
Di�: A Powerful Parallel Skeleton

Seiichi Adachi, Hideya Iwasaki, Zhenjiang Hu

Department of Information Engineering, the University of Tokyo

7{3{1 Hongo, Bunkyo-ku, Tokyo 113{8656 Japan

Abstract Skeleton parallel programming encour-

ages programmers to build a parallel program from

ready-made components for which e�cient imple-

mentations are known to exist, making both the par-

allel program development and the parallelization

process easier. However, programmers often su�er

from the di�culty to choose a proper combination of

parallel primitives so as to construct e�cient par-

allel programs. To overcome this di�culty, we pro-

pose a new powerful parallel skeleton di� derived

from the di�usion theorem, showing how it can be

used to naturally code e�cient solutions to prob-

lems, and how it can be e�ciently implemented in

parallel using MPI (Message Passing Interface).

Keywords: Parallel Skeleton, Bird{Meertens For-

malism, Program Transformation, MPI.

1 Introduction

Parallel programming has proved to be a di�-
cult task, requiring expert knowledge of both
parallel algorithms and hardware architectures
to achieve good results. The use of parallel
skeletons can help to structure this process and
make both programming and parallelization
easier [4, 5, 8]. Examples of skeletons are forall
in High Performance Fortran [6], the apply-to-
call and scan in NESL [3], and a �xed set of
higher order functions such as map, reduce and
scan in BMF [9]. In this skeleton approach,
programmers are encouraged to build a parallel
program from ready-made components whose
e�cient implementations are known to exist,
not being concerned with the lower level de-
tails of the implementation.

However, developing e�cient parallel pro-

grams still remains as a big challenge. Pro-
grammers often �nd it hard to choose proper
parallel primitives and to integrate them well
in order to develop e�cient parallel programs,
especially when the given problems are a bit
complicated.

As an example, consider the problem of
checking whether tags are well matched or not
in a document written in XML (eXtensible
Markup Language). This problem is of practi-
cal interest, but design of an e�cient O(logN)
parallel program using parallel skeletons is not
easy, where N denotes the number of separated
words in the document.

In this paper, we shall propose a new power-
ful parallel skeleton, called di�, which attains
the following new features.

� First, it is general enough to cover all ex-
isting parallel skeletons as in the BMF
parallel model [9]. In other words, the ex-
isting parallel skeletons can be considered
as special cases of the new skeleton.

� Second, it is more natural to describe algo-
rithms with more complicated dependency
than the existing skeletons like scans [3].

� Third, it has a nice cost model, and can
be e�ciently implemented in parallel.

The organization of this paper is as follows.
We shall review the existing parallel skeletons
and the di�usion theorem in Section 2. Af-
ter de�ning our parallel skeleton by abstract-
ing parallel programs derivable by the di�usion
theorem in Section 3, we show how to imple-
ment it in parallel using MPI (Message Passing
Interface) in Section 4. An experimental result
is presented in Section 5. We conclude in Sec-
tion 6.

2 The Di�usion Theorem

In this section, we briey review the notational
conventions and some basic concepts in Bird{
Meertens Formalism [1, 8] (BMF for short),
some related results, particularly the di�usion
theorem on which our new skeleton is con-
structed.

Function application is denoted by a space
and the argument which may be written with-
out brackets. Thus f a means f (a). Func-
tions are curried, and application associates to
the left. Thus f a b means (f a) b. Function
application binds stronger than any other op-
erator, so f a � b means (f a) � b, and not
f (a� b). Function composition is denoted by
a centralized circle �. By de�nition, we have
(f � g) a = f (g a). In�x binary operators will
often be denoted by �,
, � and can be sec-
tioned ; an in�x binary operator like � can be
turned into unary or binary functions by

a� b = (a�) b = (� b) a = (�) a b:

Lists are �nite sequences of values of the
same type. A list is either empty, a singleton,
or the concatenation of two lists. We write []
for the empty list, [a] for the singleton list with
element a, and xs ++ ys for the concatenation
of lists xs and ys. Concatenation is associa-
tive, and [] is its unit. For example, the term
[1] ++ [2] ++ [3] denotes a list with three ele-
ments, often abbreviated to [1; 2; 3]. We also
write x : xs for [x] ++ xs.

