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Abstract. Many useful calculation rules, such as fusion and tupling,
rely on well-structured functions, especially in terms of inputs and out-
puts. For instance, fusion requires that well-produced outputs should
be connected to well-consumed inputs, so that unnecessary intermedi-
ate data structures can be eliminated. These calculation rules generally
fail to work unless functions are well-structured. In this paper, we pro-
pose a new calculation rule called 10 swapping. 10 swapping exchanges
call-time computations (occurring in the arguments) and return-time
computations (occurring in the results) of a function, while guarantee-
ing that the original and resulting function compute the same value. 10
swapping enables us to rearrange inputs and outputs so that the existing
calculation rules can be applied. We present new systematic derivations
of efficient programs for detecting palindromes, and a method of higher-
order removal that can be applied to defunctionalize function arguments,
as two concrete applications.

1 Introduction

Calculational programming [1] is a methodology for constructing programs, where
we first write down a program that may be terribly inefficient but certainly cor-
rect, then we improve its efficiency by applying calculation rules, such as fu-
sion [2,3] and tupling [4-7]. As an example, consider the problem of checking
whether a list is a palindrome or not. A straightforward solution p1d0 is given
as follows.

pld0 x = eqlist(x,reverse x)

eqlist([],[]1) = True
eqlist(a:x,b:y) = a==b && eqlist(x,y)

reverse x = rev x []
where rev [] h =h
rev (a:x) h = rev x (a:h)



The function reverse reverses the order of a list, and the function eqlist checks
whether two lists of the same length are equal. This program is accurate but
inefficient on account of multiple traversals over the input list x; both eqlist
and reverse iterate their computation over x. Tupling enables us to eliminate
such multiple traversals [4-7]. For example, Bird [4] derived

pldBird x = let (rl,r2) = aux x r2 [] in r1
where aux [] [ h = (True, h)
aux (a:x) (b:y) h = let (r1,r2) = aux x y (a:h)
in (a==b && ri1, r2)

Alternatively, Pettorossi and Proietti [6] derived

pldPettorossi x = let (rl,r2) = aux x [] in rl r2
where aux [] h = (\y->y==[1, h)
aux (a:x) h = let (r1,r2) = aux x (a:h)
in (\(b:y)->a==b && rl y, r2)

Both involve a single traversal of x, and tupling plays an important role.

As can be seen in this palindrome detecting problem, calculation rules are
useful for developing various kinds of programs if functions are well-structured.
For instance, tupling calculation eliminates multiple traversals if two functions
have the same structure for the recursion; in facts we succeeded in eliminating
multiple traversals in the palindrome detecting problem, because reverse and
eqlist certainly have the same recursion structure. However, These calculation
rules generally fail to work unless functions are well-structured.

Let us turn to another improvement to solutions for the palindrome detect-
ing problem. The previous two solutions, namely pldBird and pldPettorossi,
construct intermediate lists in the accumulative arguments (denoted by h). The
intermediate lists originate from the function reverse, and they are another
source of inefficiency. In other words, the intermediate list produced by reverse
is consumed by eqlist as follows.

pldl = eqlist - (id 2 reverse)

A question that naturally arises is: “Can we derive an efficient palindrome detect-
ing program without an intermediate list?”. One obvious idea is to fuse eqlist
with (id 2 reverse), however, applying the fusion rule is not easy, because
there are unsuitable connections between eqlist and (id 2~ reverse). Fusion
requires that well-produced outputs should be connected to well-consumed in-
puts so that the intermediate data structure can be eliminated. However, eqlist
consumes two lists simultaneously while (id 2 reverse) produces two lists dif-
ferently: id produces a list in its results while reverse produces a list in its
accumulative arguments.

In this paper, we introduce a novel program transformation called 10 swap-
ping. 10 swapping exchanges call-time computations (occurring in the argu-
ments) and return-time computations (occurring in the results) of a function,
while guaranteeing that the original and resulting function compute the same



value. IO swapping enables us to rearrange inputs and outputs so that exist-
ing calculation rules can be applied. For example, we can derive the following
program, rev_n, from reverse defined above using 10 swapping.

rev.n x = let ([],r) =rev’ xin r
where rev’ [] = (x,[])
rev’ (_:y) = let (a:z,r) = rev’ y
in (z,a:r)

In contrast to reverse, function rev_n constructs the reversed list at return-
time. The production structure of rev_n is now the same as id, and fusion with
eqlist successfully derives the program

pldl x = snd (aux x)
where aux [] = (x,True)
aux (b:y) = let (a:z,r’) = aux y in (z,a==b&&r’)

This function pld1 is slightly more efficient than p1dBird and pldPettorossi.
Although all three functions pldl, pldBird and pldPettorossi require two
traversals, the derived function pld1l does not require an intermediate list.

