An Injective Language for Reversible Computation

Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi

Department of Information Engineering
University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
{scm,hu,takeichi}@ipl.t.u-tokyo.ac.jp

Abstract. Erasure of information incurs an increase in entropy and dissi-
pates heat. Therefore, information-preserving computation is essential for
constructing computers that use energy more effectively. A more recent mo-
tivation to understand reversible transformations also comes from the design
of editors where editing actions on a view need to be reflected back to the
source data. In this paper we present a point-free functional language, with a
relational semantics, in which the programmer is allowed to define injective
functions only. Non-injective functions can be transformed into a program
returning a history. The language is presented with many examples, and
its relationship with Bennett’s reversible Turing machine is explained. The
language serves as a good model for program construction and reasoning for
reversible computers, and hopefully for modelling bi-directional updating in
an editor.

1 Introduction

The interest in reversible computation arose from the wish to build computers dis-
sipating less heat. In his paper in 1961, Landauer [17] noted that it is not the
computation, but the erasure of information, that generates an increase in entropy
and thus dissipates heat. Since then, various models of computation that do not
erase information, thus capable of reversely construct the input from the output,
have been proposed. Lecerf [18] and Bennett [4] independently developed their re-
versible Turing machines. Toffoli [26] proposed an information preserving logic, in
which traditional logic can be embedded. Fredkin and Toffoli [11] then presented
their “ballistic computer”, which dramatically diverts from typical computers and
instead resembles movement of particles, yet computationally equivalently to re-
versible Turing machines. Recent research actually attempts to build VLSI chips
that do not erase information [27]. Due to the interest in quantum computing,
reversible computation has recently attracted a wide range of researchers [24].

As was pointed out by Baker [3], were it only a problem in the hardware, we
could compile ordinary programs for reversible computers and hide the reality from
the programmers. Yet it is actually the highest level of computation where the loss
of information is the most difficult to deal with. It is thus desirable to have pro-
gramming languages that have more structure — a language designed for reversible
computation.

Our interest in reversible computation came from yet another area. In our Pro-
grammable Structured Documents project [25], we are developing a structural edi-
tor /viewer for XML documents with embedded computations. The source document
is transformed into a view in ways defined by the document designer. When a user
edits the view, the changes need to be reflected back to the original source. It is
thus preferable that the transformation be programmed in a language where only
reversible transformation is allowed. When non-reversible computation is needed, it
should be made explicit what extra information needs to be remembered to perform

the view-to-source transformation. Dependency among different parts of the view
shall also be made explicit so the system knows how to maintain consistency when
parts of the view are edited.

In this paper we will present a point-free functional language in which all func-
tions definable are injective. Previous research was devoted to the design of models
and languages for reversible computation [26,4, 5,19, 3, 10, 28]. Several features dis-
tinguish our work from previous results. Since it is a language in which we want to
specify XML transformations, we prefer a high-level, possibly functional, program-
ming language. It has a relational semantics, thus all programs have a relational
interpretation. While some previous works focus more on the computational as-
pect, our language serves as a good model for program construction, derivation
and reasoning of reversible programs. We have another target application in mind:
to extend the language to model the bi-directional updating problem in an editor,
studied by [21,14]. We hope that the relational semantics can shed new light on
some of the difficulties in this field.

In the next three sections to follow, we introduce the basic concepts of relations, a
point-free functional language, and finally our injective language Inv, each of which
is a refinement of the previous one. Some examples of useful injective functions
defined in Inv are given in Section 5. We describe how non-injective functions can
be “compiled” into Inv functions in Section 6, where we also discuss the relationship
with Bennett’s reversible Turing machine. Some implementation issues are discussed
in Section 7.

2 Relations

Since around the 80’s, the program derivation community started to realise that
there are certain advantages for a theory of functional programming to base on
relations [2,6]. More recent research also argued that the relation is a suitable
model to talk about program inversion because it is more symmetric [22]. In this
section we will give a minimal introduction to relations.

A relation of type A — B is a set of pairs whose first component has type A
and second component type B. When a pair (a, b) is a member of a relation R, we
say that a is mapped to b by R. A (partial) function!, under this interpretation,
is a special case of a relation that is simple — a value in A is mapped to at most
one value in B. That is, if (a,b) € R and (a,b’) € R, then b = b’. For example,
the function fst :: (A x B) — A extracting the first component of a pair, usually
denoted pointwisely as fst (a,b) = a, is defined by the following set:

fst ={((a,b),a)|a € ANb € B}

where (a, b) indeed uniquely determines a. The function snd :: (A x B) — B is
defined similarly.

The domain of a relation R :: A — B is the set {a € A|3b € B :: (a,b) € R}.
The range of R is defined symmetrically. The converse of a relation R, written R°,
is obtained by swapping the pairs in R. That is,

(b,a) € R°=(a,b) €R

An injective function is one whose converse is also a function. In such cases a
value in the domain uniquely defines its image in the range, and vice versa. The
term inverse of a function is usually reserved to denote the converse of an injective

! For convenience, we refer to possibly partial functions when we say “functions”. Other
papers may adopt different conventions.

function. Given relations R :: A — B and S :: B — (|, their composition R; S is
defined by:

R;S ={(a,c)|3b:(a,b) € R A (b,c) €S}
The converse operator ° distributes into composition contravariantly:
(R;8)° = S°; R°

Given two relations R and S of the same type, one can take their union R U S
and intersection R N S. The union, when R and S have disjoint domains, usually
corresponds to conditional branches in a programming language. The intersection is
a very powerful mechanism for defining useful relations. For example, the function
dup a = (a, a), which duplicates its argument, can be defined by:

dup = fst° N snd®

Here the relation fst°, due to type constraints, has to have type A — (4 x A). It
can therefore be written as the set {(a, (a,a’))|a € AN d’ € A} — that is, given
a, fst® maps it to (a, a’) where a’ is an arbitrary value in A. Similarly, snd° maps
a to (@', a) for an arbitrary a’. The only point where they coincide is (a, a). That
is, taking their intersection we get

dup = {(a,(a,a))|a € A}

which is what we expect.
The converse operator © distributes into union and intersection. If we take the
converse of dup, we get:

dup® = fst N snd

Given a pair, fst extracts its first component, while snd extracts the second. The
intersection means that the results have to be equal. That is, dup® takes a pair
and lets it go through only if the two components are equal. That explains the
observation in [12] that to “undo” a duplication, we have to perform an equality
test.

