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Abstract Language designers usually need to implement parsers and printers. Despite
being two closely related programs, in practice they are often designed separately, and
then need to be revised and kept consistent as the language evolves. It will be more
convenient if the parser and printer can be unified and developed in a single program,
with their consistency guaranteed automatically. Furthermore, in certain scenarios
(like showing compiler optimisation results to the programmer), it is desirable to have
a more powerful reflective printer that, when an abstract syntax tree corresponding to
a piece of program text is modified, can propagate the modification to the program
text while preserving layouts, comments, and syntactic sugar.

To address these needs, we propose a domain-specific language BIYACC, whose
programs denote both a parser and a reflective printer for a fully disambiguated context-
free grammar. BIYACC is based on the theory of bidirectional transformations, which
helps to guarantee by construction that the generated pairs of parsers and reflective
printers are consistent. Handling grammatical ambiguity is particularly challenging:
We propose an approach based on generalised parsing and disambiguation filters,
which produce all the parse results and (try to) select the only correct one in the
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parsing direction; the filters are carefully bidirectionalised so that they also work in the
printing direction and do not break the consistency between the parsers and reflective
printers. We show that BIYACC is capable of facilitating many tasks such as Pombrio
and Krishnamurthi’s ‘resugaring’, simple refactoring, and language evolution.

Keywords Asymmetric Lenses · Disambiguation Filters · Bidirectional Transforma-
tions · Domain-Specific Languages · Parsing · Reflective Printing

1 Introduction

Whenever we come up with a new programming language, as the front-end part
of the system we need to design and implement a parser and a printer to convert
between program text and an internal representation. A piece of program text, while
conforming to a concrete syntax specification, is a flat string that can be easily edited
by the programmer. The parser extracts the tree structure from such a string to a
concrete syntax tree (CST), and converts it to an abstract syntax tree (AST), which
is a more structured and simplified representation and is easier for the back-end to
manipulate. On the other hand, a printer converts an AST back to a piece of program
text, which can be understood by the user of the system; this is useful for debugging
the system, or reporting internal information to the user.

Parsers and printers do conversions in opposite directions and are closely related—
for example, the program text printed from an AST should be parsed to the same
tree. It is certainly far from being economical to write parsers and printers separately:
The parser and printer need to be revised from time to time as the language evolves,
and each time we must revise the parser and printer and also keep them consistent
with each other, which is a time-consuming and error-prone task. In response to this
problem, many domain-specific languages [6, 7, 13, 37, 44, 53] have been proposed,
in which the user can describe both a parser and a printer in a single program.

Despite their advantages, these domain-specific languages cannot deal with syn-
chronisation between program text and ASTs. Let us look at a concrete example in
Figure 1: The original program text is an arithmetic expression, containing a nega-
tion, a comment, and parentheses (one pair of which is redundant). It is first parsed
to an AST (supposing that addition is left-associative) where the negation is desug-
ared to a subtraction, parentheses are implicitly represented by the tree structure,
and the comment is thrown away. Suppose that the AST is optimised by replacing
Add (Num 1) (Num 1) with a constant Num 2. The user may want to observe the optimisa-
tion made by the compiler, but the AST is an internal representation not exposed to
the user, so a natural idea is to propagate the changes on the AST back to the program
text to make it easy for the user to check where the changes are. With a conventional
printer, however, the printed result will likely mislead the programmer into thinking
that the negation is replaced by a subtraction by the compiler; also, since the comment
is not preserved, it will be harder for the programmer to compare the updated and
original versions of the text. The problem illustrated here has also been investigated
in many other practical scenarios where the parser and printer are used as a bridge
between the system and the user, for example,
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Original program text:
-a /* a is the variable denoting . . . */
* (1 + 1 + (a))

Abstract syntax tree:
Mul (Sub (Num 0) (Var "a"))

(Add (Add (Num 1) (Num 1)) (Var "a"))

Optimised abstract syntax tree:
Mul (Sub (Num 0) (Var "a"))

(Add (Num 2) (Var "a"))

Printed result from a conventional printer:
(0 - a) * (2 + a)

Printed result from our reflective printer:
-a /* a is the variable denoting . . . */
* (2 + (a))

Fig. 1 Comparison between conventional printing and reflective printing.

– in bug reporting [51], where a piece of program text is parsed to its AST to be
checked but error messages should be displayed for the program text;

– in code refactoring [18], where instead of directly modifying a piece of program
text, most refactoring tools will first parse the program text into its AST, perform
code refactoring on the AST, and regenerate new program text; and

– in language-based editors, as introduced by Reps [45, 46], where the user needs to
interact with different printed representations of the same underlying AST.

To address the problem, we propose a domain-specific language BIYACC, which
enables the user to describe both a parser and a reflective printer for a fully disam-
biguated context-free grammar (CFG) in a single program. Different from a conven-
tional printer, a reflective printer takes a piece of program text and an AST, which is
usually slightly modified from the AST corresponding to the original program text, and
propagates the modification back to the program text. Meanwhile the comments (and
layouts) in the unmodified parts of the program text are all preserved. This can be seen
clearly from the result of using our reflective printer on the above arithmetic expression
example in Figure 1. It is worth noting that reflective printing is a generalisation of the
conventional notion of printing, because a reflective printer can accept an AST and
an empty piece of program text, in which case it will behave just like a conventional
printer, producing a new piece of program text depending on the AST only.

From a BIYACC program we can generate a parser and a reflective printer; in
addition, we want to guarantee that the two generated components are consistent with
each other. Specifically, given a pair of parser parse and reflective printer print, we
want to ensure two (inverse-like) consistency properties: Firstly, a piece of program
text s printed from an abstract syntax tree t should be parsed to the same tree t, i.e.1

parse (print s t) = t . (1)

Secondly, updating a piece of program text s with an AST parsed from s should leave s
unmodified (including formatting details like parentheses and whitespaces), i.e.

print s (parse s) = s . (2)

1 We assume basic knowledge about functional programming languages and their notations, in particular
HASKELL [5, 34]. In HASKELL, an argument of function application does not need to be enclosed in
(round) parentheses, i.e. we write f x instead of f (x); type variables are implicitly universally quantified,
i.e. f :: a→ b→ a is the same as f :: ∀a b. a→ b→ a where :: means has type. Additionally, we omit
universal quantification for free variables in an equation; for instance, parse (print s t) = t is in fact
∀s t. parse (print s t) = t.



4 Zhu, Ko, Zhang, Martins, Saraiva, and Hu

These two properties are inspired by the theory of bidirectional transformations [19],
in particular lenses [17], and are guaranteed by construction for all BIYACC programs.

An online tool that implements the approach described in the paper can be ac-
cessed at http://www.prg.nii.ac.jp/project/biyacc.html. The webpage also contains the
test cases used in the paper. The structure of the paper is as follows: We start with
an overview of BIYACC in Section 2, explaining how to describe in a single pro-
gram both a parser and a reflective printer for synchronising program text and its
abstract syntax representation. After reviewing some background on bidirectional
transformations in Section 3, in particular the bidirectional programming language
BIGUL [22, 27, 28], we first give the semantics of a basic version of BIYACC that
handles unambiguous grammars by compiling it to BIGUL in Section 4, guaranteeing
the properties (1) and (2) by construction. Then, inspired by the research on gener-
alised parsing [50] and disambiguation filters [26], in Section 5 we revise the basic
BIYACC architecture to allow the use of ambiguous grammars and disambiguation
directives while still retaining the above-mentioned properties. We present a case
study in Section 6, showing that BIYACC is capable of describing TIGER [4], which
shares many similarities with fully-fledged languages. We demonstrate that BIYACC
can handle syntactic sugar, partially subsume Pombrio and Krishnamurthi’s ‘resug-
aring’ [42, 43], and facilitate language evolution. In Section 7, we present detailed
related work including comparison with other systems. Contributions are summarised
in Section 8.

This is the extended version of our previous work Parsing and Reflective Printing,
Bidirectionally presented at SLE’16 [55], and the differences are mainly as follows: (i)
We propose the notion of bidirectionalised filters and integrate them into BIYACC for
handling grammatical ambiguity (Section 5); the related work section is also updated
accordingly. (ii) We restructure the narration for introducing the basic BIYACC system
and in particular elaborate on the isomorphism between program text and CSTs.
(iii) We present the definitions and theorems in a more formal way, and complete
their proofs. (iv) We make several other revisions such as renewing the figures for
introducing the BIYACC system and the syntax of BIYACC programs.

Throughout this paper, we typeset general definitions and properties in math style
and specific examples in code style.

2 A First Look at BIYACC

We first give an overview of BIYACC by going through the BIYACC program shown
in Figure 2, which deals with the arithmetic expression example given in Section 1.
This program consists of definitions of the abstract syntax, concrete syntax, directives,
and actions for reflectively printing ASTs to CSTs; we will introduce them in order.

2.1 Syntax Definitions

Abstract Syntax. The abstract syntax part, which starts with the keyword #Abstract, is
just one or more definitions of HASKELL data types. In our example, the abstract syntax

http://www.prg.nii.ac.jp/project/biyacc.html
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1 #Abstract
2 data Arith = Num Int
3 | Var String
4 | Add Arith Arith
5 | Sub Arith Arith
6 | Mul Arith Arith
7 | Div Arith Arith
8

9 #Concrete
10 Expr -> Expr '+' Term
11 | Expr '-' Term
12 | Term ;
13

14 Term -> Term '*' Factor
15 | Term '/' Factor
16 | Factor ;
17

18 Factor -> '-' Factor
19 | Numeric
20 | Identifier
21 | '(' Expr ')' ;

22 #Directives
23 LineComment: "//" ;
24 BlockComment: "/*" "*/" ;
25

26 #Actions
27 Arith +> Expr
28 Add x y +> [x +> Expr] '+' [y +> Term];
29 Sub x y +> [x +> Expr] '-' [y +> Term];
30 e +> [e +> Term];
31 ;;
32 Arith +> Term
33 Mul x y +> [x +> Term] '*' [y +> Factor];
34 Div x y +> [x +> Term] '/' [y +> Factor];
35 e +> [e +> Factor];
36 ;;
37 Arith +> Factor
38 Sub (Num 0) y +> '-' [y +> Factor];
39 Num i +> [i +> Numeric];
40 Var n +> [n +> Identifier];
41 e +> '(' [e +> Expr] ')';
42 ;;

Fig. 2 A BIYACC program for the expression example.

is defined in lines 2–7 by a single data type Arith whose elements are constructed from
constants and arithmetic operators. Different constructors—namely Num, Var, Add, Sub,
Mul, and Div—are used to construct different kinds of expressions.

Concrete Syntax. The concrete syntax part, beginning with the keyword #Concrete, is
defined by a context-free grammar. For our expression example, in lines 10–21 we
use a standard unambiguous grammatical structure to encode operator precedence
and order of association, involving three nonterminal symbols Expr, Term, and Factor:
An Expr can produce a left-sided tree of Terms, each of which can in turn produce a
left-sided tree of Factors. To produce right-sided trees or operators of lower precedence
under those with higher precedence, the only way is to reach for the last production rule
Factor -> '(' Expr ')', resulting in parentheses in the produced program text. There
are also predefined nonterminals Numeric and Identifier, which produce numerals and
identifiers respectively.

Directives. The #Directives part defines the syntax of comments and disambiguation
directives. For example, line 23 shows that the syntax for single line comments is
“//”2, while line 24 states that “/*” and “*/” are respectively the beginning mark and
ending mark for block comments. Since the grammar for arithmetic expressions is
unambiguous, there is no need to give any disambiguation directive for this example
(whereas the ambiguous version of the grammar in Figure 6 needs to be augmented
with a few such directives).

2 While single quotation marks are for characters, double quotation marks are for strings. For simplicity,
the user can always use double quotation marks.
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2.2 Printing Actions

The main part of a BIYACC program starts with the keyword #Actions and describes
how to update a CST with an AST. For our expression example, the actions are
defined in lines 27–42 in Figure 2. Before explaining the actions, we should first
say that program text is identified with CSTs when programming BIYACC actions:
Conceptually, whenever we write a piece of program text, we are actually describing a
CST rather than just a sequence of characters. We will expound on this identification
of program text with CSTs in Section 4.2 in detail.

The #Actions part consists of groups of actions, and each group begins with a ‘type
declaration’ of the form HsType ‘+>’ Nonterminal stating that the actions in this group
specify updates on CSTs generated from Nonterminal using ASTs of type HsType.
Informally, given an AST and a CST, the semantics of an action is to perform pattern
matching simultaneously on both trees, and then use components of the AST to update
corresponding parts of the CST, possibly recursively. (The syntax ‘+>’ suggests that
information from the left-hand side is embedded into the right-hand side.) Usually the
nonterminals in a right-hand side pattern are overlaid with update instructions, which
are also denoted by ‘+>’.

Let us look at a specific action—the first one for the expression example, at line 28
of Figure 2:

Add x y +> [x +> Expr] '+' [y +> Term];

The AST-side pattern Add x y is just a HASKELL pattern; as for the CST-side pattern,
the main intention is to refer to the production rule Expr -> Expr '+' Term and use it
to match those CSTs produced by this rule—since the action belongs to the group
Arith +> Expr, the part ‘Expr ->’ of the production rule can be inferred and thus is
not included in the CST-side pattern. Finally we overlay ‘x +>’ and ‘y +>’ on the
nonterminal symbols Expr and Term to indicate that, after the simultaneous pattern
matching succeeds, the subtrees x and y of the AST are respectively used to update the
left and right subtrees of the CST.

Having explained what an action means, we can now explain the semantics of
the entire program. Given an AST and a CST as input, first a group (of actions) is
chosen according to the types of the trees. Then the actions in the group are tried in
order, from top to bottom, by performing simultaneous pattern matching on both trees.
If pattern matching for an action succeeds, the updating operations specified by the
action is executed; otherwise the next action is tried. Execution of the program ends
when the matched action specifies either no updating operations or only updates to
primitive data types such as Numeric. BIYACC’s most interesting behaviour shows up
when all actions in the chosen group fail to match—in this case a suitable CST will be
created. The specific approach adopted by BIYACC is to perform pattern matching
on the AST only and choose the first matched action. A suitable CST conforming to
the CST-side pattern is then created, and after that the whole group of actions is tried
again. This time the pattern matching will succeed at the action used to create the
CST, and the program will be able to make further progress. For instance, assuming
that the source is 1 * 2 while the view is Add (Num 1) (Num 2), a new source skeleton
representing _ + _ will be created and the _ part will be updated recursively later. We
will elaborate more on this in Section 4.
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Deep Patterns. By using deep patterns, we can write actions that establish nontrivial
relationships between CSTs and ASTs. For example, the action at line 38 of Figure 2
associates abstract subtraction expressions whose left operand is zero with concrete
negated expressions; this action is the key to preserving negated expressions in the
CST. For an example of a more complex CST-side pattern: Suppose that we want to
write a pattern that matches those CSTs produced by the rule Factor -> '-' Factor,
where the inner nonterminal Factor produces a further '-' Factor using the same rule.
This pattern is written by overlaying the production rule on the first nonterminal
Factor (an additional pair of parentheses is required for the expanded nonterminal):
'-' (Factor -> '-' Factor). More examples involving this kind of deep patterns can be
found in Section 6.