The remainder of this paper is organized as follows. We introduce 10 swap-
ping in Section 3. We then give two concrete applications of IO swapping in the
two sections that follow. The first, in Section 4, is new systematic derivations
of efficient programs for detecting palindromes. The second, in Section 5, is a
derivation of the transformation of higher-order removal that can be applied to
defunctionalize function arguments. Finally, we discuss related work in Section 6
and conclude the paper in Section 7.

2 Preliminaries

2.1 Notations

Throughout the paper, we have mostly used the notation in functional program-
ming language Haskell [8]. Some syntactic notations we have used in this paper
are as follows. The backslash \ is used instead of A\ for A-abstraction, and the
identity function is written as (\x -> x). The symbol - denotes function compo-
sition, i.e., (f-g) x = £ (g x). The underscore _ stands for the “don’t care” value.
We have used the special symbols x and 2 to express tupled functions for no-
tational convenience: (f x g) (x,y) = (f x, gy) and (f 2 g) x = (£ x, g x).
Many basic Haskell functions have been used in this paper; their informal def-
initions are given in Fig. 1. We have assumed that evaluation is based on lazy
evaluation, data structures are finite, and all patterns are irrefutable except for
those of recursion parameters.

2.2 Fusion and Tupling

Functional programming languages provide a compositional way of program-
ming; larger programs are developed through the composition of smaller and



id x = x
fst (a,.) = a
snd (_,b) = Db

take m [X0,X1,...5Xn,s...,Xn] = [X0,X1,...,Xn_1]
drop m [X0,X1,...sXms---sXn] = [Xm,Xnt1,...5%n]
length [x0,%X1,...,%,] = n+1

reverse [Xo0,X1,...,%Xa] = [Xn,Xn—1,...,%0]

foldr f e [x0,X1,...,%a] = f X (f X1 -+ (f % €)---))
foldl f e [x0,X1,...,%n] = £ (- (£(f e %) x4)--+) Xp
div n m = [n/m|

Fig. 1. Informal definitions of basic functions

simpler functions. Fusion and tupling play an important role in improving the
efficiency of compositional programs. Fusion combines the composition of two
functions into one and eliminates the intermediate data structure between them.
Tupling eliminates multiple traversals of the same data if two functions share
the same recursion scheme. We will later make use of the following fusion rule [2]
and tupling rule [7].

Theorem 1 (Fold Promotion).
f - foldr (@) e = foldr (®) e’

provided that ® and e’ are such that f (a®y) =a® (fy) and f e = e’
hold for any a and y. ad

Theorem 2 (Simple Tupling).
(f1 » £2) = foldr (\a (r1,r2)->(kl a r1, k2 a r2)) (z1,z2)

where f1 = foldr k1 z1 and £2 = foldr k2 z2. O

Both Theorems 1 and 2 can be generalized to be polytypic [3,9, 7].

3 10 Swapping

3.1 IO Swapping for foldl

10 swapping is the new transformation that is used to change the view of recur-
sive functions through the swapping of input (arguments) and output (results).
The following theorem shows the IO swapping rule for a typical function, foldl.
Before going into the general framework, let us illustrate the basic idea behind
IO swapping using this theorem.

Theorem 3 (IO Swapping for foldl). The functions foldl and foldln
defined below are equivalent.

foldl f e [] = e
foldl f e (a:x) = foldl f (f e a) x
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Fig. 2. Models of the computation processes of foldl and foldl-n

foldl.n f e x = let ([],r) = foldl’ x in r
where
{- foldl’ y = (drop (length y) x, foldl f e (take (length y) x)) -}
foldl’ [] = (x,e)
foldl’ (_:y) = let (a:z,r) = foldl’ y
in (z,f r a)

Proof. This is the direct consequence of Theorem 4, which we are going to in-
troduce in Section 3.2. Applying Theorem 4 to foldl and removing unnecessary
variables yields foldl n. O

Notice how the result is computed using function parameter f of foldl and
foldl_n. While £ is applied to the accumulation parameter in function foldl,
it does the computation of the result in fo1d1’. This is because 10 swapping is
a rule to swap the call-time computation (occurring in the arguments) and the
return-time computation (occurring in the results) of the original function.