3 The Point-free Functional Language Fun

The intersection is a very powerful construct for specification — with it one can
define undecidable specifications. In this section we will refine the relational con-
structs to a point-free functional language which is computationally equivalent to
conventional programming languages we are familiar with. The syntax of Fun is
defined by?:

The base types of Fun are natural numbers, polymorphic lists, and Unit, the type
containing only one element (). The function nil :: B — [A] is a constant function

2 In Fun there are no primitive operators for equality or inequality check. They can be
defined recursively on natural numbers, so we omitted it from the language to make
it simpler. In Inv, however, we do include those checks as primitives since they are
important for inversion.

always returning the empty list, while cons :: (A x [4]) — [A] extends a list by
the given element. Converses are applied to base constructors (denoted by the non-
terminal C') only. We abuse the notation a bit by denoting the converse of all
elements in C' by C°, and by Fx we denote the union of F' and the set of variable
names X . The converse of cons, for example, decomposes a non-empty list into the
head and the tail. The converse of nil matches only the empty list and maps it
to anything. The result is usually thrown away. To avoid non-determinism in the
language, we let the range type of nil® be Unit. Functions zero and succ are defined
similarly. Presently we do not yet need a constructor for the type Unit.

The function id is the identity function, the unit of composition. Functions fst
and snd extract the first and second components of a pair respectively. Those who
are familiar with the “squiggle” style of program derivation would feel at home with
the “split” construct, defined by:

(frg9)a=(fa,ga)

The angle brackets on the left-hand side denote the split construct, while the paren-
theses on the right-hand side denote pairs. This definition, however, assumes that
f and g be functional. Less well-known is its relational definition in terms of inter-
section:

(f,9) = f;fst® N g;snd®

For example, the dup function in the previous section is defined by (id, id).

With fst, snd and the split we can define plenty of “piping functions” useful for
point-free programming. For example, the function swap :: (A x B) — (B x A),
swapping the components in a pair, and the function assocr :: (4 x B) x C) —
(A x (B x (C)), are defined by:

swap = (snd, fst)
assocr = (fst; fst, (fst; snd, snd))

The function assocl :: (Ax (B x C)) — ((A x B) x C') can be defined similarly. The
“product” functor (f x g), on the other hand, is defined by

(f < g)(a,b) =(fa,gb)

Squigglists are more familiar with its point-free definition:

(f x g) = (fst; f, snd; g)

Union of functions is still defined as set union. To avoid non-determinism, how-
ever, we require in f U g that f and g have disjoint domains. Arbitrary use of
intersection, on the other hand, is restricted to its implicit occurrence in splits.

Finally, uF denotes the unique fixed-point of the Fun-valued function F', with
which we can define recursive functions. The important issue whether a relation-
valued function has an unique fixed-point shall not be overlooked. It was shown in
[9] that the uniqueness of the fixed-point has close relationship with well-foundness
and termination. All recursive definitions in this paper do have unique fixed-points,
although it is out of the scope of this paper to verify them.

As an example, the concatenation of two cons-lists is usually defined recursively
as below:

(J+#Hy =y
(a:2)Hy=a:(z+y)

Its curried variation, usually called cat :: ([A] x [4]) — [4], can be written in
point-free style in Fun as:

cat = p(X: (nil® x id); snd U (cons® X id); assocr; (id x X); cons)

The two branches of U correspond to the two clauses of +, while (nil° x id) and
(cons® x id) act as patterns. The term (cons® X id) decomposes the first component
of a pair into its head and tail, while (nil° x id) checks whether that component is
the empty list. The piping function assocr distributes the values to the right places
before the recursive call.

We decided to make the language point-free because it is suitable for inversion —
composition is simply run backward, and the need to use piping functions makes the
control flow explicit. It is true, however, point-free programs are sometimes difficult
to read. To aid understanding we will supply pointwise definition of complicated
functions. The conversion between the point-free and pointwise style, however, will
be dealt with loosely.

The language Fun is not closed under converse — we can define non-injective
functions in Fun, such as fst and snd, whose converses are not functional. In other
words, Fun is powerful enough that it allows the programmer to define functions
“unhealthy” under converse. In the next section we will further refine Fun into an
injective language.

4 The Injective Language Inv

In the previous section we defined a functional language Fun with a relational seman-
tics. All constructs of Fun have relational interpretations and can thus be embedded
in relations. In this section, we define a functional language Inv that allows only in-
jective functions. All its constructs can be embedded in, and therefore Inv is strictly
a subset of, Fun.

The problematic constructs in Fun include constant functions, fst, snd, and
the split. Constant functions and projections lose information. The split duplicates
information and, as a result, in inversion we need to take care of consistency of
previously copied data. We wish to enforce constrained use of these problematic
constructs by introducing more structured constructs in Inv, in pretty much the
same spirit how we enforced constrained use of intersection by introducing the split
in Fun. The language Inv is defined by:

I w=1I°|C
| egP | dup P | neqSS
| I; I | id
| (I x1I)| assocr | swap
o)
| n(X: Ix)

C ::= succ | cons

P =mnil| zero | S

S u=C°|fst|snd]|id|S;S

Each construct in Inv has its inverse in Inv. Constructors cons and succ have inverses
cons® and succ®. The function swap, now a primitive, is its own inverse. That is,
swap® = swap. The function assocr has inverse assocl, whose definition will be
given later. The inverse operator promotes into composition, product, union and
fixed-point operator by the following rules:

(f:9)" = g% f°
(f x9)" = (f°x ¢°)
(fug)®=rfoug°
(uF)* = p(°; F3°)
In the last equation F' is a function from Inv expressions to Inv expressions, and the
composition ; is lifted. One might instead write p(AX - (F X°)°) as the right-hand

side. An extra restriction needs to be imposed on union. To preserve reversibility,
in f U g we require not only the domains, but the ranges of f and g, to be disjoint.
The disjointness may be checked by a type system, but we have not explored this
possibility.

The most interesting is the dup/eq pair of operators. Each of them takes an
extra functional argument which is either id, a constant function, or a sequence of
composition of fsts, snds or constructors. They have types:

dup :: (Fa — a) —» Fa — (Fa x a)
eq = (Fa— a) — (Faxa)— Fa

where F is some type functor. A call eq f (z, a) tests whether the field in z selected by
f equals a. Conversely, dup f x copies the selected field in z. They can be understood
informally as

dup fx=(z,fx)
eqf (z,a)=z=fx=a

That they are inverses of each other can be seen from their relational definition:

dup f = fst° N f;snd°
eqf =fst N snd;f°

The definition of dup f is similar to that in Section 2 apart from the presence of the
argument f. Given the definitions it is clear that (eq f)° = dup f and vice versa.

According to the syntax, constant functions zero and nil can appear only as
arguments to dup. For example, to introduce a fresh zero one has to call dup zero,
which takes an input a and returns the pair (a,0). Therefore it is guaranteed that
the input is not lost. An alternative design is to restrict the domain of zero and
nil to the type Unit (therefore they do not lose information), while introducing a
variation of the dup construct that creates fresh Unit values only. Considering their
relational semantics, the two designs are interchangeable. For this paper we will
mention only the first approach.