Layout and Comment Preservation. The reflective printer generated by BIYACC is
capable of preserving layouts and comments, but, perhaps mysteriously, in Figure 2
there is no clue as to how layouts and comments are preserved. This is because we
decide to hide layout preservation from the user, so that the more important logic of
abstract and concrete syntax synchronisation is not cluttered with layout preserving
instructions. Our approach is fairly simplistic: We store layout information following
each terminal in an additional field in the CST implicitly, and treat comments in the
same way as layouts. During the printing stage, if the pattern matching on an action
succeeds, the layouts and comments after the terminals shown in the right-hand side
of that action are preserved; on the other hand, layouts and comments are dropped
when a CST is created in the situation where pattern matching fails for all actions in a
group. The layouts and comments before the first terminal are always kept during the
printing.

Parsing Semantics. So far we have been describing the reflective printing semantics
of the BIYACC program, but we may also work out its parsing semantics intuitively
by interpreting the actions from right to left, converting the production rules to the
corresponding constructors. (This might remind the reader of the usual YACC [23]
actions.) In fact, this paper will not define the parsing semantics formally, because the
parsing semantics is completely determined by the reflective printing semantics: If the
actions are written with the intention of establishing some relation between the CSTs
and ASTs, then BIYACC will be able to derive the only well-behaved parser, which
respects that relation. We will explain how this is achieved in the next section.

3 Foundation of BIYACC: Putback-based Bidirectional Programming

From a BIYACC program, in addition to generating a parser and a printer, we also need
to guarantee that the two generated programs are consistent with each other, i.e. satisfy
the properties (1) and (2) stated in Section 1. It is possible to implement the print
and parse semantics separately in an ad hoc way, but verifying the two consistency
properties takes extra effort. The implementation we present, however, is systematic
and guarantees consistency by construction, thanks to the well-developed theory of
bidirectional transformations (BXs for short), in particular lenses [17]. We will give
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a brief introduction to BXs below; for a comprehensive treatment, the readers are
referred to the lecture notes for the 2016 Oxford Summer School on Bidirectional
Transformations [19].

3.1 Parsing and Printing as Lenses

The parse and print semantics of BIYACC programs are potentially partial—for
example, if the actions in a BIYACC program do not cover all possible forms of
program text and abstract syntax trees, parse and print will fail for those uncovered
inputs. Thus we should take partiality into account when choosing a BX framework in
which to model parse and print. The framework we use in this paper is an explicitly
partial version [32, 40] of asymmetric lenses [17].

Definition 1 (Lenses) A lens between a source type S and a view type V is a pair of
functions

get :: S→MaybeV

put :: S→V →Maybe S

satisfying the well-behavedness laws:

put s v = Just s′ ⇒ get s′ = Just v (PUTGET)
get s = Just v ⇒ put s v = Just s (GETPUT)

Intuitively, a get function extracts a part of a source of interest to the user as a
view, and a put function takes a source and a view and produces an updated source
incorporating information from the view. Partiality is explicitly represented by making
the functions return Maybe-values: a get or put function returns Just r where r is
the result, or Nothing if the input is not in the domain. The PUTGET law enforces
that put must embed all information of the view into the updated source, so the
view can be recovered from the source by get, while the GETPUT law prohibits put
from performing unnecessary updates by requiring that putting back a view directly
extracted from a source by get must produce the same, unmodified source.

The parse and print semantics of a BIYACC program will be the pair of functions
get and put in a lens, required by definition to satisfy the two well-behavedness laws,
which are exactly the consistency properties (1) and (2) reformulated in a partial
setting:

Definition 2 (The Partial Version of Consistency Properties)

print s t = Just s′ ⇒ parse s′ = Just t

parse s = Just t ⇒ print s t = Just s
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3.2 Putback-based Bidirectional Programming in BiGUL

Having rephrased parsing and printing in terms of lenses, we can now construct
consistent pairs of parsers and printers using bidirectional programming techniques,
in which the programmer writes a single program to denote the two directions of a
lens. Specifically, BIYACC programs are compiled to the putback-based bidirectional
programming language BIGUL [28]. It has been formally verified in Agda [39] that
BIGUL programs always denote well-behaved lenses, and BIGUL has been ported to
HASKELL as an embedded DSL library [22]. BIGUL is putback-based, meaning that
a BIGUL program describes a put function, but—since BIGUL is bidirectional—can
also be executed as the corresponding get function. The advantage of putback-based
bidirectional programming lies in the fact that, given a put function, there is at most
one get function that forms a (well-behaved) lens with this put function [16]. That
is, once we describe a put function as a BIGUL program, the get semantics of the
program is completely determined by its put semantics. We can therefore focus solely
on the printing (put) behaviour, leaving the parsing (get) behaviour only implicitly
(but unambiguously) specified. How the programmer can effectively work with this
paradigm has been more formally explained in terms of a Hoare-style logic for
BIGUL [27].

Compilation of BIYACC to BIGUL (Section 4) uses only three BIGUL operations,
which we briefly introduce here; more details can be found in the lecture notes on
BiGUL programming [22]. A BIGUL program has type BiGUL s v, where s and v are
respectively the source and view types.

Replace. The simplest BIGUL operation we use is

Replace :: BiGUL s s

which discards the original source and returns the view—which has the same type
as the source—as the updated source. That is, the put semantics of Replace is the
function λ s v→ Just v.

Update. The next operation update is more complex, and is implemented with the help
of Template Haskell [49]. The general form of the operation is

$(update [p| spat |] [p| vpat |] [d| bs |]) :: BiGUL s v .

This operation decomposes the source and view by pattern matching with the patterns
spat and vpat respectively, pairs the source and view components as specified by
the patterns (see below), and performs further BIGUL operations listed in bs on the
source–view pairs; the way to determine which source and view components are paired
and which operation is performed on a pair is by looking for the same names in the
three arguments. For example, the update operation

$(update [p| (x, _) |] [p| x |] [d| x = Replace |])

matches the source with a tuple pattern (x, _) and the view with a variable pattern x, so
that the first component of the source tuple is related with the whole view; during the
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update, the first component of the source is replaced by the whole view, as indicated by
the operation x = Replace. (The part marked by underscore (_) simply means that it will
be skipped during the update.) Given a source (1,2) and a view 3, the operation will
produce (3,2) as the updated source. In general, any (type-correct) BIGUL program
can be used in the list of further updates, not just the primitive Replace.

Case. The most complex operation we use is Case for doing case analysis on the
source and view:

Case :: [Branch s v]→ BiGUL s v .

Case takes a list of branches, of which there are two kinds: normal branches and
adaptive branches. For a normal branch, we should specify a main condition using
a source pattern spat and a view pattern vpat, and an exit condition using a source
pattern spat′:

$(normalSV [p| spat |] [p| vpat |] [p| spat′ |]) :: BiGUL s v→ Branch s v .

An adaptive branch, on the other hand, only needs a main condition:

$(adaptiveSV [p| spat |] [p| vpat |]) :: (s→ v→ s)→ BiGUL s v .

Their semantics in the put direction are as follows: A branch is applicable when the
source and view respectively match spat and vpat in its main condition. Execution of a
Case chooses the first applicable branch from the list of branches, and continues with
that branch. When the applicable branch is a normal branch, the associated BIGUL
operation is performed, and the updated source should satisfy the exit condition spat′

(or otherwise execution fails); when the applicable branch is an adaptive branch, the
associated function is applied to the source and view to compute an adapted source,
and the whole Case is rerun on the adapted source and the view; it must go into a
normal branch this time, otherwise the execution fails. Think of an adaptive branch
as bringing a source that is too mismatched with the view to a suitable shape—for
example, when the source is a subtraction while the view is an addition, which are
by no means in correspondence, we must adapt the source to an addition—so that a
normal branch that deals with sources and views in some sort of correspondence can
take over. This adaptation mechanism is used by BIYACC to print an AST when the
source program text is too different from the AST or even nonexistent at all.

4 The Basic BIYACC

In this section we expound on a basic version of BIYACC that handles only unam-
biguous grammars. (Section 5 will present extensions for dealing with ambiguous
grammars with disambiguation.) The architecture is illustrated in Figure 3, where a
BIYACC program

‘#Abstract’ decls ‘#Concrete’ pgs ‘#Directives’ drctvs ‘#Actions’ ags , (3)

consisting of abstract syntax, concrete syntax, directives, and printing actions, as
formally defined in Figure 4, is compiled into a few HASKELL source files and then
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Fig. 3 Architecture of BIYACC.

into an executable (by a HASKELL compiler) for converting between program text and
ASTs. Specifically:

– The abstract syntax part (decls for HASKELL data type declarations) is already
valid HASKELL code and is (almost) directly used as the definitions of AST data
types.

– The concrete syntax part (pgs for production groups) is translated to definitions
of CST data types (whose elements are representations of how a string is pro-
duced using the production rules), and also used to generate the pair of concrete
parser (including a lexer) and printer for the conversion between program text and
CSTs. This pair of concrete parser and printer can be shown to form a (partial)
isomorphism (which will be defined in Section 4.1). This part will be explained in
Section 4.2.

– The directives part (drctvs for directives) is used in the lexer for recognising
single-line and multi-line comments.

– The printing actions part (ags for action groups) is translated to a BIGUL program
(which is a lens, see Definition 1) for handling (the semantic part of) parsing
and reflective printing between CSTs and ASTs. This part will be explained in
Section 4.3.

The whole executable is a well-behaved lens since it is the composition of an isomor-
phism and a lens. We will start from a recap of this fact.

4.1 Composition of Isomorphisms and Lenses

First we give the definition of (partial) isomorphisms.



12 Zhu, Ko, Zhang, Martins, Saraiva, and Hu

Definition 3 (Isomorphism) A (partial) isomorphism between two types A and B is
a pair of functions

to :: A→Maybe B

from :: B→Maybe A

such that the inverse properties hold:

to a = Just b ⇔ from b = Just a .

Definition 4 (Composition of Isomorphism and Lenses) Given an isomorphism (to
and from) between A and B and a lens (get and put) between B and C, we can compose
them to form a new lens between A and C, whose components get′ and put′ are defined
by

get′ :: A→Maybe C
get′ a = to a >>= get

put′ :: A→C→Maybe A
put′ a c = to a >>= λb→ put b c >>= from

where
( >>= ) :: Maybe a→ (a→Maybe b)→Maybe b
Just x >>= f = f x
Nothing >>= f = Nothing .

This is specialised from the standard definition of lens composition [17]—an isomor-
phism can be lifted to a lens (with get s = to s and put s v = from v), which can then
be composed with another lens to give rise to a new lens. We thus have the following
lemma.

Lemma 1 Any lens resulted from the composition in Definition 4 is well-behaved.

Therefore the whole BIYACC executable is a well-behaved lens, given that the
concrete parser and printer form an isomorphism (Theorem 1) and the BIGUL program
is a well-behaved lens (Theorem 2), which we will see next.

4.2 The Concrete Parsing and Printing Isomorphism

In this subsection, we describe the generation of CST data types and concrete printers
(Section 4.2.1), the generation of concrete parsers (Section 4.2.2), and finally the
inverse properties satisfied by the concrete parsers and printers (Section 4.2.3).

4.2.1 Generating CST Data Types and Concrete Printers

The production rules in a context-free grammar dictate how to produce strings from
nonterminals, and a CST can be regarded as encoding one particular way of producing
a string using the production rules. In BIYACC, we represent CSTs starting from a
nonterminal nt as an automatically generated HASKELL data type named nt, whose
constructors represent the production rules for nt. For each of these data types, we
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Program ::= ‘#Abstract’ HsDeclarations
[‘#Concrete’ ProductionGroup+]
‘#Directives’ CommentSyntaxDecl Disambiguation
‘#Actions’ ActionGroup+

[‘#OtherFilters’ OtherFilters]

ProductionGroup ::= Nonterminal ‘->’ ProductionBody+{‘|’} ‘;’

ProductionBody ::= [‘[’Constructor‘]’] Symbol+ [‘{#’‘Bracket’‘#}’]

Symbol ::= Primitive | Terminal | Nonterminal

Constructor ::= Nonterminal

CommentSyntaxDecl ::= ‘LineComment:’ String ‘;’ ‘BlockComment:’ String ‘;’

Disambiguation ::= [Priority] [Associativity]

ActionGroup ::= HsType ‘+>’ Nonterminal
Action+ ‘;;’

Action ::= HsPattern ‘+>’ Update+ ‘;’

Update ::= Symbol
| ‘[’ HsVariable ‘+>’ UpdateCondition ‘]’
| ‘(’ Nonterminal ‘->’ Update+ ‘)’

UpdateCondition ::= Symbol
| ‘(’ Nonterminal ‘->’ UpdateCondition+ ‘)’

Fig. 4 Syntax of BIYACC programs. (Nonterminals with prefix Hs denote HASKELL entities and follow the
HASKELL syntax; the notation nt+{sep} denotes a nonempty sequence of the same nonterminal nt separated
by sep. Optional elements are enclosed in a pair of square brackets. The parts relating to disambiguation
and filters will be explained in Section 5.)

also generate a printing function which takes a CST as input and produces a string as
dictated by the production rules in the CST.

For instance, in Figure 2, the group of production rules from the nonterminal
Factor (lines 18–21) is translated to the following HASKELL data type and concrete
printing function:

data Factor = Factor1 String Factor
| Factor2 (String, String)
| Factor3 (String, String)
| Factor4 String Expr String
| FactorNull

cprtFactor :: Factor -> String
cprtFactor (Factor1 s1 factor1) = "-" ++ s1 ++ cprtFactor factor1
cprtFactor (Factor2 (numeric, s1)) = numeric ++ s1
cprtFactor (Factor3 (identifier, s1)) = identifier ++ s1
cprtFactor (Factor4 s1 expr1 s2) = "(" ++ s1 ++ cprtExpr expr1 ++ ")" ++ s2
cprtFactor FactorNull = ""

where Factor1 . . . Factor4 are constructors corresponding to the four production rules,
and FactorNull represents an empty CST of type Factor and is used as the default
value whenever we want to create new program text depending on the view only. As
an example, Factor1 represents the production rule Factor -> '-' Factor, and its String

field stores the whitespaces appearing after a negation sign in the program text. The
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Factor3 case makes a call to cprtExpr :: Expr -> String, which is the printing function
generated for the nonterminal Expr.