Fig. 2 illustrates the recursion stacks with the value flows for foldl and
foldln (foldl’). If we ignore the argument of foldl’, we can easily see that
foldl and foldl n compute exactly the same value, except that the compu-
tation is done at different times, call time or return time; moreover, inverting
the figure for foldl makes it look almost the same figure as that for foldl n.
IO swapping swaps call-time and return-time computation without changing the
whole process of computation by ‘turning the recursion stack upside down’, be-
cause call-time and return-time computation correspond to top-to-bottom and
bottom-to-top computation in the figure, respectively.

Note also that to do swapping we need to estimate the recursion depth from
which we should start the computation, because fo1ldl’ should finish its whole
computation exactly at the top of the recursion. We can use the input list to
estimate the recursion depth and indeed foldl’ does this, because there is no
difference in the recursion depth between foldl’ and foldl.



3.2 10 Swapping for List Catamorphisms

The idea behind Theorem 3 can be generalized so that it can be applied to
higher-order list catamorphisms [3], known to be a generalized form of foldr
and foldl. The following theorem describes the 10 swapping rule for higher-
order list catamorphisms with circularity [4].

Theorem 4 (I0 Swapping for List Catamorphisms). For any suitably-
typed g0, g1, g2, and g3, the following two functions, £1 and £2, are equivalent.

{- g0::r->h, gl::h->r, g2::a->r->h->h, g3::a->r->h->r -}

f1 :: [a]l > r
fl x=1let r = f1’ x (g0 r) in r
where {- f1’ :: [a] ->h ->r -}
f1” [T h=gl h
f1’ (a:z) h = 1let r = f1’ z (g2 a r h)
in g3 arh

£f2 :: [a] > r
f2 x = let ([],h,r’) = £2° x (g1 h) in r’
where {- f2’ :: [a] -> r -> ([a],h,r) -}
£f2° [ r = (x, g0 r, 1)
£2° (_:y) r = let (a:z,h,r’) = £2’ y (g3 a r h)
in (z, g2 ar h, r’)

Proof Sketch
Here we will provide a proof sketch. The full proof can be found in [10].

To prove Theorem 4, we need to assume that all computations terminate
with a unique solution. We call the outside (top) of the recursion of the auxiliary
function (£1’ or £2?) the 0-th recursive call and the first call of the auxiliary
functions the 1-st recursive call.

Now we can inductively prove that, for all k such that 0 < k < n, the first
argument, the second argument, and the return value of the k-th recursive call
of £1° will be the first element of the return value, the second element of the
return value, and the second argument of the (n — k)-th recursive call of £2°,
respectively, without any conflict between recursions. Consequently the values
of £1 and £1’ determine one solution for £2 and £2’, and, from the assumption,
it is the only solution for £2 and £2’. Then the result for the whole computation
of £1 is the same as the second argument of £2’ at the bottom of the recursion.
The second argument of £2° at the bottom of the recursion is propagated to the
top of the recursion without any updating and eventually becomes the result for
the whole recursion of £2. Therefore the results for £1 and £2 are the same. O

As the same as Theorem 3, Theorem 4 swaps the call-time computation and
the return-time computation of the auxiliary function. In the definition for f1,
g3 does the return-time computation, but in the definition for £2 it does the
call-time computation. In contrast, g2 manages the call-time computation in
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Fig. 3. Models of the computation processes of £1 and £2 in Theorem 4

the function f£1, but under £2 it does the return-time computation. The aux-
iliary function of £2, namely £2’, only uses its first argument for estimating
the recursion depth, then does the same computation of £1’ in the IO-swapped
manner. It finally returns the result for whole computation from the bottom
of the recursion by the third element of the result of £2’. Fig. 3 outlines the
computation process for £1 and £2. We can easily see that inverting the figure
to compute f1 yields almost the same figure as £2, which reflects the fact that
swapping the input and output of £1 yields £2. We can generalize Theorem 4
further, so that it can deal with almost every linear recursive function [10].