Some more words on the design decision of the dup/eq operators. Certainly the
extra argument, if restricted to fst, snd and constructors, is only a syntactic sugar.
We can always swap outside the element to be duplicated and use, for example
(id x dup id). Nevertheless we find it quite convenient to have this argument. The
natural extension to include constant functions unifies the two problematic elements
for inversion, duplication and the constant function, into one language construct. For
our future application about bi-directional editing, we further allow the argument
to be any possibly non-injective functions (such as sum, map fst, etc), which turns
out to be useful for specifying transformations from source to view. Allowing dup/eq
to take two arguments, however, does not seem to be necessary, as eq is meant to
be asymmetrical — after a successful equality check, one of the checked values has
to go away. It is in contrast to the neq operator to be introduced below.

The neq p1 p2 operator, where p; and ps are projections defined by fst and snd,
is a partial function checking for inequality. It is defined by

neqp1p2 (z,y) = (z,y) = p1a # p2y

Otherwise (z,y) is not in its domain. The neq p; po operator is its own inverse. It
is sometimes necessary for ensuring the disjointness of the two branches of a union.

Some more operators will be introduced in sections to come to deal with the
sum type, trees, etc3. For now, these basic operators are enough for our purpose.

3 Of course, Fun can be extended in the same way so these new operators can still be
embedded in Fun.

Apparently every program in Inv is invertible, since no information is lost in any
operation. Every operation has its inverse in Inv. The question, then, is can we
actually define useful functions in this quite restrictive-looking language?

5 Examples of Injective Functions in Inv

In this section we give some examples of injective functions expressed in Inv.

5.1 Piping Functions

We loosely define “piping function” as functions that move around objects in pairs,

copy them, or discard them, without checking their values — that is, “natural”

functions on pairs. We choose not to include assocl as a primitive because it can be

defined in terms of other primitives — in several ways, in fact. One is as below:
assocl = swap; (swap X id); assocr; (id X swap); swap

Another is:

assocl = swap; assocr; Swap; assocr; Swap

Alternatively, one might wish to make assocl a primitive, so that inverting assocr
does not increase the size of a program.
These piping functions will turn out to be useful:

subr (a, (b, ¢)) = (b,(a,c))
trans ((a, b), (¢, d)) = ((a, c), (b, d))
distr (a, (b, c)) = ((a,b),(a,c))

The function subr substitutes the first component in a pair to the right, trans
transposes a pair of pairs, while distr distributes a value into a pair. They have
point-free definitions in Inv, shown below?:

subr = assocl; (swap X id); assocr
trans = assocr; (id X subr); assocl
distr = (dup id x id); trans

From the definitions it is immediate that subr and trans are their own inverses.
The function distr, on the other hand, makes use of dup id to duplicate a before
distribution. Its inverse, trans; (eqid x id) thus has to perform an equality check
before joining the two as into one.

In Section 6.1 we will talk about automatic construction of piping functions.

5.2 Patterns

Patterns in Fun are written in terms of products, nil®, and cons®. For example,
(cons® x id) decomposes the first component of a pair, while (nil° X 4d) checks
whether that component is the empty list. The latter is usually followed by a snd
function to throw away the unit resulting from nil°.

The term (cons® x id) is still a legal and useful pattern in Inv. However, we do
not have nil° in Inv. Part of the reason is that we do not want to have to introduce
snd into the language, which allows the programmer to throw arbitrary information
away. Instead, to match the pattern (z,[]), we write eq nil, which throws [] away
and keeps z. It is (id x nil°); fst packaged into one function. On the other hand, its
inverse dup nil introduces a fresh empty list.

Similarly, swap; eq nil is equivalent to (nil® x id); snd. We define

nl = swap; eq nil
because we will use it later.

4 Another definition, subr = swap; assocr; (idx swap), is shorter if assocl is not a primitive.

5.3 Snoc, or Tail-cons

The function wrap :: A — [A], wrapping the input into a singleton list, can be
defined in Fun as wrap = (id, nil); cons. It also has a definition in Inv:

wrap = dup nil; cons

Its converse is therefore wrap® = cons®; eq nil — the input list is deconstructed and
a nullity test is performed on the tail.

The function snoc :: ([A], A) — [A] appends an element to the right-end of a
list. With wrap, we can define snoc in Fun as

snoc = pu(X: (nil® x 4d); snd; wrap U
(cons® x id); assocr; (id x X); cons)

To define it in Inv, we notice that (nil® x id); snd is exactly nl defined above.
Therefore we can rewrite snoc as:

snoc = p(X: nl; wrap U
(cons® X id); assocr; (id x X); cons)

Its inverse snoc® :: [A] — ([4], A) extracts the last element from a list, if the
list is non-empty. The first branch of snoc®, namely wrap®;nl, extracts the only
element from a singleton list, and pairs it with an empty list. The second branch,
cons®; (id x snoc®); assocl; (cons x id), deconstructs the input list, processes the tail
with snoc®, before assembling the result. The two branches have disjoint domains
because the former takes only singleton lists while the second, due to the fact that
snoc® takes only non-empty lists, accepts only lists with two or more elements.

5.4 Mirroring

Consider the function mirror :: [A] — [A] which takes a list and returns its mirror,
for example, mirror [1,2,3] = [1, 2, 3,3, 2, 1]. Assume that snoc and its inverse exists.
Its definition in Fun is given as below:

mirror = p(X: nil®; nil U
cons®; (fst, (snd, fst)); (id x (X X id); snoc); cons)

To rewrite mirror in Inv, the tricky part is to convert (fst, (snd, fst)) into something
equivalent in Inv. It turns out that (fst, (snd, fst)) = dup fst; assocr. Also, since nil°
is not available in Inv, we have to rewrite nil°; nil as dup id; eq nil. The function
dup id duplicates the input, before eq nil checks whether the input is the empty
list and eliminates the duplicated copy if the check succeeds. It will be discussed in
Section 6.1 how such conversion can be done automatically. As a result we get:

mirror = u(X: dup id; eq nil U
cons®; dup fst; assocr; (id x (X x id); snoc); cons)

It is educational to look at its inverse. By distributing the converse operator inside,
we get:

mirror® = p(X: dup nil; eq id U
cons®; (id x snoc®; (X x id)); assocl; eq fst; cons)

Note that dup fst is inverted to an equality test eq fst. In the second branch,
cons®; (id x snoc®; (X xid)) decomposes the given list into the head, the last element,
and the list in-between. A recursive call then processes the list, before assocl; eq fst
checks that the first and the last elements are equal. The whole expression fails if the
check fails, thus mirror® is a partial function. It is desirable to perform the equality

check before making the recursive call. One can show, via algebraic reasoning, that
the second branch equals

cons®; (id x snoc®); assocl; eq fst; (id x X); cons

which performs the check and rejects the illegal list earlier. This is one example
showing that program inversion, even in this compositional style, is more than
“running it backwards”. To construct a program with desirable behaviour it takes
some more transformations — some are easier to be performed mechanically than
others.