Following this idea, we define the translation from production rule groups (pgs in
formula (3)) to datatype definitions by source-to-source compilation rules:

[[pgs]]ProductionGroup =
〈
[[pg]]ProductionGroup

∣∣ pg ∈ pgs
〉

[[nt ‘->’ bodies]]ProductionGroup =
‘data’ nt ‘=’

〈
CON(nt,body)

〈
FIELD(s)

∣∣ s ∈ body
〉

‘|’
∣∣ body ∈ bodies

〉
NULLCON(nt) .

Compilation rules of this kind will also be used later, so we introduce the notation
here: Compilation rules are denoted by semantic brackets ([[·]]), and refer to some
auxiliary functions, whose names are in SMALL CAPS. A nonterminal in subscript
gives the ‘type’ of the argument or metavariable before it. The angle bracket notation〈

f e
∣∣ e ∈ es

〉
denotes the generation of a list of entities of the form f e for each

element e in the list es, in the order of their appearance in es. The auxiliary function
CON(nt,body) retrieves the constructor for a production rule. The fields of a constructor
are generated from the right-hand side of the corresponding production rule in the way
described by the auxiliary function FIELD— nonterminals that are not primitives are
left unchanged (using their names for data types), primitives are stored in the String
type3, terminal symbols are dropped, and an additional String field is added for each
terminal and primitive for storing layout information (whitespaces and comments)
appearing after the terminal or primitive in the program text. The last step is to insert
an additional empty constructor, whose name is denoted by NULLCON(nt).

4.2.2 Generating Concrete Lexers and Parsers

The implementation of the concrete parser, which turns program text into CSTs,
is further divided into two phases: lexing and parsing. In both phases, the layout
information (whitespaces and comments) is automatically preserved, which makes the
CSTs isomorphic to the program text.

Lexer. Apart from handling the terminal symbols appearing in a grammar, the lexer
automatically derived by BIYACC can also recognise several kinds of literals, includ-
ing integers, strings, and identifiers, respectively produced by the nonterminals Numeric,
String, and Identifier. For now, the forms of these literals are predefined, but we take
this as a step towards a lexerless grammar, in which strings produced by nonterminals
can be specified in terms of regular expressions. Furthermore, whitespaces and com-
ments are carefully handled in the derived lexer, so they can be completely stored in
CSTs and correctly recovered to the program text in printing. This feature of BIYACC,
which we explain below, makes layout preservation transparent to the programmer.

An assumption of BIYACC is that whitespaces are only regarded as separators
between other tokens. (Although there exist some languages such as HASKELL

3 The reason for storing primitives in the String type is because String is the most precise representation
that will not cause the loss of any information. For instance, this is useful for retaining the leading zeros of
an integer such as 073. Storing 073 as Integer will cause the loss of the leading zero.



Unifying Parsing and Reflective Printing for Fully Disambiguated Grammars 15

and PYTHON where indentation does affect the meaning of a program, there are
workarounds, e.g. writing a preprocessing program to insert explicit separators.) Usu-
ally, token separators are thrown away in the lexing phase, but since we want to keep
layout information in CSTs, which are built by the parser, the lexer should leave the
separators intact and pass them to the parser. The specific approach taken by BIYACC
is wrapping a lexeme and the whitespaces following it into a single token. Beginning
whitespaces are treated separately from lexing and parsing, and are always preserved.
And in this prototype implementation, comments are also regarded as whitespaces.

Parser. The concrete parser is used to generate a CST from a list of tokens according
to the production rules in the grammar. Our parser is built using the parser generator
HAPPY [33], which takes a BNF specification of a grammar with semantic actions
and produces a HASKELL module containing a parser function. The grammar we feed
into HAPPY is still essentially the one specified in a BIYACC program, but in addition
to parsing and constructing CSTs, the HAPPY actions also transfer the whitespaces
wrapped in tokens to corresponding places in the CSTs. For example, the production
rules for Factor in the expression example, as shown on the left below, are translated
to the HAPPY specification on the right:

Factor
-> '-' Factor
| Numeric
| Identifier
| '(' Expr ')';

 

Factor
: token1 Factor { Factor1 $1 $2 }
| tokenNumeric { Factor2 $1 }
| tokenIdentifier { Factor3 $1 }
| token2 Expr token3 { Factor4 $1 $2 $3 } .

We use the first expansion (token1 Factor) to explain how whitespaces are transferred:
The generated HAPPY token token1 matches a ‘-’ token produced by the lexer, and
extracts the whitespaces wrapped in the ‘-’ token; these whitespaces are bound to $1,
which is placed into the first field of Factor1 by the associated HASKELL action.

4.2.3 Inverse Properties

Now we give the types of the concrete printer and parser generated from a BIYACC
program and show that they form an isomorphism. Let the type CST be the set of all
the CSTs defined by the grammar of a BIYACC program; by default it is the source
type (nonterminal) of the first group of actions in the #Actions part. We have seen in
Section 4.2.1 how to generate its datatype definition and a concrete printing function

cprint :: CST→ String .

On the other hand, from the grammar we directly use a parser generator to generate a
concrete parsing function

cparse :: String→Maybe CST ,

which is Maybe-valued since a piece of input text may be invalid. This cparse function
is one direction of the isomorphism in the executable, while the other direction is

Just◦ cprint :: CST→Maybe String .
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Below we show that the inverse properties amount to the requirements that the gener-
ated parser is ‘correct’ and the grammar is unambiguous.

Since our concrete parsers are generated by the parser generator HAPPY [33], we
need to assume that they satisfy some essential properties, for we cannot control the
generation process and verify those properties.

Definition 5 (Parser Correctness) A parser cparse is correct with respect to a printer
cprint exactly when

cparse text = Just cst ⇒ cprint cst = text (4)
cprint cst = text ⇒ ∃ cst′. cparse text = Just cst′ . (5)

To see what (4) means, recall that our CSTs, as described in Section 4.2.1, encode
precisely the derivation trees, with the CST constructors representing the production
rules used, and cprint traverses the CSTs and follows the encoded production rules
to produce the derived program text. Now consider what cparse is supposed to do: It
should take a piece of program text and find a derivation tree for it, i.e. a CST which
cprints to that piece of program text. This statement is exactly (4). In other words,
(4) is the functional specification of parsing, which is satisfied if the parser generator
we use behaves correctly. Also it is reasonable to expect that a parser will be able to
successfully parse any valid program text, and this is exactly (5).

We also need to make an assumption about concrete printers: recall that in this
section we assume that the grammar is unambiguous, and this amounts to injectivity
of cprint—for any piece of program text there is at most one CST that prints to it.

With these assumptions, we can now establish the isomorphism (which is rather
straightforward).

Theorem 1 (Inverse Properties) If a parser cparse is correct with respect to an
injective printer cprint, then cparse and Just◦ cprint form an isomorphism, that is,

cparse text = Just cst ⇔ (Just◦ cprint) cst = Just text .

Proof The left-to-right direction is immediate since the right-hand side is equivalent
to cprint cst = text, and the whole implication is precisely (4). For the right-to-left
direction, again the antecedent is equivalent to cprint cst = text, and we can invoke (5)
to obtain cparse (text) = Just cst′ for some cst′. This is already close to our goal—
what remains to be shown is that cst′ is exactly cst, which is indeed the case because

cparse text = Just cst′

⇒ {antecedent}
cparse (cprint cst) = Just cst′

⇒ { (4)}
cprint cst′ = cprint cst

⇒ {cprint is injective}
cst′ = cst .

ut
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[[vt ‘+>’ st acts]]ActionGroup =
PROG(vt,st) ‘::’ ‘BiGUL’ st vt
PROG(vt,st) ‘=’
‘Case’ ‘[’

〈
[[a]]N,vt,st

Action ‘,’
∣∣ a ∈ acts

〉 〈
[[a]]A,st

Action

∣∣ a ∈ acts
〉
{‘,’} ‘]’

[[vpat ‘+>’ updates]]N,vt,st
Action =

‘$(normalSV’
‘[p|’ SRCCOND(ERSVARS(‘[’ st ‘->’ updates ‘]’)Update) ‘|]’ ‘[p|’ vpat ‘|]’
‘[p|’ SRCCOND(ERSVARS(‘(’ st ‘->’ updates ‘)’)Update) ‘|])’

‘$(update’ ‘[p|’ REMOVEAS(vpat) ‘|]’
‘[p|’ SRCPAT(‘(’ st ‘->’ updates ‘)’)Update ‘|]’
‘[d|’

〈
[[u]]vt,vpat

Update

∣∣ u ∈ updates
〉

‘|])’

[[‘[’ var ‘+>’ ucPrimitive ‘]’]]vt,vpat
Update = var ‘= Replace;’

[[‘[’ var ‘+>’ ucNonterminal ‘]’]]vt,vpat
Update = var ‘=’ PROG(VARTYPE(vt,vpat,var),uc) ‘;’

[[‘[’ var ‘+>’ ‘(’ nt ‘->’ . . . ‘)’ ‘]’]]vt,vpat
Update = [[‘[’ var ‘+>’ nt ‘]’]]vt,vpat

Update
[[‘(’ . . . ‘->’ updates ‘)’]]vt,vpat

Update =
〈
[[u]]vt,vpat

Update ‘;’
∣∣ u ∈ updates

〉
[[symbol]]vt,vpat

Update = ‘’

[[vpat ‘+>’ updates]]A,st
Action = ‘$(adaptiveSV’ ‘[p| _ |]’ ‘[p|’ vpat ‘|])’

‘(\_ _ ->’ DEFAULTEXPR(ERSVARS(‘(’ st ‘->’ updates ‘)’))

FIELD(nt)Nonterminal = nt
FIELD(t)Terminal = ‘String’
FIELD(p)Primitive = ‘(’ p ‘, String)’

ERSVARS(‘[’ var ‘+>’ uc ‘]’)Update = uc
ERSVARS(‘(’ nt ‘->’ updates ‘)’)Update = ‘(’ nt ‘->’

〈
ERSVARS(u)

∣∣ u ∈ updates
〉

‘)’
ERSVARS(symbol)Update = symbol

SRCCOND(‘(’ nt ‘->’ uconds ‘)’)UpdateCondition = ‘(’ CON(nt,
〈

CONDHEAD(uc)
∣∣ uc ∈ uconds

〉
)〈

SRCCOND(uc)
∣∣ uc ∈ uconds

〉
‘)’

SRCCOND(symbol)UpdateCondition = ‘_’

CONDHEAD(‘(’ nt ‘->’ . . . ‘)’)UpdateCondition = nt
CONDHEAD(symbol)UpdateCondition = symbol

SRCPAT(‘[’ var ‘+>’ ucPrimitive ‘]’)Update = ‘(’ var ‘, _)’
SRCPAT(‘[’ var ‘+>’ ucNonterminal ‘]’)Update = var
SRCPAT(‘(’ nt ‘->’ updates ‘)’)Update = ‘(’ CON(nt,

〈
CONDHEAD(uc)

∣∣ uc ∈ ERSVARS(updates)
〉
)〈

SRCPAT(u)
∣∣ u ∈ updates

〉
‘)’

SRCPAT(symbol)Symbol = ‘_’

DEFAULTEXPR(symbol)Primitive = ‘(undefined, " ")’
DEFAULTEXPR(symbol)Nonterminal = NULLCON(symbol)
DEFAULTEXPR(symbol)Terminal = ‘" "’
DEFAULTEXPR(‘(’ nt ‘->’ uconds ‘)’)UpdateCondition = CON(nt,

〈
CONDHEAD(uc)

∣∣ uc ∈ uconds
〉
)〈

DEFAULTEXPR(uc)
∣∣ uc ∈ uconds

〉
Fig. 5 Semantics of BIYACC programs (as BIGUL programs).

4.3 Generating the BIGUL Lens

The source-to-source compilation from the actions part of a BIYACC program to a
BIGUL program (i.e. lens) is shown in Figure 5. Additional arguments to the semantic
bracket are typeset in superscript, and the notation

〈
. . .

∣∣ . . .∈ . . .〉{s}means inserting s
between the elements of the list.
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Action Groups. Each group of actions is translated into a small BIGUL program,
whose name is determined by the view type vt and source type st and denoted by
PROG(vt,st). The BIGUL program has one single Case statement, and each action is
translated into two branches in this Case statement, one normal and the other adaptive.
All the adaptive branches are gathered in the second half of the Case statement, so
that the normal branches will be tried first. For example, the third group of type
Arith +> Factor is compiled to

bigulArithFactor :: BiGUL Factor Arith
bigulArithFactor =

Case [ . . . -- normal branches
. . . -- adaptive branches

] .

Normal Branches. We said in Section 2 that the semantics of an action is to perform
pattern matching on both the source and view, and then update parts of the source with
parts of the view. This semantics is implemented with a normal branch: The source
and view patterns are compiled to the main condition, and, together with the updates
overlaid on the source pattern, also to an update operation. For example, the first action
in the Arith–Factor group

Sub (Num 0) y +> '-' (y +> Factor)

is compiled to

$(normalSV [p| (Factor1 _ _) |] [p| Sub (Num 0) y |] [p| (Factor1 _ _) |])
$(update [p| Sub (Num 0) y |] [p| (Factor1 _ y) |] [d| y = bigulArithFactor; |]) .

When the CST is a Factor1 and the AST matches Sub (Num 0) y, we enter this branch,
decompose the source and view by pattern matching, and use the view’s right sub-
tree y to update the second field of the source while skipping the first field (which
stores whitespaces); the name of the BIGUL program for performing the update is
determined by the type of the smaller source y (deduced by VARTYPE) and that of the
smaller view.

Adaptive Branches. When all actions in a group fail to match, we should adapt the
source into a proper shape to correspond to the view. This is done by generating
adaptive branches from the actions during compilation. For example, besides a normal
branch, the first action in the Arith–Factor group Sub (Num 0) y +> '-' (y +> Factor) is
also compiled to

$(adaptiveSV [p| _ |] [p| Sub (Num 0) _ |]) (\ _ _ -> Factor1 " " FactorNull) .

Since the source pattern of the main condition (of the adaptive branch) is a wildcard,
the branch is always applicable if the view matches Sub (Num 0) _ . The body of the
adaptation function is generated by the auxiliary function DEFAULTEXPR, which creates
a skeletal value—here Factor1 " " FactorNull represents a negation skeleton - whose
value is not (resursively) created yet—that matches the source pattern. These adaptive
branches are placed at the end of an action group and tried only if no normal branches
are applicable so that unnecessary adaptation will never be performed.
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Entry Point. The entry point of the program is chosen to be the BIGUL program
compiled from the first group of actions. This corresponds to our assumption that the
initial input concrete and abstract syntax trees are of the types specified for the first
action group. (It is rather simple so the rules are not shown in the figure.) For the
expression example, we generate a definition

entrance = bigulArithExpr

which is invoked in the main program.