Note that we have assumed that data structures are finite. We succeed in
estimating the recursion depth because of the finiteness of the input list. In
other words, £2 never returns if the input list is infinite, because estimating the
recursion depth needs an infinite recursion. Also note that this does not matter
for Theorem 3, because foldl never returns anyway for an infinite input.

Higher-order list catamorphisms are known as foldr functions with higher-
order results, and functions f1 and f2 are certainly instances of foldr with
higher-order results as follows.

fl x = let r = foldr k1 g1 x (g0 r) in r
vhere k1l ap=\h->letr=p (g2arh)ingdarh
f2 x = let ([],h,r’) = foldr k2 z2 x (gl h) in r’
where z2 = \r -> (x, g0 r, 1)
k2 _ p=\r -> let (a:z,h,r’) =p (g3 a r h)
in (z, g2 ar h, r’)

So Theorem 4 indicates that applying 10 swapping to higher-order list catamor-
phisms results in higher-order list catamorphisms with a projection function.
Moreover, applying 10 swapping twice produces the original function after con-



stant propagation is removed. It is well known that catamorphisms are suitable
for manipulation, and many transformation rules for them have been devel-
oped [3,1,7]. Theorem 4 therefore allows us to combine IO swapping with other
program manipulation techniques.

The list reversing functions provide an example. From Theorem 4, the fol-
lowing function, reverse?2, is equivalent to reverse defined in Section 1.

reverse2 x = let ([],h,r’) = rev2 x h in r’
where rev2 [1 r = (x, [1, 1)
rev2 (_:y) r = let (a:z,h,r’) = rev2’ y r
in (z, a:h, r’)

Function reverse2 produces a resulting list in the result of rev2, in contrast
to reverse, which produces a resulting list in the accumulative argument of its
auxiliary function rev.

It is worth noting that variable h at the top of the recursion of reverse2
describes a circularity [4], i.e., computational dependency from a result to an ar-
gument. This circularity is the IO-swapped appearance of computational depen-
dency from an argument to a result; the auxiliary function of reverse, namely
rev, passes its accumulative argument to its result at the bottom of the recursion,
and this corresponds to the circularity that passes a result to an argument at the
top of the recursion. In general, IO swapping introduces circularities whenever
the original function uses its arguments to compute its results. In other words,
f1, f1°, £2, and £2’ are defined using circularities to capture accumulations. In
the case of foldl, we do not need circularities as can be seen in Theorem 3, be-
cause the dependency from arguments to results is unnecessary in foldl. In fact,
we can remove the circularity in reverse2 by removing the second argument and
the third element of the result of rev2, because they just propagate constants.
Removing the circularity results in the function rev_n that we discussed in the
introduction.

4 Detecting Palindromes

To find out how useful 10 swapping is in program development, let us demon-
strate the derivation of two efficient palindrome detecting programs that have no
intermediate lists. The role of IO swapping is to rearrange the structure of func-
tions in order to enable convenient manipulation. We will first derive a simple
palindrome detecting program, pld1, to show how 10 swapping works, and after
that we will derive a more involved but efficient one, pld2, that only recurses
through half the length of the input list.

4.1 Detecting Palindromes without Intermediate Data
Let us start from the following specification for a palindrome detecting function.

pldl = eqlist - (id 2 reverse)



The definition for pld1l has an intermediate list produced by (id 2 reverse),
but Theorem 1 is not sufficient to eliminate it. As explained in the introduction,
the production/consumption structure of the intermediate list does not form a
suitable connection for the fusion. More concretely, eqlist consumes two lists
simultaneously while (id 2 reverse) produces two lists differently: id produces
a list in its results while reverse produces a list in its accumulative arguments.
Let us show how IO swapping can solve this problem.

First of all, we apply 10 swapping to reverse. Function reverse is an in-
stance of foldl as follows:

reverse x = foldl (\r a->a:r) [] x
Theorem 3 yields the following program.

rev_n x = let ([],r) = rev’ x in r
where rev’ []1 = (x,[])
rev’ (_:y) = let (a:z,r’) = rev’ y
in (z,a:r’)
Note how rev_n produces the resulting list at return-time, in the same man-
ner as id. Successful fusion of eqlist with (id 2 rev_n) is consequently ex-
pected because of suitable connection of the production/consumption structure;
(id 2 rev_n) produces its resulting lists simultaneously, and eqlist consumes
its input lists simultaneously. Let us confirm it through the following calculation.
We write id and rev_n in terms of foldr as follows, because the foldr form
is appropriate for the later calculation.

id x = foldr (:) [] x
rev_n x = snd (foldr (\_ (a:z,r)->(z,a:r)) (x,[1) x)

Tupling (Theorem 2) of id and rev_n yields the following program.