5.5 Labelled Concatenation and Double Concatenation

List concatenation is not injective. However, the following function lcat (labelled
concatenation)

leat (a, (z,y)) = (a,z H [a] H)

is injective if its domain is restricted to tuples where a does not appear in z. This
way a acts as a marker telling us where to split x + y into two. Its point-free
definition can be written as:

leat = nmem fst; (fst, subr; (id x cons); cat)

where nmem p (a,z) = (a,z) if a is not a member of the list p z. To show that it is
injective, it is sufficient to show an alternative definition of lcat in Inv:

leat = p(X: (dup id x nl); assocr; (id x cons) U
(id x (cons® x id); assocr);
neq id fst; subr; (id x X); subr; (id x cons))

It takes a tedious but routine inductive proof, given in the appendix, to show that
the two definitions are indeed equivalent. To aid understanding, the reader can
translate it to its corresponding pointwise definition:

leat (a,([],y)) = (a,a:y)
leat (a, (b : z,y)) = let (d/, zy) = leat (a, (z, y))
in (a’,b: zy) ifa#b

The presence of neq is necessary to guarantee the disjointness of the two branches
— the first branch returns a list starting with a, while the second branch returns a
list whose head is not a.

Similarly, the following function deat (for “double” concatenation)

deat (a, ((z,9), (v,) = (a, (= + y, u 4 [a] 4 v))

is injective if its domain is restricted to tuples where a does not appear in v, and z
and u are equally long. Its point-free definition can be written as:

deat = pred; distr; ((id x cat) x subr; (id x cons); cat)

where pred is the predicate true of (a,((z,y),(u,v))) where a is not in u and
length x = length u. To show that it is injective, it is sufficient to show an alternative
definition of dcat in Inv:

deat = p(X: (dup id x (nl x nl)); trans; (id x cons); assocr U
(id x ((cons® x id) x (cons® x id))); neq id (snd; fst);
pi; (id x X); subr; (id x trans; (cons X cons)))

where pi is a piping function defined by
pi = (id x (assocr X assocr); trans); subr

such that pi (a, (((b,2), y), (¢, 1),v))) = (8, ¢), (a, (2. 9), (u,v)))). The proof is
similar to the proof for lcat and need not be spelt out in detail. To aid understanding,
the above dcat is actually equivalent to the following pointwise definition:

deat (a, (([], v), ([],v))) = (a,(y,a:v))
deat (a, ((b: z,y),(c: u,v))) =let(d, (xy, uwv)) = deat (a,((z,y), (u,v)))
in (a/,(b: 2y, c: uv))

5.6 Printing and Parsing XML Trees
Consider internally labelled binary trees:
data Tree A = Null| Node A (Tree A) (Tree A)

To deal with trees, we extend Inv with a new primitive node :: (A X (Tree A X
Tree A)) — Tree A, the curried variation of Node, and extend P with a new constant
function null. An XML tree is basically a rose tree — a tree where each node has
a list of children. A forest of rose trees, however, can be represented as a binary
tree by the child-sibling representation: the left child of the a node in the binary
tree represents the leftmost child of the corresponding XML node, while the right
child represents its next sibling. For example, the XML tree in Figure 1(a) can be
represented as the binary tree in Figure 1(b).

<a>
* ;C;:;(c; Node a (Node b (Node c Null
 (Node d Null Null))
/o (Node e Null Null))
<e></e>
Null

(a) (b)

Fig. 1. Child-sibling representation of an XML tree

To print a binary tree to its conventional serial representation, on the other hand,
one has to print an opening tag (for example), its left subtree (<c></c><d></d>),
a closing tag (), and then print its right subtree (<e></e>). That is similar to
what lcat does! As a simplification, we define:

serialise :: Tree A — [A]
serialise = p(X: dup nil; swap; eq null U
node®; (id x (X x X)); lcat; cons)

The function serialise takes a binary tree whose values in each node do not occur
in the right subtree, and flattens the tree into a list. To deal with XML trees in
general, we will have to return a list of opening/closing tags and check, in lcat,
that the tags are balanced. To perform the check, we have to maintain a stack
of tags. For demonstration purpose, we deal with only the simpler case here. Its
inverse, serialise®, parses a stream of labels back to an XML tree. By implementing
printing, we get parsing for free!

However, serialise® is a quadratic-time parsing algorithm. The reason is that
serialise, due to repeated calls to lcat, is quadratic too, and the inverted program,

without further optimising transformation, always has the same efficiency as the
original one. To construct a linear-time parsing algorithm, we can try to construct
a linear version of serialise. Alternatively, we can make use of well-known program
derivation techniques to construct an algorithm performing serialise® in linear time.
We define the function pparse (partial-parse) as below:

pparse (a,z) = (a, (serialise® y, 2))
where y H#[a] # 2 =12

In point-free style it is written
pparse = lcat®; (id x (serialise® X id))

To come up with a recursive definition, we notice that the identity function id,
when instantiated to take value (a, z) of type (A x [A]), can be factored into id =
(id x dup nil; eq id) U (id x cons®; cons), corresponds to the case z being empty or
non-empty respectively. We start derivation with pparse = id; pparse and deal with
each case separately. It will turn out that we need to further split the second case
into two:
id = (id x dup nil; eq id) U
(id x cons®); swap; eq fst; dup fst; (cons x id); swap U
(id x cons®; cons); neq id (cons; fst);

When z is non-empty, the head of z may equal a or not. We prefix pparse with each
of the cases, and try to simplify it using algebraic rules. It is basically a case-analysis
in point-free style. Some of the branches may turn out to yield an empty relation.

We will demonstrate only the third branch. The derivation relies on the following
associativity property:

a:((b: (e [0 +y) H[a] #2) = a: (b:z+[b] + (y + [a] # 2))

The point-free counterpart of the property, however, looks much more cumbersome.
We define:

subrr = subr; (id x subr)
subassoc = (id x assocr; (id X assocr)); subrr

The associativity property can be rewritten as:
(id x (lcat; cons X id)); lcat
= subassoc; (id X (id X lcat)); subrr®; (id X lcat; cons); neq id (cons®; fst) (1)

The neq check needs to be there; otherwise only the inclusion C holds. Given (1),
derivation of pparse is long but trivial:

neq id (cons®; fst); pparse
= {definition of pparse}

neq id (cons®; fst); leat®; (id x (serialise® X id))
D {definition of serialise; we try its branches separately }

neq id (cons®; fst); leat®;

(id x (cons®;lcat®; (id x (serialise® x serialise®)); node x id))
= {products}

neq id (cons®; fst); leat®; (id x (cons®;lcat® x id));

(id x ((id x (serialise® x serialise®)); node x id))