Well-behavedness. Since BIGUL programs always denote well-behaved lenses, a fact
which has been formally verified [39], we get the following theorem for free.

Theorem 2 (Well-behavedness) The BIGUL program generated from a BIYACC
program is a lens; that is, it satisfies the well-behavedness laws in Definition 1 with
cst substituted for the source s and ast for the view v:

put cst ast = Just cst′ ⇒ get cst′ = Just ast

get cst = Just ast ⇒ put cst ast = Just cst .

5 Handling Grammatical Ambiguity

In Section 4, we have described the basic version of BIYACC, about which there is an
important assumption (stated in Theorem 1) that grammars have to be unambiguous.
Having this assumption can be rather inconvenient in practice, however, as ambiguous
grammars (with disambiguation directives) are often preferred since they are con-
sidered more natural and human-friendly than their unambiguous versions [2, 26].
Therefore the purpose of this section is to revise the architecture of basic BIYACC to
allow the use of ambiguous grammars and disambiguation directives. This is in fact a
long-standing problem: tools designed for building parser and printer pairs usually do
not support such functionality (Section 7.1).

For example, consider the ambiguous grammar (with disambiguation directives)
and printing actions in Figure 6, which we will refer to throughout this section. Note
that the parenthesis structure is dropped when converting a CST to its AST (as stated by
the last printing action of Arith +> Expr). The grammar is converted to CST data types
and constructors as in Section 4.2.1, but here we explicitly give names such as Plus and
Times to production rules, and these names (instead of automatically generated ones)
are used for constructors in CSTs. Compared with this grammar, the unambiguous
one shown in Figure 2 is less intuitive as it uses different nonterminals to resolve the
ambiguity regarding operator precedence and associativity.

In this section, we explain the problem brought by ambiguous grammars (Sec-
tion 5.1) and address it (Section 5.2) using generalised parsing and bidirectionalised
filters (bi-filters for short). Then we extend BIYACC with bi-filters (Section 5.3) while
still retaining the well-behavedness. To program with bi-filters easily, we provide
compositional bi-filter directives (Section 5.4) which compile to priority and associa-
tivity bi-filters. Power users can also define their own bi-filters (Section 5.5), and we
illustrate this by writing a bi-filter that solves the (in)famous dangling-else problem.
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#Concrete
Expr -> [Plus] Expr '+' Expr

| [Minus] Expr '-' Expr
| [Times] Expr '*' Expr
| [Division] Expr '/' Expr
| [Paren] '(' Expr ')'
| [Lit] Numeric
;

#Directives
Priority:
Times > Plus ;
Times > Minus ;
Division > Plus ;
Division > Minus ;

Associativity:
Left: Plus, Minus, Times, Division ;

#Actions
Arith +> Expr

Add x y +> [x +> Expr] '+' [y +> Expr] ;
Sub x y +> [x +> Expr] '-' [y +> Expr] ;
Mul x y +> [x +> Expr] '*' [y +> Expr] ;
Div x y +> [x +> Expr] '/' [y +> Expr] ;
Num i +> [i +> Numeric] ;
e +> '(' [e +> Expr] ')' ;

;;

Fig. 6 Arithmetic expressions defined by an ambiguous grammar and the corresponding printing actions.
(For simplicity, the variable and negation productions are omitted.)

5.1 Problems with Ambiguous Grammars

Consider the original architecture of BIYACC in Figure 3, which we want to (and
basically will) retain while adapting it to support ambiguous grammars. The first
component (of the executable) we should adapt is cparse :: String→Maybe CST, the
(concrete) parsing direction of the isomorphism: since there can be multiple CSTs
corresponding to the same program text, cparse needs to choose one of them as the
result. Disambiguation directives [23] were invented to describe how to make this
choice. For example, with respect to the grammar in Figure 6, text 1 + 2 * 3 will have
either of the two CSTs4:

cst1 =
]Plus 1 (Times 2 3)

cst2 =
]Times (Plus 1 2) 3

depending on the precedence of addition and multiplication. Conventionally, we can
use the YACC-style disambiguation directives %left '+'; %left '*'; to specify that
multiplication has higher precedence over addition, and instruct the parser to choose
cst1.

However, merely adapting cparse with disambiguation behaviour is not enough,
since the isomorphism (Theorem 1), in particular its right to left direction (which is
simplified as cparse (cprint cst) = Just cst), cannot be established when an ambiguous
grammar is used—in the example above, cparse (cprint cst2) = Just cst1 6= Just cst2.
This is because the image of cparse is strictly smaller than the domain of cprint: if we
start from any CST not in the image of cparse, we will never be able to get back to the
same CST through cprint and then cparse. This tells us that, to retain the isomorphism,
the domain of cprint should not be the whole CST but only the image of cparse,

4 For simplicity, we use ] to annotate type-incorrect CSTs in which fields for layouts (and comments)
and unimportant constructors such as Lit are omitted.
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i.e. the set of valid CSTs (as defined by the disambiguation directives), which we
denote by CSTF (for reasons that will be made clear in Section 5.3).

Now that the right-hand side domain of the isomorphism is restricted to CSTF , the
source of the lens should be restricted to this set as well. For get :: CST→Maybe AST
we need to restrict its domain, which is easy; for put :: CST→ AST→Maybe CST
we should revise its type to CSTF → AST→Maybe CSTF , meaning that put should
now guarantee that the CSTs it produces are valid, which is nontrivial. For example,
consider the result of put cst ast where ast = Mul (Add (Num 1) (Num 2)) (Num 3) and
cst is some arbitrary tree. A natural choice is cst2, which, however, is excluded from
CSTF by disambiguation. A possible solution could be making put refuse to produce
a result from ast, but this is unsatisfactory since ast is perfectly valid and should not
be ignored by put. A more satisfactory way is creating a CST with proper parentheses,
like cst3 =

]Times (Paren (Plus 1 2)) 3. But it is not clear in what cases parentheses
need to be added, in what cases they need not, and in what cases they cannot.

We are now led to a fundamental problem: generally, put strategies for producing
valid CSTs should be inferred from the disambiguation directives, but the semantics
of YACC disambiguation directives are defined over the implementation of YACC’s
underlying LR parsing algorithm with a stack [3, 23], and therefore it is nontrivial
to invent a dual semantics in the put direction. To have a simple and clear semantics
of the disambiguation process, we turn away from YACC’s traditional approach and
opt for an alternative approach based on generalised parsing with disambiguation
filters [9, 26], whose semantics can be specified implementation-independently. Based
on this simple and clear semantics, we will be able to devise ways to amend put to
produce only valid CSTs, and formally state the conditions under which the executable
generated by the revised BIYACC is well-behaved.

5.2 Generalised Parsing and Bidirectionalised Filters

The idea of generalised parsing is for a parser to produce all possible CSTs cor-
responding to its input program text instead of choosing only one CST (possibly
prematurely) [14, 47, 50, 54], and works naturally with ambiguous grammars. In
practice, a generalised parser can be generated using, e.g., HAPPY’s GLR mode [33],
and we will assume that given a grammar we can obtain a generalised parser:

cgparse :: String→ [CST] .

The result of cgparse is a list of CSTs. We do not need to wrap the result type in
Maybe—if cgparse fails, an empty list is returned. And we should note that, while
the result is a list, what we really mean is a set (commonly represented as a list in
HASKELL) since we do not care about the order of the output CSTs and do not allow
duplicates.

With generalised parsing, program text is first parsed to all the possible CSTs;
disambiguation then becomes an extremely simple concept: removing CSTs that the
user does not want. One possible semantics of disambiguation may be a function
judge :: Tree→ Bool; during disambiguation, this function is applied to all candidate
CSTs, and a candidate cst is removed if judge cst returns False, or kept otherwise. We
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call these functions disambiguation filters (‘filters’ for short).5 For example, to state
that top-level addition is left-associative, we can use the following filter6 to reject
right-sided trees:

plusJudge :: Expr -> Bool

plusJudge (]Plus _ (Plus _ _)) = False
plusJudge _ = True .

This simple and clean semantics of disambiguation is then amenable to ‘bidirectionali-
sation’, which we do next.

Note that, unlike YACC’s disambiguation directives, which assign precedence and
associativity to individual tokens and implicitly exclude ‘some’ CSTs, in plusJudge

above we explicitly ban incorrect CSTs through pattern matching. Having described
which CSTs are incorrect, we can further specify what to do with incorrect CSTs in
the printing direction. Whenever a CST ‘in a bad shape’, i.e. rejected by a filter like
plusJudge, is produced, we can repair it so that it becomes ‘in a good shape’:

plusRepair :: Expr -> Expr

plusRepair (]Plus t1 (Plus t2 t3)) = ]Plus t1 (Paren (Plus t2 t3))
plusRepair t = t .

The above function states that whenever a Plus is another Plus’s right child, there
must be a parenthesis structure Paren in between. Observant readers might have found
that the trees processed by plusJudge and plusRepair have the same pattern. We can
therefore pair the two functions and make a bidirectionalised filter (‘bi-filters’ for
short):

plusLAssoc :: Expr -> (Expr, Bool)

plusLAssoc (]Plus t1 (Plus t2 t3)) = (]Plus t1 (Paren (Plus t2 t3)), False)
plusLAssoc t = (t, True) .

But there is still some redundancy in the definition of plusLAssoc, for when the input
tree is correct we always return the same input tree; this can be further optimised:

plusLAssoc' :: Expr -> Maybe Expr

plusLAssoc' (]Plus t1 (Plus t2 t3)) = Just (]Plus t1 (Paren (Plus t2 t3)))
plusLAssoc' _ = Nothing .

Generalising the example above, we arrive at the definition of bi-filters.

Definition 6 (Bidirectionalised Filters) A bidirectionalised filter F working on trees
of type t is a function of type BiFilter t defined by

type BiFilter t = t→Maybe t

satisfying
repair F t = t ′ ⇒ judge F t ′ = True (RepairJudge)

5 The general type for disambiguation filters is [t]→ [t], which allows comparison among a list of CSTs.
However, since in this paper we only consider property filters defined in terms of predicates (on a single
tree), it is sufficient to use the simplified type t→ Bool. See Section 7.2.

6 This is not a very realistic filter, although it sufficiently demonstrates the use of filters and removes
ambiguity in simplest cases like 1 + 2 * 3. In general, the filter should be complete (Definition 9) so that
ambiguity is fully removed from the grammar.
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where the two directions repair and judge are defined by

repair :: BiFilter t→ (t→ t)
repair F t = case F t of

Nothing→ t
Just t ′ → t ′

judge :: BiFilter t→ (t→ Bool)

judge F t = case F t of
Nothing→ True
Just _ → False .

The functions repair and judge accept a bi-filter and return respectively the specialised
repair and judge functions for that bi-filter. For clarity, we let repairF denote repair F
and let judgeF denote judge F . The bi-filter law RepairJudge dictates that repairF
should transform its input tree into a state accepted by judgeF . The reader may wonder
why there is not a dual JudgeRepair law saying that if a tree is already of an allowed
form justified by judgeF , then repairF should leave it unchanged. In fact this is always
satisfied according to the definitions of judge and repair, so we formulate it as a
lemma.

Lemma 2 (JudgeRepair) Any bi-filter F satisfies the JudgeRepair property:

judgeF t = True ⇒ repairF t = t .

Proof From judgeF t = True we deduce F t = Nothing, which implies repairF t = t.
ut

In the next section, we will describe how to fit generalised parsers and bi-filters
into the architecture of BIYACC. To let bi-filters work with the lens between CSTs
and ASTs, we require a further property characterising the interaction between the
repairing direction of a bi-filter and the get direction of a lens.

Definition 7 (PassThrough) A bi-filter F satisfies the PassThrough property with
respect to a function get exactly when

get ◦ repairF = get .

If we think of a get function as mapping CSTs to their semantics (in our case ASTs),
then the PassThrough property is a reasonable requirement since it guarantees that
the repaired CST will have the same semantics as before (since it is converted to the
same AST). This property will be essential for establishing the well-behavedness of
the executable generated by the revised BIYACC.

5.3 The New BIYACC System for Ambiguous Grammars

As depicted in Figure 7, the executable generated by the new BIYACC system is still
the composition of an isomorphism and a lens, which is the structure we have tried
to retain. To precisely identify the changes in several generated components (in the
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Fig. 7 New architecture of BIYACC. (New components are in light grey.)

Fig. 8 A schematic diagram showing how parsing and printing work with a bi-filter.

executable file) and demonstrate how parsing and printing work with a bi-filter, we
present Figure 8 and will use this one instead. In the new system, we will still use the
get and put transformations generated from printing actions and the concrete printer
cprint from grammars, while the concrete parser cparse is replaced with a generalised
parser cgparse. Additionally, the #Directives and #OtherFilters parts will be used to
generate a bi-filter F , whose judgeF (used in the selectByF function in Figure 8) and
repairF components are integrated into the isomorphism and lens parts respectively, so
that the right-hand side domain of the isomorphism and the source of the lens become
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CSTF , the set of valid CSTs:

CSTF = {cst ∈ CST | judgeF cst = True} .

Next, we introduce the (new) isomorphism and lens parts, and prove their inverse
properties and well-behavedness respectively.

5.3.1 The Revised Isomorphism between Program Text and CSTs

Let us first consider the isomorphism part between String and CSTF , which is enclosed
within the blue dotted lines in Figure 8 and consists of cprint, cgparse, and selectByF :

cprint :: CST→ String

cgparse :: String→ [CST]

selectByF :: [CST]→Maybe CSTF
selectByF csts = case selectBy judgeF csts of

[cst] → Just cst
_ → Nothing

selectBy :: (a→ Bool)→ [a]→ [a]
selectBy p [ ] = [ ]
selectBy p (x : xs) | p x = x : selectBy p xs
selectBy p (x : xs) | otherwise = selectBy p xs .

In the parsing direction, first cgparse produces all the CSTs; then selectByF utilises a
function selectBy and a predicate judgeF to (try to) select the only correct cst; if there
is no correct CST or more than one correct CST, Nothing is returned. The function
selectBy, which selects from the input list exactly the elements satisfying the given
predicate, is named filter in HASKELL’s standard libraries but renamed here to avoid
confusion. In the printing direction, we still use cprint to flatten a (correct) CST back
to program text. Formally, constructed from cgparse and cprint, the two directions of
the isomorphism are

cparseF :: String→Maybe CSTF
cparseF = selectByF ◦ cgparse

cprintF :: CSTF →Maybe String
cprintF = Just◦ cprint .