(id & rev_n) x = snd (foldr (\b (a:z,(r1,r2))->(z,(b:rl,a:r2)))
(x, (1,00 =

We now calculate an efficient palindrome detecting function as follows.

pldl x
eqlist ((id 2 rev_n) x)
= {- foldr form of (id 2 rev_n) -}

eqlist (snd (foldr (\b (a:z,(r1,r2))->(z,(b:rl,a:r2)))

(x, (01,0 %))

= {- Swapping snd with eqlist -}

snd ((idxeqlist) (foldr (\b (a:z,(r1,r2))->(z,(b:rl,a:r2)))

(x,([1,00)) =)

= {- Fusion (Theorem 1): -}

{- (idxeqlist) (x, ([1,[1)) = (x,True) -}

{- (idxeqlist) ((\b (a:z, (r1,r2))->(z, (b:rl,a:r2))) br) -}

{- = (z,b==a && eqlist (r1,r2)) -}

{- = Qb (a:z,r’)->(z,b==ak&r’)) b ((idxeqlist) r) -}
snd (foldr (\b (a:z,r’)->(z,b==a&&r’)) (x, True) x)



The resulting function is the one following after foldr is unfolded.

pldl x = snd (aux x)
where aux [] = (x,True)
aux (b:y) = let (a:z,r’) = aux y in (z,a==b&&r’)

This function, p1d1, has no intermediate list. IO swapping creates matching con-
nections between the production/consumption structures, and enables successful
fusion.

4.2 Detecting Palindromes without Intermediate Data and Using
Half the Recursion Depth

To check whether a list is a palindrome or not, we do not need to traverse the
whole list; half of it is sufficient. This insight yields a more efficient specification
as follows.

pld2 = eqlist - (takehalf 2 revdrophf)
where takehalf x = take (div (length x) 2) x
revdrophf x = reverse (drophalf x)
drophalf x = drop (div (length x) 2) x

For simplicity, we have assumed that the length of the input list is even.
First, let us derive efficient definitions for takehalf and drophalf using
fusion. We omit the details.

takehalf x = foldr’ (\_ r (b:y)->b:r y) (\_—>[1) x x
drophalf x = foldr’ (\_ r (_:y)->r y) id x x

Function foldr’ is defined below, having the similar fusion and tupling rules to
foldr [3,9,7].

foldr’ f e [] = e
foldr’ f e (a:b:x) = f (a,b) (foldr’ f e x)

Note that takehalf produces its resulting list in its return-time computation.
This indicates that the combination of takehalf and reverse is not suitable
to be fused with eqlist. Here, IO swapping has an effect. We adopted the 10-
swapped variant rev_n instead of reverse, because its production scheme is the
same as that for takehalf.

pld2 = eqlist - (takehalf 2~ revdrophf2)
where revdrophf2 x = rev_n (drophalf x)

We will next calculate an efficient definition for revdrophf2. Here tupling is
appropriate, because drophalf does not produce a new list and fusion is not
suitable in such a situation. Note that rev_n and drophalf have the same re-
cursion scheme; rev_n and drophalf have the same recursion depth, and rev_n
does not use its recursion parameter except for estimating the depth of the
recursion. Tupling now yields the following program.



revdrophf2 x
= let ([],r1,dphf)
= foldr’ (\_ r (_:y)->let (a:z,rl,r2) =1y
in (z,a:r1,r2))
(\y->(dphf, [J,y)) x x
in ri

This definition has an uncomfortable dependency denoted by the variable dphf;
dphf is computed by the recursion of foldr’ and is used at the bottom of
the recursion. We can eliminate this uncomfortable dependency because the
third element of the result (denoted by r2) remains unchanged throughout the
recursion. We can thus obtain the following program.

revdrophf2 x
= let ([],r1) = foldr’ (\_ r (_:y)->let (a:z,rl) =ry
in (z,a:rl))
Ay=>(y, ) x x

in ri

Finally, we fuse eqlist with (takehalf a revdrophf2). It is almost the same
as that discussed in the previous section. Note that takehalf and revdrophf2
have the same recursion scheme and the same production scheme, and tupling
takehalf with revdrophalf2 and fusing it with eqlist is not difficult. We omit
the details.