= {by (1) and neq f g;neq f g = neqf g}

neq id (cons®; fst); (id x cons®; lcat®); subrr; (id X (id X lcat®)); subassoc®;
(id x ((id x (serialise® x serialise®)); node x id))
= {naturalty of subassoc}
neq id (cons®; fst); (id X cons®; lcat®); subrr; (id x
(serialise® x lcat®; (id X (serialise® x id)))); subassoc’; (id x (node X id))
= {definition of pparse}
neq id (cons®; fst); (id x cons®; lcat®); subrr;
(id X (serialise® x pparse)); subassoc®; (id X (node x id))
= {naturalty of subrr}
neq id (cons®; fst); (id X cons®; lcat®; (id x (serialise® X id))); subrr;
(id x (id x pparse)); subassoc®; (id x (node x id))
= {definition of pparse}
neq id (cons®; fst); (id x cons®; pparse); subrr;
(id x (id x pparse)); subassoc’; (id x (node x id))
= {since neq f (cons®; g); (id x cons®) = (id x cons®);neq f g}
(id x cons®); neq id fst; (id x pparse); subrr;
(id x (id x pparse)); subassoc®; (id x (node x id))

After some derivation, and a careful check that the recursive equation does yield
unique fixed-point (see [9]), one will come up with the following definition of pparse:

pparse = pu(X: (id x cons®);
(swap; eq fst; (id x dup null; swap) U
neq id fst; (id x X); subrr; (id x (id x X)); subassoc®;
(id x (node x id))))

Now that we have pparse, we need to express serialise® in terms of pparse. Some
derivation would show that:
serialise® = p(X: dup null; swap; eq nil U
cons®; pparse; (id x (id x X)); node)

The point-free definition of pparse and serialise® might be rather confusing to the
reader. To aid understanding, their pointwise definition is given in Figure 2.

pparse (a, a : z) = (a, (Null, z)) serialise® [] = Null
pparse (a, b : z) = serialise® (a : x) =
let (b, (t,y)) = pparse (b, z) let (a,(t,y)) = pparse (a,z)
(a,(u,2)) = pparse (a,y) u = serialise® y
in (a,(Nodebtu,z)) in Nodeatu
Fig. 2. Pointwise definition of pparse and serialise®.
5.7 Loops

An important feature is still missing in Inv — we can not define loops. Loops come
handy when we want to show that Inv is computationally as powerful as Bennett’s
reversible Turing machine [4], since the simulation of a Turing machine is best
described as a loop. In Fun, one can write a loop as a tail recursive function p(X:
term U body; X) where term and body have disjoint domains. However, the range of
body; X contains that of term, which is not allowed in Inv — when we ran the loop

backwards we do not know whether to terminate the loop now or execute the body
again.

Tail recursion is allowed in [13], where they resolve the non-determinism in a way
similar to how left-recursive grammars are dealt with in LR parsing. Alternatively,
we could introduce a special construct for loops, for example, S; B*; T', where the
initialisation S and loop body B have disjoint ranges, while B and the terminating
condition T have disjoint domains. In [8, 9], the conditions for a loop to terminate, as
well as guidelines for designing terminating loops, were discussed in a similar style.
One of the earliest case study of inverting loops is [7]. Construction and reasoning
of invertible loops in general has been discussed in [1].

Luckily, just to show that Inv is computationally equivalent to the reversible
Turing machine, we do not need loops. One can code the reversible Turing machine
as a function which returns the final state of the tapes together with an integer
counting the number iterations executed. The count can then be eliminated in a
clever way described by Bennett. More discussions will be given in Section 6.2.

6 Translating Non-injective Functions

Still, there are lots of things we cannot do in Inv. We cannot add two numbers, we
cannot concatenate two lists. In short, we cannot construct non-injective functions.
However, given a non-injective function p :: A — B in Fun, we can always construct
apr:: A— (Bx H) in Inv such that pr; fst = p. In other words, p a = b if and only
if there exists some h satisfying p; a = (b, h).

Such a p; may not be unique, but always exists: you can always take H = A and
simply copy the input to the output. However, it is not immediately obvious how to
construct such a p; :: A — (B x A) in Inv. Note that simply calling dup will not do,
since not every function can be an argument to dup. Nor is it immediately obvious
how to compose two transformed functions without throwing away the intermediate
result. In Section 6.2, we will discuss the construction in more detail.

As another alternative, in Section 6.1 we will introduce what we call the “log-
ging” translation, where a history of execution is recorded in H. The H resulting
from the logging translation might not be the most interesting one, however. We
can actually make p; do different things by designing different H. We will see such
an example in Section 6.3.

6.1 The Logging Translation

In this section we describe the logging translation from Fun functions to Inv. It
basically works by pairing the result of the computation together with a history,
where each choice of branch and each disposed piece of data is recorded, so one
can always trace the computation back. It is similar to a translation for procedural
languages described in [28].

Logging the History To represent the history, we introduce several new operators:
unit, a constant function, like zero and nil, introduces the unit value (). Functions
inl: A— A+ B and inr :: B — A+ B wraps a value into a sum type. Finally, in
builds recursive types.

The interesting fragments of the logging translation is summarised in Figure 3.
The function log translates a Fun function into Inv, while returning a boolean value
indicating whether it carries history or not. Using the associativity of composition
and the following “split absorption” rule,

(fih,gsk) = (f, 9); (h x k)

log :: Fun — (Inv, Bool) log pF = (u(X: fst (log (F(S X))); (id x in)),T)

log succ = (succ, F) log (Sf)=1(f,T)
: — a placeholder for recursion
log (f Ug) = (h (log f); (id x inl)U log fs | unsafe = compose (pipe hd) (log tl)
h (log g9); (id x inr), T) | otherwise = compose (log hd) (log tl)
where h (f,F) = f; dup unit — fs may be a split or a seq. of composition

h(f, T)=Ff where (hd, unsafe, tl) = factor fs
log (f x g) = case (log f, log g) of :
(7,5, (¢",F) = ((f x ¢'),F)

(") (9" F)) — (' x g'): tsub, T) R (6 F) = (F '), F
(U7 8). (6 T) = (7 x geassoet, Ty comore 000D Z (T
(",), (g7, 1)) — ((f' x g'); trans, T) compose (f',F) (¢, T) = (f'54',T)
where lsub = assocr; (id X swap); assocl compose (f',T) (¢, T) = (f'; (¢’ x id); assocr, T)

Fig. 3. The logging translation

we can factor a sequence of composition into a head and a tail. The head segment
uses only splits, fst, snd, converses, and constant functions. The tail segment, on
the other hand, does not start with any of the constructs. For example, (cons, fst)
is factored into (id, fst); (cons x id), while nil°; nil into (nil°; nil); id. The factoring
is done by the function factor. If the head does use one of the unsafe functions, it is
compiled into Inv using the method to be discussed in the next section, implemented
in the function pipe.

An expression f; g, where f and g have been translated separately, is translated
into f; (g X id); assocr if both f and g carry history. If f carries history but g does
not, it is translated into f; (g x id). A product (f x g), where f and g both carry
history, is translated into (f x g); trans, where trans couples the histories together.
If, for example, only ¢ carries history, it is translated into (f x g); assocl.

