sub sync again.

• If the subset and the sub-sequence are not empty: In this

case, x has to be in both of them (according to P3). We

first extract x respectively from the subset and the sub-

sequence. If x’s data structure is:

– Single: There is nothing need to be done;

– Branch: We apply sub sync to each branch with the

corresponding sub-subset extracted from the subset;

– Loop: Just like Branch, we apply sub sync to the

loop body with the corresponding sub-subset ex-

tracted from the subset.

Then we split the subset, except x, into sub-subsets

according to child-subtrees of x, where a child-subtree of

x means a subtree whose root is a child of x. For instance,

if x has two children y and z, then the subset will be

splitted in to two sub-subsets. One sub-subset contains the

activities that belong to tree y. The rest activities, which

have to be descendants of z, are in the other sub-subset.

The sub-sequence is splitted into sub-sub-sequences in

the same way. We recursively apply sub sync to the pairs

of corresponding sub-subsets and sub-sub-sequences.

The synchronization is defined in Haskell as:

sync_activities_UC :: BiGUL [Activity] [Activity]

Given a use case, for instance, the one showed in Fig. 3a

can be represented as:

uc = [Start, (L1, [C1, A3]), (B1, [], [C3, A4]),
A1, A2, End]

Since B1 has only one branch in this case, Fig. 3a omits B1
as well as C3.

With the get function of sync_activities_UC, we can

get the corresponding sorted list of activities:

act = get sync_activities_UC uc
= [A1, A2, A3, A4, B1, C1, C3, C4, L1, Start]

If C2 is added into act, we should find a proper position

for it in uc. The put function of sync_activities_UC is

responsible for that:

act’ = [A1, A2, A3, A4, B1, C1, C2, C3, End, L1,
Start]

uc’ = put sync_activities_UC uc act’
= [Start, (L1, [C1, A3]), (B1, [C2], [C3, A4]),

A1, A2, End]

E. Composing the BiGUL programs

BIGUL provides a constructor called Compose:

Compose :: BiGUL s u -> BiGUL u v
-> BiGUL s v

which is used to compose two BIGUL program together.

It requires that the first BIGUL program’s view type is

same as the second one’s source type. By using Compose,

sync guards activities and sync activities UC can be com-

bined to:

sync_guards_UC :: BiGUL [Activity] [[Feature]]
sync_guards_UC = Compose

sync_activities_UC sync_guards_activities

Since the view type of sync FC guards is different from the

source type of sync guards UC, Compose can not be used

to compose sync FC guards and sync guards UC.

However, sync FC guards and sync guards UC have the

same view type. In this paper, we construct a new composing

operation, ComposeSVS, to compose two BXs that share the

same view. Assuming the two BXs are:

bxL :: BiGUL SourceL View
bxR :: BiGUL SourceR View

where SourceL is the source type of bxL, and SourceR is

bxR’s. The two BIGUL program share the same view type,

View.

The forward and backward transfomations of them are

respectively named: getL, putL and getR, putR:

putL = put bxL
getL = get bxL
putR = put bxR
getR = get bxR

We define the result of ComposeSVS bxL bxR has a type

of BiGULSVS, and it has these two transformations:

putR2L(sl, sr) = putL(sl, getR(sr)) (def1)

putL2R(sr, sl) = putR(sr, getL(sl)) (def2)

where sl ∈ SourceL, sr ∈ SourceR.

The two transformations are no longer satisfied with the

defination of get and put in lenses framework. We define the

new consistency and the round-tripping laws of BiGULSVS
as follows:

sl ∼ sr � getL(sl) = getR(sr) (cons)

sl ∼ sr ⇒ putR2L(sl, sr) = sl (law1.1)

sl ∼ sr ⇒ putL2R(sr, sl) = sr (law1.2)

176176176

putR2L(sl, sr) ∼ sr (law2.1)

putL2R(sr, sl) ∼ sl (law2.2)

Proof of (law1.1):

putR2L(sl, sr)

= putL(sl, getR(sr)) (def1)

= putL(sl, getL(sl)) (cons)

= sl (GetPut law)

Proof of (law2.1):

getL(putR2L(sl, sr))

= getL(putL(sl, getR(sr))) (def1)

= getR(sr) (PutGet law)

⇔ putR2L(sl, sr) ∼ sr (cons)

law1.2 and law2.2 are respectivly isomorphic with (law1.1)

and (law2.1).
The proof of putR2L and putL2R’s well-behavedness

guarantee that our framework, a composition of

sync FC guards, and sync guards UC, is likewise well-

behaved.
Accordingly, we can define:

sync_FC_UC :: BiGULSVS [Feature] [Activity]
sync_FC_UC = ComposeSVS

sync_FC_guards sync_guards_UC

sync_FC_UC describes the BX between a feature config-

uration and a use case. For instance, we can use putL2R to

transform the feature configuration showed in Fig. 2 to the use

case showed in Fig. 3a:

fc = [address, check_out, credit_card,
delivery_range, goods, online_store,
payment, real_goods, shipping]

uc = putL2R sync_FC_UC fc []
= [Start, (L1, [C1, A3]), (B1, [], [C3, A4]),

A1, A2, End]