Tupling yields the following definition for (takehalf » revdrophf2).

(takehalf 2 revdrophf2)
= {- Tupling (Theorem 2) -}
let ([1,r) = foldr’ (\_ r (b:y)->let (a:z,(r2,r1)) =ry
in (z,(b:r2,a:r1)))
Ay=>C, (O, xxinr

Fusion gives the following definition for pld2.

pld2 x
= eqlist ((takehalf 2~ revdrophf) x)
let ([]1,r) = foldr’ (\_ r (b:y)->let (a:z,(r2,r1)) =ry
in (z,(b:r2,a:r1)))
Ay—>C, (00, x x

in eqlist r

= {- Fusion (Theorem 1) -}
let ([1,r) = foldr’ (\_ r (b:y)->let (a:z,r’) =ry
in (z,b==a&&r’))
A\y->(y,True)) x x
in r

The resulting function is as follows, after foldr’ is unfolded.



pld2 x = 1let ([],r) = aux x x in r
where aux [] y = (y, True)
aux (_:_:x) (b:y) = let (a:z,r’) = aux x y
in (z, b==a&&r’)

This program has no intermediate list and its recursion depth is half the length
of the input list.

5 Reinforce the Power of Transformations by 10
Swapping

In Section 4, we presented an application of IO swapping as a program trans-
formation. This section demonstrates an application of IO swapping as a meta-
transformation; 10 swapping can take a program transformation and return one
that is an I0-swapped transformation of the old one. We will present a derivation
of a higher-order removal transformation that can be applied to defunctionalize
function arguments.

5.1 IO Swapping as a Metatransformation

Consider the higher-order removal problem [11]. It is well known that n-expansion
effectively defunctionalizes higher-order results. For example, think about the fol-
lowing function, sumTC, whose auxiliary function sum’ returns a function value.

sumTC x = let r = sum’ x in r O
where sum’ [] = id
sum’ (a:x) = (sum’ x) - (a+)

n-expansion yields the usual first-order definition for sumTC as follows.

sumTC x = sum’ x O
where sum’ [] h =h
sum’ (a:x) h = sum’ x (a+h)

Despite such effective defunctionalization of higher-order results, n-expansion
cannot remove higher-order accumulative arguments. That is, it cannot work for
the following sumCPS function, whose auxiliary function constructs a higher-order
accumulative argument.

sumCPS x = sum’ x id
where sum’ [] k =k O
sum’ (a:x) k = sum’ x (\v->k(at+v))

We have to find another rule to remove higher-order accumulations. It is inef-
ficient to start from scratch. In Section 5.2, we will derive a new method from
n-expansion with IO swapping. Here, let us explain the general idea.
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Fig. 4. Framework provided by 10 swapping

The problem is the mismatch between the purpose and the rule; we want to
manipulate arguments, but n-expansion only defunctionalizes results. IO swap-
ping enables us to rearrange the arguments and results to suit manipulation, as
seen in Section 4. Applying IO swapping to sumCPS above yields the following
function.

sumCPS’ x = let ([], k) = sum_n’ x in k O
where sum_n’ [] = (x, id)
sum_n’ (_:y) = let (a:z,k) = sum_n’ y
in  (z,\v->k(at+v))

The auxiliary function sum_n’ of sumCPS’ constructs a higher-order result, and
seems suitable for the application of n-expansion. The metatransformation use of
10 swapping is derived by generalizing this process, and the idea is summarized
in Fig. 4. Assume that there are programs f, g and a program transformation
T such that T[f] = g. IO swapping gives functions equivalent to f and g,
namely f’ and ¢’. We can now define a program transformation 7" by the relation
between f’ and ¢’, and T” works as an IO-swapped transformation of T. Note
that T is specified by the sequence of program transformations, that is, applying
IO swapping after applying T, after applying 10 swapping. Consequently, 10
swapping provides the relationship between the manipulation of arguments and
that of results for recursive functions.