A union f U g is translated into f;(id x inl) U g¢; (id x inr), where inl and
inr guarantee that the ranges of the two branches are disjoint. We require both f
and ¢ to carry history. The branch not carrying history is postfixed with dup unit
to create an empty history. Finally, the fixed-point u(X: F(X)) is translated to
w(X: F(X); (id xin)). Here we enforce that recursive functions always carry history.
Known injective functions can be dealt with separately as primitives.

As an example, let us recall the function cat concatenating two lists. It is defined
very similarly to snoc. The difference is that the two branches no longer have disjoint
ranges.

cat = p(X: (nil® x id); snd U
(cons® x id); assocr; (id x X); cons)

The logging translation converts cat into

caty = p(X: (nl; dup unit; (id x inl) U
(cons® x id); assocr; (id x X); assocl; (cons x inr));
(id x in))

The function pipe, to be discussed in the next section, compiles expression (nil° x
id); snd into swap; eq nil. The first branch, however, does not carry history since no
non-constant data is thrown away. We therefore make a call to dup unit to create an
initial history. In the second branch, the recursive call is assumed to carry history.
We therefore shift the history to the right position by assocl. The two branches are
distinguished by inl and inr.

The history returned by cat; is a sequence of inrs followed by inl — an encoding
of natural numbers! It is the length of the first argument. In general, the history
would be a tree reflecting the structure of the recursion.

Compiling Piping Functions Given a “natural” function defined in Fun in terms
of splits, fst, snd, and constant functions, how does one find its equivalent, if any,
in Inv? For mechanical construction, simple brute-force searching turned out to be
satisfactory enough.

Take, for example, the expression ((zero, snd; fst), (fst, snd; snd)). By a type
inference on the expression, taking zero as a type of its own, we find that it trans-
forms input of the form (A, (B, C)) to output ((0, B), (A, C)). We can then start
a breadth-first search, where the root is the input type (4, (B, C)), the edges are
all applicable Inv formed by primitive operations and products, and the goal is the
target type ((0, B), (A, C)). To reduce the search space, we keep a count of copies of
data and constants to be created. In this example, we need to create a fresh zero, so
dup zero needs to be called once (and only once). Since no input data is duplicated,
other calls to dup are not necessary. One possible result returned by the search is
swap; assocr; (dup zero X id); (swap X swap).

As another example, nil°; nil, taking empty lists to empty lists, can be compiled
into either dup nil; eq id or dup id; eq nil. Some extra care is needed to distinguish
input (whose domain is to be restricted) and generated constants, such that id and
dup id - eq id are not legitimate answers. The search space is finite, therefore the
search is bound to terminate.

When the Fun expression throws away some data, we compile it into an Inv
expression that returns a pair whose first component is the output of the collects
Fun expression. The forgotten bits are stored in the second component. For example,
the Fun expression (fst, snd;fst) will be compiled into an Inv expression taking
(A,(B,(C)) to ((4,B), C), where C is the bit of data that is left out in the Fun
expression. One possibility is simply assocl. The left components of the compiled
Inv expressions constitute the “history” of the computation.

6.2 Relationship with the Reversible Turing Machine

The logging translation constructs, from a function p :: A — B, a function p; :
A — (B x H), where H records the history of computation. The question, then, is
what to do with the history? Throwing H away merely delays the loss of information
and dissipation of heat. Then answer was given by Bennett in [4].

The basic configuration of Bennett’s reversible Turing machine uses three tapes:
one for input, one for output, and one for the history. Given a two-tape Turing
machine accepting input A on the input tape and outputting B on the output
tape, Bennett showed that one can always construct a three-tape reversible Turing
machine which reads the input A, and terminates with A and B on the input and
output tapes, while leaving the history tape blank. This is how it is done: in the
first phase, the program is run forward, consuming the data on the input tape while
writing to the output and history tapes. The output is then copied. In the third
phase the program is run backwards, this time consuming the original output and
history, while regenerating the input. This can be expressed in Inv by:

pr; dup fst; (pr°® x id) :: A — (A x B)

We cannot entirely get rid of A, or some other sufficient information, if the com-
putation is not injective. Otherwise we are losing information. When the computed
function is injective, however, there is a way to erase both the history and input
tapes empty. Bennett’s method to do it can be expressed in our notation as the
following. Assume that there exists a ¢ :: B — A, defined in Fun, serving as the
inverse of p. The logging translation thus yields ¢; :: B — (A, H') in Inv.

pr; dup fst; (pr° X id); swap; (qr X id); eq fst; qr°

The prefix py; dup fst; (p;° x id), given input a, computes (a, b). The pair is swapped
and b is passed though ¢y, yielding ((a, &), a). The duplicated a is removed by eq fst,
and finally ¢;° takes the remaining (a, k') and produces b.

The above discussion is relevant to us for another reason: it helps to show that
Inv, even without an explicit looping construct, is computationally at least as power-
ful as the reversible Turing machine. Let p be a Fun function, defined tail-recursively,
simulating a reversible Turing machine. The types A and B both represent states
of the machine and the contents of the three tapes. The function ¢ simulates the
reversed Turing machine. They can be translated, via the logging translation, into
Inv as functions that returns the final state together with an extra counter. The
counter can then be eliminated using the above technique.

6.3 Preorder Traversal

To see the effect of the logging translation, and its alternatives, let us look at another
example. Preorder traversal for binary trees can be defined in Fun as:

pre = p(X: null®; nil U
node’; (id x (X x X); caty); cons)

The logging translation delivers the following program in Inv:

pre; = p(X: (dup nil; eq null; dup unit; (id x inl) U
node®; (id x (X x X);trans; (cat; x id); assocr); (cons X inr));
(id X in))

which returns a tree as a history. In each node of the tree is a number, returned by
catr, telling us where to split the list into two.

However, if we choose not to reply on the logging translation, we could have
chosen H = [A] and defined:

prein = p(X: dup nil; eq null; dup nil U
node®; (id x (X x X);trans); deat; assocl; (cons X id))

where dcat is as defined in Section 5.5. We recite its definition here:
dcat (a" ((xa y)’ (u’ U))) = (aa (m H Yy, uH [a'] + U))

where a does not occur in z, and x and « have the same lengths. Since (id X
cat); cons = deat; assocl; (cons X id); fst, it is obvious that prein; fst reduces to pre
— with a restriction on its domain. The partial function prein accepts only trees
with no duplicated labels. What about prein; snd? It reduces to inorder traversal
of a binary tree. It is a known fact: we can reconstruct a binary tree having no
duplicated labels from its preorder and inorder traversals [23].

7 Implementation

We have a prototype implementation of the logging translation and a simple, back-
tracking interpreter for Inv, both written in Haskell. The implementation of the
logging translation, though tedious, poses no substantial difficulty. Producing an
efficient, non-backtracking Inv interpreter, however, turned out to be more tricky
than we expected.