And if uc is changed, like Fig. 3b, into:

uc’ = [Start, (L1, [C1, A3]), (B1, [C2],
[C3, A4]), A1, A2, End]

we can use putR2L to update the feature configuration:

fc’ = putR2L sync_activities_UC fc uc’
= [address, cash_on_delivery, check_out,

credit_card, delivery_range, goods,
online_store, payment, real_goods,
shipping]

V. THREATS TO VALIDITY

A. Internal Validity
A feature configuration usually corresponds more than one

use case. After synchronizing the configuration with one

particular updated use case, the updated configuration may be

no longer satisfied with the other use cases. Since this paper

focuses on the synchronization between a feature configuration

with a use case, we argue that only adjusting one use case

at a time should be allowed. After updating the feature

configuration, all the rest use cases should be synchronized

then. The impacts on other use cases should be confirmed by

stakeholders.

B. External Validity

The synchronization requires the validity of feature config-

urations and use cases. Inputting an invalid use case will cause

error. The validity of a feature configuration can be checked

through model checking techniques and tools. Whereas, there’s

no explicit constraints between activities.

VI. RELATED WORKS

Griss et al. [2] and Bragança et al. [18] propose high-level

guidelines to derive feature models from use cases. Mefteh et

al. [19] [20] propose an approach to extract feature models

from documented use cases. Their approaches focus on the

derivation from use cases to feature models, and leave no

formal specified transformation information to support the

bidirectional transformation. In their work, a feature corre-

sponds to a use case in general, but the variability inside a

use case does not reflect in the feature model. Besides, Griss

et al. and Bragança et al.’s guildlines are based on extended use

cases which can represent commonalities and variabilities, and

Mefteh et al.’s work is based on documented use cases with

detailed description of goal in context. Our approach, which

is based on TDL, does not require use cases with extensions

or extra description.

Cazrnecki and Antikiewicz [4] propose a general template-

based approach for mapping feature configurations to other

models, including UML activity diagrams. A drawback of

this approach is that the transformation information is not

rigorously specified in a formal way. And transformation from

other models to feature configurations is beyond the method’s

capability.

Bonifcio et al. [3] and our previous work [5] propose

approaches to construct transformation information between

feature models and use cases. The information enables the

derivation from feature configurations to use cases. The main

limitation of these works is that they only provide unidirec-

tional transformations. To be more specific, transformation

information written in TDL implies the variabilities about the

order of activities in use cases. That means, given a feature

configuration, variant use cases with the same activities but in

different orders can be derived by applying the insert operation

in different orders. However, the derivation method proposed

in our previous work apply insert operations in a default order,

ignoring other posibilities. We improve our previous work by

supporting the bidirectional transformation between feature

configurations and use cases, and allowing derivating use cases

with all valid insert oder.

Eriksson et al. [21] propose an approach that marrying fea-

tures and use cases. In their approach, features, use cases and

change cases are integrated into a coherent two-layer product

line requirements model. They also propose an approach to

construct transformation information between feature model

and use case [The PLUSS Approach - Domain Modeling with

Features, Use cases, and Use case realizations]. However, in

both approaches, feature model is just a tool for visualizing

commonalities and variabilities of use case. That is to say,

177177177

feature models in these approaches are feature models only in

syntax, but not in semantics.

Wang et al. [22] propose a use case based approach for

improving the evolution of an existing portfolio of products

into a software product line by mining the requirements

specifications of existing valid product configurations and

automatically creating a feature model. A main drawback of

the work is no formal transformation information is produced

with the process of feature models construction.

Hajri et al. [6] [7] propose a product line methodology cen-

tred around use case modeling, called PUM, for documenting

variability in use case diagrams and specifications. A main

drawback of this work is the grain of the variability, which

is not fine enough. It is capable of describing whether a use

case should be in or out of the use case diagram. But it can’t

describe the variability inside a use case. However, one use

case may behave differently in variant products.

Snchez et al. [23] and Zschaler et al. [24] propose a genera-

tive approach to building a family of languages for specifying

the relationship between variability models and other models

in software product line engineering. The approach can be

applied to derive use case models of a specific product from

a feature configuration. One of the drawback is similar with

Hajri et al.’s work, which is it only support the variability of

use case models on the use case level. It can’t describe the

variability inside the use cases. The other drawback is that

it can’t update the feature configuration with an updated use

case diagram.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a TDL based framework for

synchronization between feature configurations and use cases

through bidirectional programming (BIGUL). Our framework

provides a well-behaved bidirectional transformation com-

posed of three BIGUL programs. It allows changes, either

in feature configurations or use cases, propagate to the other

side synchronically.

Our future work will focus on following three points:

1) Developing a mechanism for cheking the validity of use

cases and ensuring stakeholders to adjust the use case

in the correct range;

2) Evolving mechanisms for feature model when stakehold-

ers ask for adding some activities out of the scope of

the original domain model;

3) Supporting synchronization feature configurations with

other kinds of reusable software asset, for example, the

class diagram model, the software architecture model,

and also the source code.