We are eager to give the revised version of the inverse properties (Theorem 3) and
their proofs, which, however, depend on two assumptions about generalised parsers
and bi-filters. So let us present them in order.

Definition 8 (Generalised Parser Correctness) A generalised parser cgparse is cor-
rect with respect to a printer cprint exactly when

cgparse text = {cst ∈ CST | cprint cst = text} .

This is exactly Definition 3.7 of Klint and Visser [26]. We remind the reader again that
we use sets and lists interchangeably for the parsing results.
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Definition 9 (Bi-Filter Completeness) A bi-filter F is complete with respect to a
printer cprint exactly when

text ∈ Img cprint ⇒
∣∣{cst ∈ CSTF | cprint cst = text}

∣∣= 1 .

(Img f = {y | ∃x. f x = y} is the image of the function f .)

This is revised from Definition 4.3 of Klint and Visser [26], where they require that
filters select exactly one CST and reject all the others. Since it is undecidable to judge
whether a given context-free grammar is ambiguous [10], we cannot tell whether a (bi-
)filter (for the full CFG) is complete, either. But still, some checks can be performed
in simple cases, as stated in Section 7.

The following two lemmas connect our two assumptions, Definitions 8 and 9, with
the definitions of cparseF and cprintF .

Lemma 3 Given cparseF and cprintF where cgparse is correct and F is complete
with respect to cprint, we have

text ∈ Img cprint ⇒ ∃cst ∈ CSTF . cparseF text = Just cst ∧ cprint cst = text .

Proof We reason:

selectByF (cgparse text)

= { Definition of SelectByF}
case selectBy judgeF (cgparse text) of { [cst]→ Just cst;_→ Nothing}

= { Generalised Parser Correctness }
case selectBy judgeF {cst ∈ CST | cprint cst = text} of

{ [cst]→ Just cst; _→ Nothing}
= { selectBy judgeF only selects correct CSTs regarding F }

case {cst ∈ CSTF | cprint cst = text} of { [cst]→ Just cst; _→ Nothing}
= { Bi-Filter Completeness, ∃cst′ s.t. {cst ∈ CSTF | cprint cst = text}= [cst′] }

case [cst′] of { [cst]→ Just cst; _→ Nothing}
= { Definition of case }
Just cst .

Moreover, cst satisfies cprint cst = text, since the latter is the comprehension condition
of the set from which cst is chosen, and therefore cprintF cst = Just text. ut

Lemma 4 (Printer Injectivity) If F is a complete bi-filter, then cprintF is injective.

Proof Assume that cst,cst′ ∈ CSTF and cprint cst = cprint cst′ = text for some text;
that is, both cst and cst′ are in the set P = {cst ∈ CSTF | cprint cst = text}. Since
text ∈ Img cprint, by the completeness of F we have |P|= 1, and hence cst = cst′. ut

We can now prove a generalised version of Theorem 1 for ambiguous grammars.

Theorem 3 (Inverse Properties with Bi-Filters) Given cparseF and cprintF where
cgparse is correct and F is complete, we have the following:

cparseF text = Just cst ⇒ cprintF cst = Just text (6)
cprintF cst = Just text ⇒ cparseF text = Just cst . (7)
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Proof For (6): Let Just cst = selectByF (cgparse text). According to the definition of
selectByF , we have cst ∈ cgparse text. By Generalised Parser Correctness cprint cst =
text, and therefore cprintF cst = Just text.

For (7): The antecedent implies cprint cst= text. By Lemma 3, we have cparseF text
= Just cst′ for some cst′ ∈ CSTF such that cprintF cst′ = Just text = cprintF cst. By
Lemma 4 we know cst′ = cst, and thus cparseF text = Just cst. ut

5.3.2 The Revised Lens between CSTs and ASTs

Recall that the #Action part of a BIYACC program produces a lens (BIGUL program)
consisting of a pair of well-behaved get and put functions:

get :: CST→Maybe AST

put :: CST→ AST→Maybe CST .

To work with a bi-filter F , in particular its repairF component, they need to be adapted
to getF and putF , which accept only valid CSTs:

getF :: CSTF →Maybe AST
getF = get

putF :: CSTF → AST→Maybe CSTF
putF cst ast = fmap repairF (put cst ast)

where fmap is a standard HASKELL library function defined (for Maybe) by

fmap :: (a→ b)→Maybe a→Maybe b
fmap f Nothing = Nothing
fmap f (Just x) = Just ( f x) .

We will need a lemma about fmap, which can be straightforwardly proved by a case
analysis.

Lemma 5 If fmap f mx = Just y, then there exists x such that mx = Just x and f x = y.

Now we prove that getF and putF are well-behaved, which is a generalisation of
Theorem 2 for ambiguous grammars.

Theorem 4 (Well-behavedness with Bi-Filters) Given a complete bi-filter F and
a well-behaved lens consisting of get and put, if get and F additionally satisfy
PassThrough, then the getF and putF functions with respect to F are also well-behaved:

putF cst ast = Just cst′ ⇒ getF cst′ = Just ast (8)
getF cst = Just ast ⇒ putF cst ast = Just cst . (9)

Proof For (8): The antecedent expands to fmap repairF (put cst ast) = Just cst′,
which, by Lemma 5, implies put cst ast= Just cst′′ for some cst′′ such that repairF cst′′
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= cst′. Now we reason:

getF cst′

= { Definition of getF and cst ∈ CSTF }
get cst′

= { Definition of cst′ }
get (repairF cst′′)

= { PassThrough }
get cst′′

= { PutGet }
Just ast .

For (9):

putF cst ast

= { Definition of putF }
fmap repairF (put cst ast)

= { GetPut }
fmap repairF (Just cst)

= { Definition of fmap }
Just (repairF cst)

= { Since cst ∈ CSTF , judgeF cst = True. By JudgeRepair }
Just cst .

ut

5.4 Bi-Filter Directives

Until now, we have only considered working with a single bi-filter, but this is with-
out loss of generality because we can provide a bi-filter composition operator (Sec-
tion 5.4.1) so that we can build large bi-filters from small ones. This is a suitable
semantic foundation for introducing YACC-like directives for specifying priority and
associativity into BIYACC (Section 5.4.2), since we can give these directives a bi-filter
semantics and interpret a collection of directives as the composition of their corre-
sponding bi-filters. We will also discuss some properties related to this composition
(Section 5.4.3).

5.4.1 Bi-Filter Composition

We start by defining bi-filter composition, with the intention of making the net effect
of applying a sequence of bi-filters one by one the same as applying their composite.
Although the intention is better captured by Lemma 6, which describes the repair and
judge behaviour of a composite bi-filter in terms of the component bi-filters, we give
the definition of bi-filter composition first.
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Definition 10 (Bi-Filter Composition) The composition of two bi-filters is defined
by

(/) :: (t→Maybe t) → (t→Maybe t) → (t→Maybe t)
( j / i) t = case i t of

Nothing→ j t
Just t ′ → case j t ′ of
Nothing→ Just t ′

Just t ′′ → Just t ′′ .

When applying a composite bi-filter j / i to a tree t, if t is correct with respect to i
(i.e. i t = Nothing), we directly pass the original tree t to j; otherwise t is repaired
by i, yielding t ′, and we continue to use j to repair t ′. Note that if j t ′ = Nothing, we
return the tree t ′ instead of Nothing.

Lemma 6 For a composite bi-filter j / i, the following two equations hold:

repair ( j / i) t = (repair j ◦ repairi) t

judge ( j / i) t = judge j t ∧ judgei t .

Proof By the definition of bi-filter composition. ut

Composition of bi-filters should still be a bi-filter and satisfy RepairJudge and
PassThrough. This is not always the case though—to achieve this, we need some
additional constraint on the component bi-filters, as formulated below.

Definition 11 Let i and j be bi-filters. We say that j respects i exactly when

judgei t = True ⇒ judgei (repair j t) = True .

If j respects i, then a later applied repair j will never break what may already be
repaired by a previous repairi. Thus in this case we can safely compose j after i. This
is proved as the following theorem.

Theorem 5 Let i and j be bi-filters (satisfying RepairJudge and PassThrough). If
j respects i, then j / i also satisfy RepairJudge and PassThrough.

Proof For RepairJudge, we reason:

judge ( j / i) (repair ( j / i) t)

= { Lemma 6 }
judge ( j / i) (repair j (repairi t))

= { Lemma 6 }
judge j (repair j (repairi t)) ∧ judgei (repair j (repairi t))

= { RepairJudge of j }
True ∧ judgei (repair j (repairi t))

= { judgei (repairi t ′) = True; j respects i}
True ∧ True

= True .



30 Zhu, Ko, Zhang, Martins, Saraiva, and Hu

And for PassThrough:

get (repair ( j / i) t)

= { Lemma 6 }
get (repair j(repairi t))

= { PassThrough of j }
get (repairi t)

= { PassThrough of i }
get t .

ut

5.4.2 Priority and Associativity Directives

To relieve the burden of writing bi-filters manually and guaranteeing respect among bi-
filters being composed, we provide some directives for constructing bi-filters dealing
with priority7 and associativity, which are generally comparable to YACC’s conven-
tional disambiguation directives. The bi-filter directives in a BIYACC program can be
thought of as specifying ‘production priority tables’, analogous to the operator prece-
dence tables of, for example, the C programming language [24] (chapter Expressions)
and HASKELL [34] (page 51). The main differences (in terms of the parsing direction)
are as follows:

– For bi-filters, priority can be assigned independently of associativity and vice
versa, while the YACC-style approach does not permit so—by design, when the
YACC directives (%left, %right, and %nonassoc) are used on multiple tokens, they
necessarily specify both the precedence and associativity of those tokens.

– For bi-filters, priority and associativity directives may be used to specify more
than one production priority tables, making it possible to put unrelated operators
in different tables and avoid (unnecessarily) specifying the relationship between
them. It is impossible to do so with the YACC-style approach, for its concise syntax
only allows a single operator precedence table.

(The bi-filter semantics of) our bi-filter directives repair CSTs violating priority
and associativity constraints by adding parentheses—for example, if the production of
addition expressions in Figure 6 is left-associative, then we can repair ]Plus 1 (Plus 2

3) by adding parentheses around the right subtree, yielding ]Plus 1 (Paren (Plus 2 3)),
provided that the grammar has a production of parentheses annotated with the bracket
attribute [8, 53]:

Expr -> ...
| [Paren] '(' Expr ')' {# Bracket #} .

It instructs our bi-filter directives to use this production when parentheses need to be
added. Internally, from the production and bracket attribute annotation, a type class
AddParen and corresponding instances for each data type generated from concrete
syntax (Expr for this example) are automatically created:

7 The YACC-style approach adopts the word precedence [23] while the filter-based approaches tend to
use the word priority [9, 26]. We follow the traditions and use either word depending on the context.
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class AddParen t where
canAddPar :: t -> Bool
addPar :: t -> t

where canAddPar tells whether a CST can be wrapped in a parenthesis structure and
addPar adds that structure if it is possible or behaves as an identity function otherwise.
This makes it possible to automatically generate bi-filters to repair incorrect CSTs
(and help the user to define their own bi-filters more easily—see Section 5.5).

In order for bi-filter directives to work correctly, the user should notice the follow-
ing requirements: (i) Directives shall not mention the parenthesis production annotated
with bracket attribute so that they respect each other and work properly (as introduced
in Definition 11). (ii) Suppose that the parenthesis production is NT→ αNTRβ where
α and β denote a sequence of terminals and NTR is a possibly different nonterminal
from NT (on the right-hand side of the production)—for instance, Expr -> '(' Expr ')'

above— there shall be exactly one printing action defined for the parenthesis produc-
tion in the form of v +> α[v +> NTR]β for the PassThrough property to hold: for any
CST, the (added) parenthesis structure will all be dropped through the conversion to
its AST.

Next we introduce our priority and associativity directives and their bi-filter seman-
tics. From a directive, we first generate a bi-filter that checks and repairs only the top
of a tree; this bi-filter is then lifted to check and repair all the subtrees in a tree. In the
following we will give the semantics of the directives in terms of the generation of the
top-level bi-filters, and then discuss the lifted bi-filters and other important properties
they satisfy in Section 5.4.3.

Priority Directives

A priority directive defines relative priority between two productions; it removes (in
the parsing direction) or repairs (in the printing direction) CSTs in which a node of
lower priority is a direct child of the node of higher priority. For instance, we can
define that (the production of) multiplication has higher priority than (the production
of) addition for the grammar in Figure 6 by writing

Expr -> Expr '*' Expr > Expr -> Expr '+' Expr ; or just Times > Plus ; .

The directive first produces the following top-level bi-filter:8

fTimesPlusPrio (Times t1 t2 t3) =
case or [match t1 p, match t2 p, match t3 p, False] of

False -> Nothing
True -> Just (Times (if match t1 p then addPar t1 else t1)

(if match t2 p then addPar t2 else t2)
(if match t3 p then addPar t3 else t3))

where p = Plus undefined undefined undefined .

8 Although terminals such as '*' and '+' are uniquely determined by constructors and not explicitly
included in the CSTs, there are fields in CSTs for holding whitespaces after them. Thus Times still has
three subtrees. Also, for simplicity, the bi-filter fTimesPlusPrio attempts to repair the whitespace subtree
t2 even though the repair can never happen since t2 cannot match p.
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We first check whether any of the subtrees t1, t2, and t3 violates the priority constraint,
i.e. having Plus as its top-level constructor—this is checked by the match function,
which compares the top-level constructors of its two arguments. The resulting boolean
values are aggregated using the list version of logical disjunction or :: [Bool]→ Bool.
If there is any incorrect part, we repair it by inserting a parenthesis structure using
addPar.

In general, the syntax of priority directives is

Priority ::= ‘Priority:’ PDirective+

PDirective ::= ProdOrCons ‘>’ ProdOrCons ‘;’
| ProdOrCons ‘<’ ProdOrCons ‘;’

ProdOrCons ::= Prod | Constructor
Prod ::= Nonterminal ‘->’ Symbol+

where Constructor and Symbol are already defined in Figure 4; for each priority
declaration, we can use either productions or their names (i.e. constructors).

If the user declares that a production NT1→ RHS1 has higher priority than another
production NT2→ RHS2, the following priority bi-filter will be generated:

TOPRIOFILTER[[(RHS1,NT1,RHS2,NT2)]] =
‘f’conRHS1 conRHS2‘Prio’ ‘(’conRHS1 FILLVARS(RHS1)‘) =’

‘case or [’
〈
‘match’ t ‘p,’

∣∣ t ∈ FILLVARS(RHS1)
〉
‘False’‘] of’

‘False -> Nothing’
‘True -> Just (’ conRHS1

〈
REPAIR(t)

∣∣ t ∈ FILLVARS(RHS1)
〉
‘)’

‘where p = ’ CON(NT2,RHS2) FILLUNDEFINED(RHS2)

‘f’conRHS1 conRHS2‘Prio’ ‘_’ ‘=’ ‘Nothing’
REPAIR(t) = ‘(if match’ t ‘p’ ‘then addPar’ t ‘else’ t‘)’
conRHS1 = CON(NT1,RHS1)

conRHS2 = CON(NT2,RHS2) .