Implementing a relational programming language has been discussed, for exam-
ple, in [15] and [20]. Both considered implementing an executable subset of Ruby,
a relational language for designing circuits [16]. A functional logic programming
language was used for the implementation, which uses backtracking to collect all
results of a relational program.

The problem we are dealing with here, however, is a different one. We know that
legitimate programs in Inv are deterministic. But can we implement the language
without the use of backtracking? Can we detect the error when the domains or
ranges of the two branches of a union are not disjoint? Consider snoc®, with the
definition of wrap and nl expanded:

snoc® = p(X : cons®; eq nil; dup nil; swap U
cons®; (id x X); assocl; (cons X id))

Both branches start with cons®, and we cannot immediately decide which branch
we should take.

A natural direction to go is to apply some form of domain analysis. Gliick and
Kawabe [13] recently suggested another approach. They observed that the problem
is similar to parsing. A program is like a grammar, where the traces of a pro-
gram constitute its language. Determining which branch to go is like determining
which production rule to use to parse the input. In [13] they adopted the tech-
niques used in LR parsing, such as building item sets and automatons, to construct
non-backtracking programs. It is interesting to see whether the handling of pars-
ing conflicts can be adapted to detect, report and resolve the non-disjointness of
branches.

8 Conclusion and Related Work

We have presented a language, Inv, in which all functions definable are injective. It
is a functional language with a relational semantics. Through examples, we find that
many useful functions can be defined in Inv. In fact, it is computationally equivalent
to Bennett’s reversible Turing machines. Non-injective functions can be simulated
in Inv via the logging translation which converts it to an Inv function returning both
the result and a history.

A lot of previous work has been devoted into the design of programming lan-
guages and models for reversible computation. To the best of the authors’ knowl-
edge, they include Baker’s PsiLisp [3], Lutz and Derby’s JANUS [19], Frank’s R
[10], and Zuliani’s model based on probabilistic guarded-command language [28].
Our work differs from the previous ones in several aspects: we base our model on a
functional language; we do not rely on “hidden” features of the machine to record
the history; and we highlight the importance of program derivation as well as me-
chanical inversion. We believe that Inv serves as a clean yet expressive model for
the construction and reasoning of reversible programs.

The motivation to study languages for reversible programs traditionally comes
from the thermodynamics view of computation. We were motivated for yet another
reason — to build bi-directional editors. The source data is transformed to a view.
The user can then edit the view, and the system has to work out how the source
shall be updated correspondingly. Meertens [21] and Greenwald and Moore, et al.
[14] independently developed their combinators for describing the source-to-view
transformation, yet their results are strikingly similar. Both are combinator-like,
functional languages allowing relatively unrestricted use of non-injective functions.
Transformations are surjective functions/relations, and view-to-source updating is
modelled by a function taking both the old source and the new view as arguments.
Things get complicated when duplication is involved. We are currently exploring a
slightly different approach, basing on Inv, in which the transformation is injective
by default, and the use of non-injective functions is restricted to the dup operator.
We hope this would make the model clearer, so that the difficulties can be better
tackled.

Our work is complementary to Gliick and Kawabe’s recent work on automatic
program inversion. While their focus was on automatic inversion of programs and
ours on theory and language design, many of their results turned out to be highly rel-
evant to our work. The stack-based intermediate language defined in [12] is actually
an injective language. They also provided sufficient, though not necessary, condi-
tions for the range-disjointness of branches. For a more precise check of disjointness
they resort to the LR parsing technique [13]. Their insight that determining the
choice of branches is like LR parsing is the key to build an efficient implementation
of Inv. The authors are interested to see how conflict-handling can help to resolve
the disjointness of branches.

Acknowledgements The authors would like to thank Robert Gliick and Masahiko
Kawabe for valuable discussions and encouragement. This research is partly sup-
ported by the e-Society Infrastructure Project of the Ministry of Education, Culture,
Sports, Science and Technology, Japan.

References

1. R. J. R. Back and J. von Wright. Statement inversion and strongest postcondition.
Science of Computer Programming, 20:223-251, 1993.

2. R. C. Backhouse, P. de Bruin, G. Malcolm, E. Voermans, and J. van der Woude. Re-
lational catamorphisms. In B. Moller, editor, Proceedings of the IFIP TC2/WG2.1
Working Conference on Constructing Programs, pages 287-318. Elsevier Science Pub-
lishers, 1991.

3. H. G. Baker. NREVERSAL of fortune-the thermodynamics of garbage collection. In
Proc. Int’l Workshop on Memory Mgmt, number 637 in Lecture Notes in Computer
Science, St. Malo, France, September 1992.

4. C. H. Bennett. Logical reversibility of computation. IBM Journal of Research and
Development, 17(6):525-532, 1973.

5. C. H. Bennett. Thermodynamics of computation—a review. International Journal of
Theoretical Physics, 21:905-940, 12 1982.

6. R.S. Bird and O. de Moor. Algebra of Programming. International Series in Computer
Science. Prentice Hall, 1997.

7. E. W. Dijkstra. Program inversion. Technical Report EWD671, Eindhoven University
of Technology, 1978.

8. H. Doornbos and R. C. Backhouse. Induction and recursion on datatypes. In B. Moller,
editor, Mathematics of Program Construction, 3rd International Conference, number
947 in Lecture Notes in Computer Science, pages 242—-256. Springer-Verlag, July 1995.

9. H. Doornbos and R. C. Backhouse. Reductivity. Science of Computer Programming,
26:217-236, 1996.

10. M. P. Frank. The R programming language and compiler. ~MIT Reversible
Computing Project Memo #MS8, Massachusetts Institute of Technology, 1997.
http://www.ai.mit.edu/mpf/rc/memos/M08/MO8_rdoc.html.

11. E. Fredkin and T. Toffoli. Conservative logic. International Journal of Theoretical
Physics, 21:219-253, 1982. MIT Report MIT/LCS/TM-197.

12. R. Gliick and M. Kawabe. A program inverter for a functional language with equality
and constructors. In A. Ohori, editor, Programming Languages and Systems. Proceed-
ings, number 2895 in Lecture Notes in Computer Science, pages 246—264. Springer-
Verlag, 2003.

13. R. Gliick and M. Kawabe. Derivation of deterministic inverse programs based on LR
parsing (extended abstract). Submitted to the Seventh International Symposium on
Functional and Logic Programming, 2004.

14. M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. A language for bi-
directional tree transformations. University of Pennsylvania CIS Dept. Technical Re-
port, MS-CIS-03-08, University of Pennsylvani, August 2003.

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A

G. Hutton. The Ruby interpreter. Technical Report 72, Chalmers University of Tech-
nology, May 1993.

G. Jones and M. Sheeran. Circuit design in Ruby. In Formal Methods for VLSI Design.
Elsevier Science Publishers, 1990.

R. Landauer. Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development, 5:183-191, 1961.

Y. Lecerf. Machines de Turing réversibles. Récursive insolubilité en n € N de
I’équation u = 6", ou 6 est un “isomorphisme de codes”. In Comptes Rendus, volume
257, pages 25972600, 1963.