ACKNOWLEDGMENT

The authors would like to thank Dr. Hsiang-Shang Ko from

the National Institute of Informatics, Tokyo, Japan, as well

as Mr. Tao Zan, Mr. Zirun Zhu and Mr. Yongzhe Zhang,

from Sokendai, Tokyo, Japan, for their help with BIGUL

development.

This work is supported by Science Fund for Creative

Research Groups of the National Natural Science Foundation

of China (Grant No. 61121063), National Natural Science

Foundation of China (Grant Nos. 61272163, 91318301), and

Internship Program of the National Institue of Informatics of

Japan.

REFERENCES

[1] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-oriented domain analysis (foda) feasibility study,”
DTIC Document, Tech. Rep., 1990.

[2] M. L. Griss, J. Favaro, and M. D. Alessandro, “Integrating feature
modeling with the rseb,” in Software Reuse, 1998. Proceedings. Fifth
International Conference on. IEEE, 1998, pp. 76–85.

[3] R. Bonifcio and P. Borba, “Modeling scenario variability as crosscutting
mechanisms,” in International Conference on Aspect-Oriented Software
Development, Aosd 2009, Charlottesville, Virginia, Usa, March, 2009,
pp. 125–136.

[4] K. Czarnecki and M. Antkiewicz, “Mapping features to models: A
template approach based on superimposed variants,” in International
conference on generative programming and component engineering.
Springer, 2005, pp. 422–437.

[5] W. Yu, W. Zhang, H. Zhao, and Z. Jin, “Tdl: a transformation description
language from feature model to use case for automated use case
derivation,” in International Software Product Line Conference, 2014,
pp. 187–196.

[6] I. Hajri, A. Goknil, L. C. Briand, and T. Stephany, “Applying product
line use case modeling in an industrial automotive embedded system:
Lessons learned and a refined approach,” in ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems,
2015.

[7] ——, “Configuring use case models in product families,” Software
& Systems Modeling, pp. 1–33, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s10270-016-0539-8

[8] J. N. Foster, “Bidirectional programming languages,” 2010.

[9] H.-S. Ko, T. Zan, and Z. Hu, “Bigul: a formally verified core language
for putback-based bidirectional programming,” in Proceedings of the
2016 ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation. ACM, 2016, pp. 61–72.

[10] W. Zhang, H. Mei, and H. Zhao, “Feature-driven requirement depen-
dency analysis and high-level software design,” Requirements Engineer-
ing, vol. 11, no. 3, pp. 205–220, 2006.

[11] “OMG unified modeling language TM (OMG UML) Version 2.5,”
2015. [Online]. Available: http://www.omg.org/spec/UML/2.5/PDF

[12] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Ter-
williger, “Bidirectional transformations: A cross-discipline perspective,”
in Theory and Practice of Model Transformations. Springer, 2009, pp.
260–283.

[13] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt, “Combinators for bidirectional tree transformations: A
linguistic approach to the view-update problem,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 29, no. 3, p. 17,
2007.

[14] Z. Hu, A. Schurr, P. Stevens, and J. F. Terwilliger, “Dagstuhl seminar
on bidirectional transformations (BX),” ACM SIGMOD Record, vol. 40,
no. 1, pp. 35–39, 2011.

[15] U. Norell, Towards a practical programming language based on depen-
dent type theory. Citeseer, 2007, vol. 32.

[16] ——, Dependently Typed Programming in Agda. Springer Berlin
Heidelberg, 2009.

[17] “Principle and practice of bidirectional programming in BIGUL,” 2016.
[Online]. Available: http://www.prg.nii.ac.jp/project/bigul/tutorial.pdf

[18] A. Bragança and R. J. Machado, “Automating mappings between use
case diagrams and feature models for software product lines,” in Soft-
ware Product Line Conference, 2007. SPLC 2007. 11th International.
IEEE, 2007, pp. 3–12.

[19] M. Mefteh, N. Bouassida, and H. Ben-Abdallah, “Feature model ex-
traction from documented uml use case diagrams,” ADA USER, vol. 35,
no. 2, p. 107, 2014.

178178178

[20] ——, “Implementation and evaluation of an approach for extracting
feature models from documented uml use case diagrams,” in Proceedings
of the 30th Annual ACM Symposium on Applied Computing. ACM,
2015, pp. 1602–1609.

[21] M. Eriksson, J. Brstler, and K. Borg, “Marrying features and use case for
product line requirements modeling of embedded systems,” pp. 73–83,
2004.

[22] B. Wang, W. Zhang, H. Zhao, Z. Jin, and H. Mei, “A use case
based approach to feature models’ construction,” in IEEE International
Requirements Engineering Conference, RE, 2009, pp. 121–130.

[23] P. Snchez, N. Loughran, L. Fuentes, and A. Garcia, “Engineering lan-
guages for specifying product-derivation processes in software product
lines,” in Software Language Engineering, 2008, pp. 188–207.

[24] S. Zschaler, P. Snchez, J. Santos, M. Alfrez, A. Rashid, L. Fuentes,
A. Moreira, J. Arajo, and U. Kulesza, “Vml* a family of languages
for variability management in software product lines,” in International
Conference on Software Language Engineering, 2010, pp. 82–102.

179179179

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