CON looks up constructor names for input productions (divided into nonterminals
and right-hand sides); FILLVARS(nt) generates variable names for each terminal and
nonterminal in nt (here RHS1); FILLUNDEFINED is similar to FILLVARS but it produces
undefined values instead. If productions are referred to using their constructors, we
can simply look up the nonterminals and right-hand sides and use the same code
generation strategy.

Transitive Closures. In the same way as conventional YACC-style approaches, the
priority directives are considered transitive. For instance,

Expr -> Expr '*' Expr > Expr -> Expr '+' Expr ;
Expr -> Expr '+' Expr > Expr -> Expr '&' Expr ;

implies that Expr -> Expr '*' Expr > Expr -> Expr '&' Expr ;. The feature is impor-
tant in practice since it greatly reduces the amount of routine code the user needs to
write (for large grammars).
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Associativity Directives

Associativity directives assign (left- or right-) associativity to productions. A left-
associativity directive bans (or repairs, in the printing direction) CSTs having the
pattern in which a parent and its right-most subtree are both left-associative, if the
(relative) priority between the parent and the subtree is not defined; a right-associativity
directive works symmetrically.

As an example, we can declare that both addition and subtraction are left-associative
(for the grammar in Figure 6) by writing

Left: Expr -> Expr '+' Expr, Expr -> Expr '-' Expr;

or just Left: Plus, Minus;. Since the relative priority between Plus and Minus is not
defined, we generate top-level bi-filters for all the four possible pairs formed out of
Plus and Minus:

fPlusPlusLAssoc (Plus t1 t2 t3) =
if match t3 p then Just (Plus t1 t2 (addPar t3)) else Nothing
where p = Plus undefined undefined undefined

fPlusPlusLAssoc _ = Nothing

fMinusMinusLAssoc (Minus t1 t2 t3) =
if match t3 p then Just (Minus t1 t2 (addPar t3)) else Nothing
where p = Minus undefined undefined undefined

fMinusMinusLAssoc _ = Nothing

fPlusMinusLAssoc (Plus t1 t2 t3) =
if match t3 p then Just (Plus t1 t2 (addPar t3)) else Nothing
where p = Minus undefined undefined undefined

fPlusMinusLAssoc _ = Nothing

fMinusPlusLAssoc (Minus t1 t2 t3) =
if match t3 p then Just (Minus t1 t2 (addPar t3)) else Nothing
where p = Plus undefined undefined undefined

fMinusPlusLAssoc _ = Nothing .

For instance, fPlusPlusLAssoc accepts ]Plus (Plus 1 2) 3 but not ]Plus 1 (Plus 2 3),
which is repaired to ]Plus 1 (Paren (Plus 2 3)).

Generally, the syntax of associativity directives is

Associativity ::= ‘Associativity:’ LeftAssoc RightAssoc
LeftAssoc ::= ‘Left:’ ProdOrCons+{‘,’} ‘;’

RightAssoc ::= ‘Right:’ ProdOrCons+{‘,’} ‘;’ .

Now we explain the generation of (top-level) bi-filters from associativity directives.
We will consider only left-associativity directives, as right-associativity directives are
symmetric. For every pair of left-associative productions whose relative priority is
not defined—including cases where the two productions are the same—we generate a
bi-filter to repair CSTs whose top uses the first production and whose right-most child
uses the second production. Let NT1 → α1NT1R and NT2 → α2NT2R be two such
productions, where α1 (α2) matches a sequence of arbitrary symbols of any length
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and NT1R (NT2R) is the right-most symbol and must be a nonterminal. (If it is not a
nonterminal, it is meaningless to discuss associativity.) The generated bi-filter is

TOLASSOCFILTER[[α1NT1R,NT1,α2NT2R,NT2]] =
‘f’conRHS1 conRHS2 ‘LAssoc’ ‘(’conRHS1 FILLVARS(α1NT1R) ‘)’ ‘=’

‘if match ’ ntrVar ‘ p’
‘then Just (’ conRHS1 FILLVARS(α1) ‘(addPar’ ntrVar ‘))’
‘else Nothing’

‘where p = ’conRHS2 FILLUNDEFINED(α2NT2R)

‘f’conRHS1 ‘LAssoc’ ‘_’ ‘=’ ‘Nothing’
conRHS1 = CON(NT1,α1NT1R)
conRHS2 = CON(NT2,α2NT2R)

ntrVar = FILLVARSFROM(LENGTH(α1),NT1R) .

Functions CON, FILLUNDEFINED, and FILLVAR have the same behaviour as before; FILLVARS-
FROM (which is a variation of FILLVARS) generates variable names for each terminal
and nonterminal in its argument with suffix integers counting from a given number to
avoid name clashing.

Handling Injective Productions. Sometimes the grammar may contain injective pro-
ductions (also called chain productions) [9], which have only a single nonterminal on
their right-hand side, like InfE -> [FromE] Exp. When we use it to define a grammar

InfE -> [FromE] Exp
Exp -> [Plus] InfE '+' InfE

| [Times] InfE '*' InfE ,

program text 1 + 2 * 3 will be parsed to two CSTs, namely cst1 = ]Plus (FromE 1)

(FromE (Times 2 3)) and cst2 = ]Times (FromE (Plus 1 2) (FromE 3)), and we want to
spot cst2 and discard it using the priority directive Times > Plus. If handled naively,
the bi-filter generated from the directive would only remove CSTs having pattern
Times (Plus _ _) _ (and two other similar ones), but cst2 would not match the pattern
due to the presence of the FromE node between Times and Plus. We made some effort
in the implementation to make the match function ignore the nodes corresponding to
injective productions (FromE in this case).

5.4.3 Properties of the Generated Bi-Filters

We discuss some properties of the bi-filters generated from our priority and associa-
tivity directives, to justify that it is safe to use these bi-filters without disrupting the
well-behavedness of the whole system. Specifically:

– The generated top-level bi-filters satisfy RepairJudge, and it is easy to write actions
to make them satisfy PassThrough.

– The bi-filters lifted from the top-level bi-filters still satisfy RepairJudge and
PassThrough.

– The lifted bi-filters are commutative, which not only implies that all such bi-filters
respect each other and can be composed in any order, but also guarantees that we
do not have to worry about the order of composition since it does not affect the
behaviour.
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We will give only high-level, even informal, arguments for these properties, since,
due to the generic nature of the definitions of these bi-filters (in terms of Scrap Your
Boilerplate [30]), to give formal proofs we would have to introduce rather complex
machinery (e.g., datatype-generic induction), which would be tedious and distracting.

Top-level bi-filters. The fact that the generated top-level bi-filters satisfy RepairJudge
can be derived from the requirement that the directives do not mention the parenthesis
production. Because of the requirement, in the generated bi-filters, repairing is always
triggered by matching a non-parenthesis production, and after that repairing will not
be triggered again because a parenthesis production will have been added. For exam-
ple, in the bi-filter fTimesPlusPrio (in Section 5.4.2), with match t1 p, match t2 p, and
match t3 p we check whether t1, t2, and t3 has Plus as the top-level production, which
is different from the parenthesis production Paren; if any of the matching succeeds, say
t1, then addPar t1 will add Paren at the top of t1, and match (addPar t1) p is guaranteed
to be False, so the subsequent invocation of judge fTimesPlusPrio will return True. For
PassThrough, since all the top-level bi-filters do is add parenthesis productions, we can
simply make sure that appearances of the parenthesis production are ignored by get,
i.e. get (addPar s) = get s for all s; this, by well-behavedness, is the same as making
put (printing actions) skip over parentheses. For example, for the grammar in Figure 6,
we should write t +> '(' [t +> Expr] ')' as the only printing action mentioning paren-
theses, which means that put (Paren s) t = fmap Paren (put s t) for all s and t. Then
the following reasoning implies that get (Paren s) = get s for all s:

get (Paren s) = Just t

⇔ {⇒ by GetPut and⇐ by PutGet }
put (Paren s) t = Just (Paren s)

⇔ { By the above statement: put (Paren s) t = fmap Paren (put s t) }
fmap Paren (put s t) = Just (Paren s)

⇔ { Lemma 5 and the definition of fmap }
put s t = Just s

⇔ {⇒ by PutGet and⇐ by GetPut }
get s = Just t

for all s and t.

Lifted bi-filters. The lifted bi-filters apply the top-level bi-filters to all the subtrees in
a CST in a bottom-up order. Formally, we can define, datatype-generically, a lifted
bi-filter as a composition of top-level bi-filters, and use datatype-generic induction
to prove that there is suitable respect among the top-level bi-filters being composed,
and that the lifted bi-filter satisfies RepairJudge and PassThrough if the top-level ones
do. But here we provide only an intuitive argument. What the lifted bi-filters do is
find all prohibited pairs of adjoining productions and separate all the pairs by adding
parenthesis productions. For RepairJudge, since all prohibited pairs are eliminated
after repairing, there will be nothing left to be repaired in the resulting CST, which
will therefore be deemed valid. For PassThrough, the intuition is the same as that for
the top-level bi-filters.
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Commutativity. Composite bi-filters i / j and j / i may have different behaviour, so in
general we need to know the order of composition to figure out the exact behaviour of
a composite bi-filter. This can be difficult when using our bi-filter directives, since a lot
of bi-filters are implicitly generated from the directives, and it is not straightforward
to specify the order in which all the explicitly and implicitly generated bi-filters are
composed. Fortunately we do not need to do so, for all the bi-filters generated from
the directives are commutative, meaning that the order of composition does not affect
the behaviour.

Definition 12 (Bi-Filter Commutativity) Two bi-filters i and j are commutative
exactly when

repairi ◦ repair j = repair j ◦ repairi .

By Lemma 6, this implies repair (i / j) = repair ( j / i). Note that judge (i / j) =
judge ( j / i) by definition, so we do not need to require this in the definition of
commutativity.

An important fact is that commutativity is stronger than respect, so it is always
safe to compose commutative bi-filters.

Lemma 7 Commutative bi-filters respect each other.

Proof Given commutative bi-filters i and j, we show that j respects i. Suppose that
judgei t = True for a given tree t. Then

judgei (repair j t)

= { repairi t = t, since judgei t = True }
judgei (repair j (repairi t))

= { i and j are commutative }
judgei (repairi (repair j t))

= { RepairJudge }
True .

It follows by symmetry that i respects j as well. ut

Now let us consider why any two different lifted bi-filters are commutative. (Com-
mutativity is immediate if the two bi-filters are the same.) There are two key facts
that lead to commutativity: (i) repairing does not introduce more prohibited pairs
of productions, and (ii) the prohibited pairs of adjoining productions checked and
repaired by the two bi-filters are necessarily different. Therefore the two bi-filters
always repair different parts of a tree, and can repair the tree in any order without
changing the final result. Fact (i) is, again, due to the requirement that the directives do
not mention the parenthesis production, which is the only thing we add to a tree when
repairing it. Fact (ii) can be verified by a careful case analysis. For example, we might
be worried about the situation where a left-associative directive looks for production Q
used at the right-most position under production P, while a priority directive also
similarly looks for Q used under P, but the two directives cannot coexist in the first
place since the first directive implies P and Q have no relative priority whereas the
second one implies Q has lower priority than P.
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5.5 Manually Written Bi-Filters

There are some other ambiguities that our directives cannot eliminate. In these cases,
the user can define their own bi-filters and put them in the #OtherFilters part in a
BIYACC program as shown in Figure 4. The syntax is

OtherFilters ::= ‘[’ HsFunDecl+{‘,’} ‘]’ HsCode
HsFunDecl ::= HsFunName ‘ :: BiFilter ’ Nonterminal .

That is, this part of the program begins with a list of declarations of the names and
types of the user-defined bi-filters, whose HASKELL definitions are then given below.

Now we demonstrate how to manually write a bi-filter by resolving the ambiguity
brought by the dangling else problem. But before that, let us briefly review the problem,
which arises, for example, in the following grammar:

Exp -> [ITE] 'if' Exp 'then' Exp 'else' Exp
| [IT] 'if' Exp 'then' Exp .

With respect to this grammar, the program text if a then if x then y else z can be
recognised as either if a then (if x then y else z) or if a then (if x then y) else z.
To resolve the ambiguity, usually we prefer the ‘nearest match’ strategy (which is
adopted by Pascal, C, and Java): else should match its nearest then, so that if a then (

if x then y else z) is the only correct interpretation.
The user may think that the problem can be solved by a priority (bi-)filter ITE > IT;,

in the hope that the production ‘if-then-else’ binds tighter than the production ‘if-
then’. Unfortunately, this is incorrect as pointed out by Klint and Visser [26], because
the corresponding (bi-)filter incorrectly rules out the pattern ]ITE _ _ (IT _ _), which
prints to unambiguous text, e.g., if a then b else if x then y. In fact, the (dangling
else) problem is tougher than one might think and cannot be solved by any (bi-)filter
performing pattern matching with a fixed depth [26].

Klint and Visser [26] proposed an idea to disambiguate the dangling-else grammar:
Let Greek letters α,β , . . . match a sequence of symbols of any length. Then the
program text if α then β else γ should be banned if the right spine of β contains any
if ψ then ω, as shown in the paper [26]. With the full power of (bi-)filters, which are
fully-fledged HASKELL functions, we can implement this solution in the following
bi-filter:

fCond (ITE c1 e1 e2) = case checkRightSpine e1 of
True -> Nothing
False -> Just (ITE c1 (addPar e1) e2)

-- collect the names of the constructors in the right spine and
-- check if the collected constructors contain "IT"
checkRightSpine t = ... .

This bi-filter is commutative with the bi-filters generated from our directives, since it
(i) only searches for non-parenthesis productions that are not declared in any other
directives, and (ii) inserts only a parenthesis production when repairing incorrect CSTs.
The reader may find the code of checkRightSpine in more detail in Figure 10.
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6 Case Studies

The design of BIYACC may look simplistic and make the reader wonder how much
it can describe. In fact, BIYACC can already handle real-world language features.
For example, Kinoshita and Nakano [25] adopted BIYACC as part of their system
for synchronising COQ functions and their corresponding OCAML programs. In this
section, we demonstrate BIYACC with a medium-size case study: we use BIYACC to
build a pair of parser and reflective printer for the TIGER language [4] and demonstrate
some of their uses.