C. Lutz and H. Derby. Janus: a time-reversible language. Caltech class project, Califor-
nia Institute of Technology, 1982. http://www.cise.ufl.edu/ mpf/rc/janus.html.
R. McPhee. Implementing Ruby in a higher-order logic programming language. Tech-
nical report, Oxford University Computing Laboratory, 1995.

L. Meertens. Designing constraint maintainers for wuser interaction.
ftp://ftp.kestrel.edu/ pub/papers/meertens/dcm.ps, 1998.

S.-C. Mu and R. S. Bird. Inverting functions as folds. In E. Boiten and B. Mdller,
editors, Sixth International Conference on Mathematics of Program Construction,
number 2386 in Lecture Notes in Computer Science, pages 209-232. Springer-Verlag,
July 2002.

S.-C. Mu and R. S. Bird. Rebuilding a tree from its traversals: a case study of program
inversion. In A. Ohori, editor, Programming Languages and Systems. Proceedings,
number 2895 in Lecture Notes in Computer Science, pages 265-282. Springer-Verlag,
2003.

J. W. Sanders and P. Zuliani. Quantum programming . In R. C. Backhouse and J. N.
F. d. Oliveira, editors, Mathematics of Program Construction 2000, number 1837 in
Lecture Notes in Computer Science, pages 80-99. Springer-Verlag, 2000.

M. Takeichi, Z. Hu, K. Kakehi, Y. Hayashi, S.-C. Mu, and K. Nakano.
TreeCalc:towards programmable structured documents. In The 20th Conference of
Japan Society for Software Science and Technology, September 2003.

T. Toffoli. Reversible computing. In J. W. d. Bakker, editor, Automata, Languages
and Programming, pages 632—644. Springer-Verlag, 1980.

S. G. Younis and T. F. Knight. Asymptotically zero energy split-level charge recovery
logic. In 1994 International Workshop on Low Power Design, page 114, 1994.

P. Zuliani. Logical reversibility. IBM Journal of Research and Development, 46(6):807—
818, 2001. Available online at http://www.research.ibm.com/journal/rd45-6.html.

Proof for the Labelled Concatenation

Let Ilcat be defined by

leat = nmem fst - (fst,id); (id X subr; (id X cons); cat)

where nmem p (a,z) = (a,) if a is not a member of the list p z, and lcat; be the
fixed-point of lcatF, where

leatF X = (dup id x nl); assocr; (id x cons) U
(id x (cons® x id); assocr);
neq id fst; subr; (id x X); subr; (id X cons))

The aim is to show that lcat is also a fixed-point of [catF. Starting with the more
complicated branch of lcatF, we reason

(id X (cons® x id); assocr); neq id fst; subr; (id X lcat); subr; (id x cons)
= {definition of lcat}

(id x (cons® x id); assocr); neq id fst; subr;

(id x nmem fst; (fst,id); (id x subr; (id X cons); cat)); subr; (id x cons)

= {since (id x (id x R)); subr = subr; (id x (id X R))}

(id x (cons® x id); assocr); neq id fst; subr; (idx

nmem fst; (fst, id); (id x subr)); subr; (id x (id x (id X cons); cat); cons)
= {since subr; (id x nmem fst) = nmem (snd; fst); subr}

(id x (cons® x id); assocr); neq id fst; nmem (snd; fst);

subr; (id x (fst, id); (id x subr)); subr; (id x (id x (id x cons); cat); cons)
= {expressing the piping in terms of splits}

(id x (cons® x id); assocr); neq id fst; nmem (snd; fst);

(fst, (snd; fst, (snd; snd; fst, (fst, snd; snd; snd))));

(id x (id x (id x cons); cat); cons)
= {associativity: (id x cat); cat = assocl; (cons x id); cat,

and naturalty: (id x (id x R)); assocl = assocl; (id x R)}

(id x (cons® x id); assocr); neq id fst; nmem (snd; fst);
(fst, (snd; fst, (snd; snd; fst, (fst, snd; snd; snd))));
(id x assocl); (id x (cons x cons); cat)
= {move (id x assocr) rightwards}
(id x (cons® x id)); neq id (fst; fst); nmem (fst; snd); (id X assocr)
(fst, (snd; fst, {(snd; snd; fst, {fst, snd; snd; snd))));
(id x assocl); (id x (cons x cons); cat)
= { cancelling assocl and assocr with splits}
(id x (cons® x id)); neq id (fst; fst); nmem (fst; snd);
(fst, (snd; fst, {fst, snd; snd))); (id x (cons X cons); cat)
= {split absorption}
(id x (cons® x id)); neq id (fst; fst); nmem (fst; snd);
(fst, (snd; fst; cons, (fst, snd; snd))); (id x (id x cons); cat)
= {products}
(id x (cons® x id)); neq id (fst; fst); nmem (fst; snd);
(id x (cons x id)); {fst, (snd; fst, (fst, snd; snd))); (id x (id x cons); cat)
= {since neq id (fst; fst); nmem (fst; snd); (id x (cons X id))
= (id x (cons x id)); nmem fst}
(id x (cons®; cons x id)); nmem fst;
(fst, (snd; fst, {fst, snd; snd))); (id x (id x cons); cat)
= {products}
(id x (cons®; cons x id)); nmem fst; (fst, id); (id x subr);
(id x (id x cons); cat)
= {folding lcat}
(id x (cons®; cons x id)); lcat
For the other branch we reason:
(id x (nil°; nil x id)); lcat
= {definition of lcat and (id x (nil x id)); nmem fst = (id x (nil x id))}
(id x (nal®; nil x 1d)); (fst,id); (id x subr; (id x cons); cat)
= {since h;{f, g) = (h; f, h; g) for total h, f,g}
(id x (nil® x id)); {fst, (id x (nil x id))); (id x subr; (id X cons); cat)
= {split absorption}
(id x (nal® x id)); {fst, (id x (nil x id)); subr; (id x cons); cat)
= {since (f x (g x h)); subr = subr; (g x (f x b))}

(id x (nal® x id)); {fst, subr; (nil X cons); cat)
= {since (nil x id); cat = snd}

(id x (nil° x id)); {fst, subr; (id X cons); snd)
= {since (id X f); snd = snd; f for total f}

(id x (nil° x id)); {fst, subr; snd; cons)
= {split absorption, backwards}

(id x (nal® x id)); {fst, subr; snd); (id X cons)
= {piping}

(dup id X swap; eq nil); assocr; (id X cons)

Therefore we conclude that

leatF lcat
= {with the reasoning above}

(id x (cons®; cons X id)); lcat U (id x (nil®; nil x id)); leat)
= {composition distributes into union}

((id x (cons®; cons x id)) U (id X (nil°; nil x id))); lcat
= {since cons®; cons U nil®; nil = id}

lcat