5.2 Higher-order Removal for Accumulative Arguments

Let us turn to removing the higher-order accumulation of sumCPS in the previous
subsection using 10 swapping and 7-expansion. First, we apply 10 swapping to
sumCPS. Because sumCPS is an instance of foldl,

sumCPS x = foldl (\k a v->k(a+v)) id x 0

we use Theorem 3 and obtain the following program.



sumCPS’ x = let ([], k) = sum_n’ x in k O
where sum_n’ [] = (x, id)
sum_n’ (_:y) = let (a:z,k) = sum_n’ y
in (z,\v->k(a+v))

In sumCPS’, higher-order values only appear in the results, and applying 7-
expansion is sufficient for higher-order removal. Recall that n-expansion is the
rule to pass an extra argument to the higher-order result. We define a function
sum_n’’ that passes an extra argument to the second element of the result of
sum-n’ as follows.

sum_n’’ y v = let (x’,k) = sum_n’ y in (x’,k v)

Replacing sum n’ in the definition of sumCPS’ with sum n’’ yields the following
program.

sumCPS’ x = let ([], k) = sum_n’’ x 0 in k
where sum_n’’ [1 v = (x, v)
sum_n’’ (_:y) v = let (a:z,k) = sum_n’’ y (atv)
in (z,k)

Higher-order removal is achieved.
We may go further. Since the effect of 10 swapping is no longer needed, we
eliminate it. Applying Theorem 4 backwards yields the following program.

sumCPS x = sum’’ x
where sum’’ [] = 0
sum’’ (a:x’) = let v = sum’’ x’
in at+v

This is the usual definition of the function summing up all elements of a list.
Our strategy, namely applying IO swapping after n-expansion after IO swapping,
works successfully.

Let us summarize the transformation above as a formal rule. The point of
derivation of an IO-swapped transformation is the step where we apply the
original transformation (in this case 7-expansion) to the result of IO swapping.
Recall that the result for Theorem 4 is the following function.

f2 x = let ([],h,r’) = £2’ x (g1 h) in 1’
where f2° [] r = (x, g0 r, r)
£2° (_:y) r = 1let (a:z,h,r’) = £f2’ y (g3 a r h)
in (z, g2 ar h, r’)

If we can define the rule for n-expansion for this function, we can then obtain
a higher-order removal rule for accumulative arguments. Although it is not so
obvious, we can achieve this by clarifying the intersection for the range of 10
swapping and the domain of n-expansion. We then obtain the following lemma.

Lemma 1. For suitably typed functions g0, g1, g2, g3, and g4, the following
two functions, £2a and £2b, are equivalent.



{- g0::x->v->h, gl::h->r, g2::a->r->v->h->h -}

{- g3::a->r->r, g4: :a->r->v->v -}

f2a :: [a] > v > r

f2a x v0 = let ([],h,r’) = fa’ x (g1 (h vO)) in T’
where {-fa’ :: [a] ->r -> ([a], v->h, 1) -}

fa’ [l r = (x, \v=>g0 r v, 1)
fa’ (_:y) r = let (a:z,h,r’) = fa’ y (g3 a r)
in (z, \v=>g2 arv (h (gdarv),r)

f2a :: [a] > v > r
f2b x vO = let ([],h,r’) = fb’ x (gl h) vO in r’
where {-fb’ :: [a]l ->r ->v -> ([al, h, 1) -}

foo D rv=(x, gor v, r)
fb’ (_:y) r v = let (a:z,h,r’) = b’ y (g3 ar) (g4 ar v)
in (z, g2 ar v h, r’)

Proof. This is proved by n-expansion, similar to the case of sumCPS’ above.
Starting from f2a, we define fb’ as follows.

fb’ y r v = let (z,h,r’) = fa’ y r in (z,h v,r’)
Then we replace fa’ with £b’. We then obtain £2b. a

We are ready to derive the higher-order removal rule for function arguments.
Applying IO swapping to both f2a and £2b, we obtain the following theorem.