6.1 The TIGER Language

TIGER is a statically typed imperative language first introduced in Appel’s textbook
on compiler construction [4]. Since TIGER’s purpose of design is pedagogical, it is not
too complex and yet covers many important language features including conditionals,
loops, variable declarations and assignments, and function definitions and calls. TIGER
is therefore a good case study with which we can test the potential of our BX-based
approach to constructing parsers and reflective printers. Some of these features can be
seen in this TIGER program:

function foo() =
(for i := 0 to 10

do (print(if i < 5 then "smaller"
else "bigger");

print("\n"))) .

To give a sense of TIGER’s complexity, it takes a grammar with 81 production rules
to specify TIGER’s syntax, while for C89 and C99 it takes respectively 183 and 237
rules without any disambiguation declarations (based on Kernighan and Ritchie [24]
and the draft version of 1999 ISO C standard, excluding the preprocessing part). The
difference is basically due to the fact that C has more primitive types and various kinds
of assignment statements.

Excerpts of the abstract and concrete syntax of TIGER are shown in Figure 9. The
abstract syntax is largely the same as the original one defined in Appel’s textbook
(page 98); as for the concrete syntax, Appel does not specify the whole grammar in
detail, so we use a version slightly adapted from Hirzel and Rose’s lecture notes [21].
Concretely, we add a parenthesis production to the grammar (and discard it when
converting CSTs to ASTs, so that the PassThrough property could be satisfied), since
TIGER’s original grammar has no parenthesis production and an expression within
round parentheses is regarded as a singleton expression sequence. This modification
also makes it necessary to change the enclosing brackets for expression sequences from
round brackets () to curly brackets {}, which helps (LALR(1) parsers) to distinguish a
singleton expression sequence from an expression within parentheses. There is also
another slight change in the definition of ASTs for handling a feature not supported
by the current BIYACC: the AST constructors TFunctionDec and TTypeDec take a single
function or type declaration instead of a list of adjacent declarations (for representing
mutual recursion) as in Appel [4], since we cannot handle the synchronisation between
a list of lists (in ASTs) and a list (in CSTs) with BIYACC’s current syntax.



Unifying Parsing and Reflective Printing for Fully Disambiguated Grammars 39

#Abstract
type TSymbol = String

data Tuple a b = Tuple a b

data BBool = TT | FF
data MMaybe a = NN | JJ a
data List a = Nil | Cons a (List a)

data TExp = TString String | TInt Int | TNilExp | TCond TExp TExp (MMaybe TExp)
| TLet (List TDec) TExp | TOp TExp TOper TExp | TExpSeq (List TExp) | ...

data TOper = TPlusOp | TMinusOp | ... | TEqOp | TNeqOp | ...

data TDec = TVarDec TSymbol BBool (MMaybe TSymbol) TExp
| TTypeDec (Tuple TSymbol TTy) | TFunctionDec TFundec

data TFundec = TFundec TSymbol (List TFieldDec) (MMaybe TSymbol) TExp
...

#Concrete
Exp -> LetExp | ArrExp | IfThen | IfThenElse | Prmtv

| ForExp | RecExp | WhileExp | Assignment | 'break' ;

VarDec -> 'var' Identifier ':=' Exp
| 'var' Identifier ':' Identifier ':=' Exp ;

LValue -> Identifier | OtherLValue ;
OtherLValue -> LValue '.' Identifier
| Identifier '[' Exp ']' | OtherLValue '[' Exp ']' ;

SeqExp -> '{' '}' | '{' ExpSeq '}' ;
ExpSeq -> Exp ';' ExpSeq | Exp ;

Prmtv -> [Paren] '(' Exp ')' {# Bracket #} | CallExp | SeqExp | ...
| [Or] Prmtv '|' Prmtv | [And] Prmtv '&' Prmtv
| [Plus] Prmtv '+' Prmtv | [Times] Prmtv '*' Prmtv | ...
| [Neg] '-' Prmtv | Numeric | String | LValue | 'nil' ;

IfThenElse -> [ITE] 'if' Exp 'then' Exp 'else' Exp ;
IfThen -> [IT] 'if' Exp 'then' Exp ;
...

Fig. 9 An excerpt of TIGER’s abstract and concrete syntax. (Here we define our own BBool type and
MMaybe type to avoid name clashing with HASKELL’s built-in ones.)

Following Hirzel and Rose’s specification [21], the disambiguation directives
for TIGER are shown in Figure 10; for instance, we define multiplication to be left-
associative. The directives also include a concrete treatment for the dangling else
problem, which is usually ‘not solved’ when using a YACC-like (LA)LR parser
generator to implement parsers: rather than resolving the grammatical ambiguity, we
often rely on the default behaviour of the parser generator—preferring shift.

We have successfully tested our BIYACC program for TIGER on all the sample
programs provided on the homepage of Appel’s book9, including a merge sort imple-
mentation and an eight-queen solver, and there is no problem parsing and printing them
with well-behavedness guaranteed. In the following subsections, we will present some

9 https://www.cs.princeton.edu/~appel/modern/testcases/

https://www.cs.princeton.edu/~appel/modern/testcases/
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#Directives
Priority:
Times > Plus ;
And > Or ; ...

Associativity:
Left: Times, Plus, And ... ;
Right: Assign, ... ;

#OtherFilters
[ fDanglingElse :: BiFilter IfThenElse ]

fDanglingElse (ITE t1 exp1 t2 exp2 t3 exp3) =
case checkRightSpine exp2 of

True -> Nothing
False -> Just (ITE t1 exp1 t2 (addPar exp2) t3 exp3)

checkRightSpine t = let spineStrs = getRSpineCons t
in and $ map (\str -> str /= "IT") spineStrs

class GetRSpineCons t where
getRSpineCons :: t -> [String]

instance GetRSpineCons IfThenElse where
getRSpineCons (ITE _ _ _ _ _ r) = ["ITE"] ++ getRSpineCons r

instance GetRSpineCons IfThen where
getRSpineCons (IT _ _ _ r) = ["IT"] ++ getRSpineCons r

instance GetRSpineCons LetExp where
getRSpineCons (LetExp1 _ _ _ _ _) = ["LetExp1"]

...

Fig. 10 An excerpt of the disambiguation directives for TIGER. (A type class GetRSpineCons is defined
and implemented for collecting the constructors on the right spine of a given tree. Function getRSpineCons
is recursively invoked for CSTs whose right-most subtree is (parsed from) a nonterminal.)

printing strategies described in the BIYACC program to demonstrate what BIYACC, in
particular reflective printing, can achieve.

6.2 Syntactic Sugar and Resugaring

We start with a simple example about syntactic sugar, which is pervasive in program-
ming languages and lets the programmer use some features in an alternative (usually
conceptually higher-level) syntax. For instance, TIGER represents boolean values false
and true respectively as zero and nonzero integers, and the logical operators & (‘and’)
and | (‘or’) are converted to a conditional structure in the abstract syntax: e1 & e2 is
desugared and parsed to TCond e1 e2 (TInt 0) and e1 | e2 to TCond e1 (TInt 1) e2. The
printing actions for them in BIYACC are:

TExp +> Prmtv
TCond e1 (TInt 1) (JJ e2) +> [e1 +> Prmtv] '|' [e2 +> Prmtv];
TCond e1 e2 (JJ (TInt 0)) +> [e1 +> Prmtv] '&' [e2 +> Prmtv]; .

A conventional printer which takes only the AST as input cannot reliably determine
whether an abstract expression should be printed to the basic form or the sugared form,
whereas a reflective printer can make the correct decision by inspecting the CST.
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The idea of resugaring [42] is to print evaluation sequences in a core language
in terms of a surface syntax. Here we show that, without any extension, BIYACC is
already capable of propagating some AST changes that result from evaluation back to
the concrete syntax, subsuming a part of Pombrio and Krishnamurthi’s work [42, 43].

We borrow their example of resugaring evaluation sequences for the logical op-
erators ‘or’ and ‘not’, but recast the example in TIGER. The ‘or’ operator has been
defined as syntactic sugar in Section 6.2. For the ‘not’ operator, which TIGER lacks,
we introduce ‘~’, represented by TNot in the abstract syntax. Now consider the source
expression

~1 | ~0 ,

which is parsed to

TCond (TNot (TInt 1)) (TInt 1) (JJ (TNot (TInt 0))) .

A typical evaluator will produce the following evaluation sequence given the above
AST:

TCond (TNot (TInt 1)) (TInt 1) (JJ (TNot (TInt 0)))
→ TCond (TInt 0) (TInt 1) (JJ (TNot (TInt 0)))
→ TNot (TInt 0)
→ TInt 1 .

If we perform reflective printing after every evaluation step using BIYACC, we will
get the following evaluation sequence on the source:

~1 | ~0 → 0 | ~0 → ~0 → 1 .

Due to the PUTGET property, parsing these concrete terms will yield the corresponding
abstract terms in the abstract evaluation sequence, and this is exactly Pombrio and
Krishnamurthi’s ‘emulation’ property, which they have to prove for their system.
For BIYACC, however, the emulation property holds by construction, since BIYACC
programs are always well-behaved. Another difference is that we do not need to insert
additional information (such as tags) into an AST for recording which surface syntax
structure a node comes from. One advantage of our approach is that we keep the
abstract syntax pure, so that other tools—the evaluator in particular—can process
the abstract syntax without being modified, whereas in Pombrio and Krishnamurthi’s
approach, the evaluator has to be adapted to work on an enriched abstract syntax.

6.3 Language Evolution

When a language evolves, some new features of the language (e.g. the foreach loops
introduced in Java 5 [20]) can be implemented by desugaring to some existing features
(e.g. ordinary for loops), so that the compiler back-end and abstract syntax definition
do not need to be extended to handle the new features. As a consequence, all the
engineering work about optimising transformations or refactoring [18] that has been
developed for the abstract syntax remains valid.

Consider a kind of ‘generalised-if’ expression allowing more than two cases,
resembling the alternative construct in Dijkstra’s guarded command language [12].
We extend TIGER’s concrete syntax with the following production rules:
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Exp -> . . . | Guard | . . . ;
Guard -> 'guard' CaseBs 'end';

CaseBs -> CaseB CaseBs | CaseB ;
CaseB -> LValue '=' Numeric '->' Exp ; .

For simplicity, we restrict the predicate produced by CaseB to the form LValue '=' Numeric,
but in general the Numeric part can be any expression computing an integer. The reflec-
tive printing actions for this new construct can still be written within BIYACC, but
require much deeper pattern matching:

TExp +> Guard
TCond (TOp (TVar lv) TEqOp (TInt i)) e1 Nothing +>
'guard' (CaseBs -> (CaseB -> [lv +> LValue] '=' [i +> Numeric] '->' [e1 +> Exp])

) 'end';
TCond (TOp (TVar lv) TEqOp (TInt i)) e1 (J if2@(TCond _ _ _)) +>
'guard' (CaseBs -> (CaseB -> [lv +> LValue] '=' [i +> Numeric] '->' [e1 +> Exp])

[if2 +> CaseBs]
) 'end';

;;
TExp +> CaseBs

TCond (TOp (TVar lv) TEqOp (TInt i)) e1 Nothing +>
(CaseB -> [lv +> LValue] '=' [i +> Numeric] '->' [e1 +> Exp]);

TCond (TOp (TVar lv) TEqOp (TInt i)) e1 (J if2@(TCond _ _ _)) +>
(CaseB -> [lv +> LValue] '=' [i +> Numeric] '->' [e1 +> Exp])
[if2 +> CaseBs];

;; .

Although being a little complex, these printing actions are in fact fairly straightfor-
ward: The first group of type Tiger +> Guard handles the enclosing guard–end pairs,
distinguishes between single- and multi-branch cases, and delegates the latter case to
the second group, which prints a list of branches recursively.

This is all we have to do—the corresponding parser is automatically derived
and guaranteed to be consistent. Now guard expressions are desugared to nested if

expressions in parsing and preserved in printing, and we can also resugar evaluation
sequences on the ASTs to program text. For instance, the following guard expression

guard choice = 1 -> 4
choice = 2 -> 8
choice = 3 -> 16 end

is parsed to

TCond (TOp (TVar (TSV "c")) TEqOp (TInt 1)) (TInt 4) (JJ
(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 2)) (TInt 8) (JJ

(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 3)) (TInt 16) NN))))

where TSimpleVar is shortened to TSV, and choice is shortened to c. Suppose that the
value of the variable choice is 2. The evaluation sequence on the AST will then be:

TCond (TOp (TVar (TSV "c")) TEqOp (TInt 1)) (TInt 4) (JJ
(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 2)) (TInt 8) (JJ
(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 3)) (TInt 16) NN))))

→ TCond (TInt 0) (TInt 4) (JJ
(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 2)) (TInt 8) (JJ
(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 3)) (TInt 16) NN))))

→ TCond (TOp (TVar (TSV "c")) TEqOp (TInt 2)) (TInt 8) (JJ
(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 3)) (TInt 16) NN))

→ TCond (TInt 1) (TInt 8) (JJ
(TCond (TOp (TVar (TSV "c")) TEqOp (TInt 3)) (TInt 16) NN))

→ TInt 8 .
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And the reflected evaluation sequence on the concrete expression will be:

guard choice = 1 -> 4
choice = 2 -> 8
choice = 3 -> 16 end

6→
→ guard choice = 2 -> 8

choice = 3 -> 16 end
6→
→ 8 .

Reflective printing fails for the first and third steps (the program text becomes an
if-then-else expression if we do printing at these steps), but this behaviour in fact
conforms to Pombrio and Krishnamurthi’s ‘abstraction’ property, which demands that
core evaluation steps that make sense only in the core language must not be propagated
to the surface. In our example, the first and third steps in the TCond-sequence evaluate
the condition to a constant, but conditions in guard expressions are restricted to a
specific form and cannot be a constant; evaluation of guard expressions thus has to
proceed in bigger steps, throwing away or going into a branch in each step, which
corresponds to two steps for TCond.

The reader may have noticed that, after the guard expression is reduced to two
branches, the layout of the second branch is disrupted; this is because the second
branch is in fact printed from scratch. In current BIYACC, the printing from an AST
to a CST is accomplished by recursively performing pattern matching on both tree
structures. This approach naturally comes with the disadvantage that the matching
is mainly decided by the position of the nodes in the AST and CST. Consequently, a
minor structural change on the AST may completely disrupt the matching between the
AST and the CST.

6.4 Other Potential Applications

We conclude this section by shortly discussing several other potential applications. In
general, (current) BIYACC can easily and reliably propagate AST changes that have
local effect such as replacing part of an AST with a simpler tree, without destroying the
layouts and comments of unaffected code. Thus it would not be surprising that BIYACC
can also propagate (i) simplification-like optimisations such as constant folding and
constant propagation and (ii) some code refactoring transformations such as variable
renaming. All these functionalities are achieved for free by one ‘general-purpose’
BIYACC program, which does not need to be tailored for each application.