Theorem 5 (Higher-order Removal for Function Arguments). For suit-
ably typed functions g0, g1, g2, g3, and g4, the following two functions, f1a and
f1b, are equivalent.
{- g0::r->v->h, gl::h->r, g2::a->r->v->h->h -}
{- g3::a->r->r, gd: :a->r->v->v -}
fla :: [a] > v > r
fla x vO = let r = fa x (\v=>g0 r v) in r
vhere {-fa :: [a]l -> (v=>h) -> -}
fa [1 h = g1 (b vO)
fa (a:z) h=1let r = faz (\v->g2 arv (h (gd ar v)))
in g3 ar
fib :: [a]l] > v > r
fib x vO = let (r,v) = fb x (g0 v) in r
where {-fb :: [a] ->h -> (r,v) -}
fb [1 h = (g1 h, v0)
fb (a:z) h = let (r,v) = fb z (g2 a r v h)
in (g3 ar, gdarv

Proof. From Lemma 1, currying the arguments of fb’ to create a triple, and
applying 1O swapping backwards to both £2a and £2b, we obtain fla and f1b
respectively. a

We can use our strategy for other program transformations such as fusion,
as discussed in [10].



6 Related Work

We demonstrated the derivation of two palindrome detecting functions, pld1 and
pld2, in Section 4. These palindrome detecting functions were given by Danvy
and Goldberg [12] as an application of the There And Back Again (TABA) pat-
tern. What we demonstrated in Section 4 is, therefore, a derivation of TABA
programs based on 10 swapping. 10 swapping derives TABA programs, on the
one hand, because IO swapping turns an iteration over arguments into an it-
eration over results [13,14]. IO swapping, on the other hand, is itself an ap-
plication of TABA pattern; the TABA pattern is necessary for expressing the
IO swapping rule. It is worth mentioning that another method based on de-
functionalization [15] was proposed [16] to derive TABA programs. Although
this defunctionalization-based method certainly derives pldi, it is not obvious
whether it can cope with pld2.

While it is well known in the functional community that it is difficult to
manipulate accumulative programs, we demonstrated in Section 5 a derivation
of a manipulation method that could deal with accumulative programs. We
found that a combination of the derived method (Theorem 5) and n-expansion
works in a similar fashion to the higher-order removal method proposed by
Nishimura [17] on the basis of a composition method [18] of attribute gram-
mars [19]. Attribute grammars give a good abstraction of accumulative programs,
and many attribute-grammar-based program transformation methods for accu-
mulative functions have been proposed [20-23]. The reason attribute grammars
make manipulations of accumulative functions easy is the symmetric treatments
over arguments and results, and this is also what IO swapping aims at.

IO swapping is related to circular programs [4]. There have not been many
studies on the application and transformation of circular programs in functional
area, since circularities are not intuitive and disturb program manipulation. 10
swapping offers the view that circularities, i.e., computational dependencies from
results to arguments, are IO-swapped variants of accumulations, which expresses
computational dependencies from arguments to results.

1O swapping is related to logic programming or relation-based programs to
some extent. From the viewpoint of logic programming, what 10 swapping does
is to change the order in which a proof tree is constructed. If the original program
constructs the proof tree from its root to its leaves, the IO swapped program
constructs it from its leaves to its root, but the resulting tree is the same.

Although 10 swapping seems related to the inversion of evaluation order [24],
our work bears little relationship to it. IO swapping does not change the order
of evaluations, but changes the dependency of computation: I0-swapped func-
tions usually compute arguments after results, while ordinary functions compute
results after arguments.

7 Conclusion

In this paper, we introduced a novel program transformation, namely 10 swap-
ping. IO swapping enables us to rearrange arguments and results to be suitable



for manipulation. We demonstrated its effectiveness through two examples, the
derivations of efficient palindrome detecting functions, and a higher-order re-
moval transformation to defunctionalize function arguments.

We are currently attempting to extend 10 swapping so that it can deal with
non-linear recursions. Although many calculational rules have been extended to
non-linear recursions using a framework of constructive algorithmics [3], we have
not yet succeeded in describing the IO swapping rule in terms of constructive
algorithmics.

We also consider that 10 swapping is related to the synthesis of data struc-
tures. IO swapping for list catamorphisms produces a new function, scanning
a list from tail to head. In general, IO swapping produces a new function that
scans a queue-fashion data structure from an ordinary list-iterating function.
It is much more difficult to manipulate queues than lists in a purely functional
setting. We hope that IO swapping will enable data structures to be synthesised,
e.g., the synthesis of list-like data structure such as queues, doubly linked lists,
and circular lists.
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