7 Related Work

7.1 Unifying Parsing and Printing

Much research has been devoted to describing parsers and printers in a single program.
For example, both Rendel and Ostermann [44] and Matsuda and Wang [36, 37] adopt
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a combinator-based approach10 (whereas we use a generator-based approach), where
small components are glued together to yield more sophisticated behaviour, and can
guarantee properties similar to Theorem 1 with cst replaced by ast in the equations.
(Let us call the variant version Theorem 1′, since it will be used quite often later.) In
Rendel and Ostermann’s system (called ‘invertible syntax descriptions’, which we
shorten to ISDs henceforth), both the parsing and printing semantics are predefined in
the combinators and consistency is guaranteed by their partial isomorphisms, whereas
in Matsuda and Wang’s system (called FLIPPR), the combinators describing pretty
printing are translated by a semantic-preserving transformation to a core syntax, which
is further processed by their grammar-based inversion system [38] to realise the
parsing semantics. Brabrand et al. [7] present a tool XSugar that handles bijections
between the XML syntax (representation) and any other syntax (representation) for the
same language, guaranteeing that the syntax transformation is reversible. However, the
essential factor that distinguishes our system from others is that the printer produced
from a BIYACC program is reflective and can deal with synchronisation.

Although the above-mentioned systems are tailored for unifying parsing and
printing, there are design differences. An ISD is more like a parser, while FLIPPR lets
the user describe a printer: To handle operator priorities, for example, the user of ISDs
will assign priorities to different operators, consume parentheses, and use combinators
such as chainl to handle left recursion in parsing, while the user of FLIPPR will
produce necessary parentheses according to the operator priorities. For basic BIYACC
(that deals with unambiguous grammars only), the user defines a concrete syntax that
has a hierarchical structure (e.g., Expr, Term, and Factor) to express operator priority,
and write printing strategies to produce (preserve) necessary parentheses. The user of
XSugar will also likely need to use such a hierarchical structure.

It is interesting to note that the part producing parentheses in FLIPPR essen-
tially corresponds to the hierarchical structure of grammars. For example, to handle
arithmetic expressions in FLIPPR, we can write:

ppr' i (Minus x y) =
parensIf (i >= 6) $ group $

ppr 5 x <> nest 2
(line' <> text "-" <> space' <> ppr 6 y); .

FLIPPR will automatically expand the definition and derive a group of ppr_i functions
indexed by the priority integer i, corresponding to the hierarchical grammar structure.
In other words, there is no need to specify the concrete grammar, which is already
implicitly embedded in the printer program. This makes FLIPPR programs neat and
concise. Following this idea, BIYACC programs can also be made more concise: In
a BIYACC program, the user is allowed to omit the production rules in the concrete
syntax part (or omit the whole concrete syntax part), and they will be automatically
generated by extracting the terminals and nonterminals in the right-hand sides of all
actions. However, if these production rules are supplied, BIYACC will perform some
sanity checks: It will make sure that, in an action group, the user has covered all of the
production rules of the nonterminal appearing in the ‘type declaration’, and never uses
undefined production rules.

10 Although they use different implementation techniques, we will not dive into them in our related work.
See Matsuda and Wang’s related work for a comparison [36].
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Just like basic BIYACC, all of the systems described above (aim to) handle unam-
biguous grammars only. Theoretically, when the user-defined grammar (or the derived
grammar) is ambiguous, ISDs’ partial isomorphism could guarantee Theorem 1′ by
returning Nothing on ambiguous input; FLIPPR’s (own) Theorem 1 is comparable
to Theorem 1′ by taking all the language constructs which may cause non-injective
printing into account. However, according to the paper, FLIPPR’s Theorem 1 appears
to only consider nondeterministic printing based on prettiness (layouts). Since the
discussion on ambiguous grammars has not been presented in their papers, we tested
their implementation and the behaviour is as follows: Neither ISDs nor FLIPPR will
notify the user that the (derived) grammar is ambiguous at compile time. For ISDs, the
right-to-left direction of our Theorem 1′ will fail, while for FLIPPR, both directions
will fail. (They never promise to handle ambiguous grammars, though.) In contrast,
Brabrand et al. [7] give a detailed discussion about ambiguity detection, and XSugar
statically checks if the transformations are ‘reversible’. If any ambiguity in the pro-
gram is detected, XSugar will notify the user of the precise location where ambiguity
arises. In BIYACC, the ambiguity detection of the input grammar is performed by the
employed parser generator (currently HAPPY), and the result is reported at compile
time; if no warning is reported, the well-behavedness is always guaranteed. Note
that the ambiguity detection can produce false positives: warnings only mean that
the grammar is not LALR(1) but does not necessarily mean that the grammar is
ambiguous—ambiguity detection is undecidable for the full CFG [10].

Here we also briefly discuss ambiguity detection for the filter approaches: Pri-
ority and associativity (bi-)filters can be applied to (LA)LR parse tables to resolve
(shift/reduce) conflicts [9, 26, 52, 53], and thus the completeness for simple (bi-)filters
(see Definition 9) on LALR(1) grammars can be statically checked. However, our
implementation does not support it, for bi-filter directives are more general, as stated in
the beginning of Section 5.4.2, and therefore cannot be transformed to the underlying
parser generator’s YACC-style directives. Finding a way to directly apply priority and
associativity bi-filters to parse tables (generated by HAPPY) is left as future work.

Finally, we compare BIYACC with an industrial tool, AUGEAS, which provides
the user with a local configuration API that converts configuration data into a rose
tree representation [31]. Similar to BIYACC, AUGEAS also uses the idea of state-
based asymmetric lenses so that its parse and print functions satisfy well-behavedness
and it tries to preserve comments and layouts when printing the tree representation
back. However, since the purpose of AUGEAS and BIYACC are different, the differ-
ences between the tools are also noticeable: (i) AUGEAS works for regular grammars
while BIYACC works for (unambiguous) context-free grammars. (ii) AUGEAS uses
a combinator-based approach while BIYACC adopts a generator-based approach.
(iii) AUGEAS works more like a simple parser that stops after constructing CSTs:
in the parsing direction, AUGEAS unambiguously separates strings into sub-strings,
turn sub-strings into tokens, and use tokens to build the corresponding tree; but since
each lens combinator (of AUGEAS) has its predefined strategy to turn its acceptable
strings into the tree representation, the corresponding tree will be determined once the
input string and the lens combinators for parsing the string are given; AUGEAS does
not provide a functionality to further transform a tree. On the other hand, BIYACC
first turns a string into its isomorphic CST (fully determined the input string and the
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grammar description) and finally converts the CST to its AST in accordance with the
algebraic data types defined by the user; that is, the relation between a string (CST)
and its AST is not predetermined but can be adjusted by the user (through printing
actions).

7.2 Generalised Parsing, Disambiguation, and Filters

The grammar of a programming language is usually designed to be unambiguous. Var-
ious parser-dependent disambiguation methods such as grammar transformation [29]
and parse table conflicts elimination [23] have been developed to guide the parser to
produce a single correct CST [26]. On the other hand, natural languages that are inher-
ently ambiguous usually require their parsing algorithms to produce all the possible
CSTs; this requirement gives rise to algorithms such as Earley [14] and generalised
LR [50] (GLR for short). Although these parsing algorithms produce all the possible
CSTs, both their time complexity and space complexity are reasonable. For instance,
GLR runs in cubic time in the worst situation and in linear time if the grammar is
‘almost unambiguous’ [48].

The idea to relate generalised parsing with parser-independent disambiguation
for programming languages is proposed by Klint and Visser [26]. They proposed two
classes of filters, property filters (defined in terms of predicates on a single tree) and
comparison filters (defined in terms of relations among trees), but we only adapt and
bidirectionalise predicate filters in this paper. One difficulty lies in the fact that it is
unclear how to define repair for comparison filters, as they generally select better trees
rather than absolutely correct ones— in the printing direction, since put only produces
a single CST, we do not know whether this CST needs repairing or not (for there is no
other CST to compare). This is also one of the most important problems for our future
work.

Parser-independent disambiguation (for handling priority and associativity con-
flicts) can also be found in LaLonde and des Rivieres’s [29] and Aasa’s [1] work.
At first glance, our repair function is quite similar to LaLonde and des Rivieres’s
post-parse tree transformations that bring a CST into an expression tree, on whose
nodes additional restrictions of priority and associativity are imposed. To be simple
(but not completely precise), a CST’s corresponding expression tree is obtained by first
dropping all the nodes constructed from injective productions11 (note that parentheses
nodes are still kept) and then use a precedence-introducing tree transformation to
reshape the result. The transformation will do ‘repairing’ by rotating all the adjacent
nodes of the tree where priority or associativity constraint is violated. By contrast,
our repair function is simpler and only introduces parentheses in places where the
judge function returns False. In short, their tree transformations are a kind of parser-
independent disambiguation which does not require generalised parsing; however,
those tree transformations are (almost) not applicable in the printing direction if well-
behavedness is taken into consideration (due to the rotation of CSTs). Furthermore, it

11 An injective production, or a chain production, is one whose right-hand side is a single nonterminal;
for instance, E -> N.
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is not clear whether their approach can be generalised to handle other types of conflicts
rather than the ones caused by priority and associativity.

There is much research on how to handle ambiguity in the parsing direction as
discussed above; conversely, little research is conducted for ‘handling ambiguity in
the printing direction’ and we find only one paper [8] that describes how to produce
correct program text regarding priority and associativity, which is also one of the
bases of our work. We extend their work [8] by allowing the bracket attribute to
work with injective productions such as E -> T; T -> F; F -> '(' E ')' {# Bracket #};.
(The previous work seems to only support the bracket attribute in the form of
E -> '(' E ')' {# Bracket #};; whether the nonterminal E on the left-hand side and
right-hand side can be different is not made clear.)

Finally, we compare our approach with the conventional ones in general. In history,
a printer is believed to be much simpler than a parser and is usually developed
independently (of its corresponding parser). While a few printers choose to produce
parentheses at every occasion naively, most of them take disambiguation information
(for example, from the language’s operator precedence table) into account and try
to produce necessary parentheses only. However, as the YACC-style conventional
disambiguation [23] is parser-dependent, this parentheses-adding technique is also
printer-dependent. As the post-parse disambiguation increases the modularity of the
(front-end of the) compiler [29], we believe that our post-print parentheses-adding
increases the modularity once again. Additionally, the unification of disambiguation
for both parsing and printing makes it possible for us to impose bi-filter laws, which
further makes it possible to guarantee the well-behavedness of the whole system.

7.3 Comparison with a Get-based Approach

Our work is theoretically based on asymmetric lenses [17] of bidirectional transforma-
tions [11, 19], particularly taking inspiration from the recent progress on putback-based
bidirectional programming [15, 27, 28, 40, 41]. As explained in Section 3, the purpose
of bidirectional programming is to relieve the burden of thinking bidirectionally—the
programmer writes a program in only one direction, and a program in the other direc-
tion is derived automatically. We call a language get-based when programs written
in the language denote get functions, and call a language putback-based when its
programs denote put functions. In the context of parsing and reflecting printing, the
get-based approach lets the programmer describe a parser, whereas the putback-based
approach lets the programmer describe a printer. Below we discuss in more depth how
the putback-based methodology affects BIYACC’s design by comparing BIYACC with
a closely related, get-based system.

Martins et al. [35] introduces an attribute grammar–based BX system for defin-
ing transformations between two representations of languages (two grammars). The
utilisation is similar to BIYACC: The programmer defines both grammars and a set of
rules specifying a forward transformation (i.e. get), with a backward transformation
(i.e. put) being automatically generated. For example, the BIYACC actions in lines
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28–30 of Figure 2 can be expressed in Martins et al.’s system as

getE
A (plus (x, ‘+’,y)) → add(getE

A (x),getT
A (y))

getE
A (minus(x, ‘-’,y)) → sub (getE

A (x),getT
A (y))

getE
A (et(e)) → getT

A (e)

which describes how to convert certain forms of CSTs to corresponding ASTs. The
similarity is evident, and raises the question as to how get-based and putback-based
approaches differ in the context of parsing and reflective printing.

The difference lies in the fact that, with a get-based system, certain decisions on the
backward transformation are, by design, permanently encoded in the bidirectionalisa-
tion system and cannot be controlled by the user, whereas a putback-based system can
give the user fuller control. For example, when no source is given and more than one
rules can be applied, Martins et al.’s system chooses, by design, the one that creates the
most specialised version. This might or might not be ideal for the user of the system.
For example: Suppose that we port to Martins et al.’s system the BIYACC action
that relates TIGER’s concrete ‘&’ operator with a specialised abstract if expression in
Section 6.2, coexisting with a more general rule that maps a concrete if expression
to an abstract if expression. Then printing the AST TCond (TSV "a") (TSV "b") 0 from
scratch will and can only produce a & b, as dictated by the system’s hard-wired printing
logic. By contrast, the user of BIYACC can easily choose to print the AST from scratch
as a & b or if a then b else 0 by suitably ordering the printing actions.

This difference is somewhat subtle, and one might argue that Martins et al.’s
design simply went one step too far—if their system had been designed to respect
the rule ordering as specified by the user, as opposed to always choosing the most
specialised rule, the system would have given its user the same flexibility as BIYACC.
Interestingly, whether to let user-specified rule/action ordering affect the system’s
behaviour is, in this case, exactly the line between get-based and putback-based design.
The user of Martins et al.’s system writes rules to specify a forward transformation,
whose semantics is the same regardless of how the rules are ordered, and thus it
would be unpleasantly surprising if the rule ordering turned out to affect the system’s
behaviour. By contrast, the user of BIYACC only needs to think in one direction about
the printing behaviour, for which it is natural to consider how the actions should be
ordered when an AST has many corresponding CSTs; the parsing behaviour will then
be automatically and uniquely determined. In short, relevance of action ordering is
incompatible with get-based design, but is a natural consequence of putback-based
thinking.

8 Conclusion

We conclude the paper by summarising our contributions:

– We have presented the design and implementation of BIYACC, with which the
programmer can describe both a parser and a reflective printer for a fully disam-
biguated context-free grammar in a single program. Our solution guarantees the
partial version of the consistency properties (Definition 2) by construction.
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– We proposed the notion of bi-filters, which enables BIYACC to disambiguate
ambiguous grammars while still respecting the consistency properties. This is the
main new contribution compared to the previous SLE’16 version [55].

– We have demonstrated that BIYACC can support various tasks of language engi-
neering, from traditional constructions of basic machinery such as printers and
parsers to more complex tasks such as resugaring, simple refactoring, and language
evolution.
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