The most important skeletons in BMF are
map, reduce and scan. The map is the operator
which applies a function to every element in a
list. Informally, we have

map f [x1; : : : ; xn] = [f x1; : : : ; f xn]:

The reduce is the operator which collapses
a list into a single value by repeated applica-
tions of some associative binary operator. In-
formally, for an associative binary operator �,
we have

reduce (�) [x1; x2; : : : ; xn]

= x1 � x2 � � � � � xn:

The scan is the operator that accumulates all
intermediate results for computation of reduce.

Informally, for an associative binary operator
� with its unit ��, we have

scan (�) [x1; x2; : : : ; xn]
= [��; x1; x1� x2; : : : ; x1� x2� � � � �xn]:

Di�usion is a transformation turning a re-
cursive de�nition into a composition of our
higher order functions, namelymap, reduce and
scan.

Theorem (Di�usion [7]) Given a function h
de�ned in the following recursive form:

h [] c = g1 c
h (x : xs) c = k (x; c)� h xs (c
 g2 x):

If � and
 are associative and have units, then
h can be di�used into the following form.

h xs c = reduce (�) (map k as)� g1 b
where

bs ++ [b] = map (c
) (scan (
) (map g2 xs))
as = zip xs bs

Note that the list concatenation operator ++
is used as a pattern in right hand side of the
above equation. Our proposed di�usion trans-
formation has the following two features. First,
the di�usion transformation can be applied to
a wide class of recursive functions of interest.
Second, the resultant parallel program is e�-

cient , in the sense that if the original program
uses O(N) sequential time, then the derived
parallel one takes at most O(logN) time.
To see how the di�usion theorem works in

practice, consider a simple problem of elimi-
nating smaller elements. An element is said to
be smaller if it is less than some element be-
fore itself in the list. For example, for the list
[1; 4; 2; 3; 5; 7], 2 and 3 are smaller elements,
and thus the resultant list is [1; 4; 5; 7]. This
problem can be solved directly; scan the list
from left to right and eliminate every element
which is less than the maximum of the scanned
elements. That is,

se [] c = []
se (x : xs) c
= if x < c then se xs c else [x] ++ se xs x:

The second equation is not in the form where
the theorem can be applied. A simple trans-
formation of merging two recursive calls into a
single one soon gives the following equation.

se (x : xs) c
= (if x < c then [] else [x])

++ se xs (if x < c then c else x)

Now matching the recursive de�nition of se
with that in the di�usion theorem yields:

se xs c = reduce (�) (map k as)� g1 b

where

bs ++ [b] = map (c
) (scan (
) (map g2 xs))
as = zip xs bs

p� q = p ++ q
c
 a = if a < c then c else a
k (x; c) = if x < c then [] else [x]

g1 c = []
g2 x = x.

Consequently, we have come to an e�cient
parallel algorithm for this problem.

3 The Di� Skeleton

In this section, we shall give the de�nition of
our new skeleton di�, named after its underly-
ing theorem, and demonstrate how it can be
used to describe algorithms in a natural way.

De�nition (Di� Parallel Skeleton)

di� (�) (
) k g1 g2 xs c
= reduce (�) (map k as)� g1 b

where

bs ++ [b] = map (c
) (scan (
) (map g2 xs))

as = zip xs bs

where � and
 are associative operations with
units.

Di� is a higher-order function which de-
scribes a general pattern of e�cient parallel
programs. Its de�nition comes directly from
the di�usion theorem, abstracting important
operators and functions out of the body of the
new de�nition of h.
Returning to the example of se in Section 2,

we can easily code it in terms of di� as follows.

se xs c = di� (�) (
) k g1 g2 xs c
where

p� q = p ++ q
c
 a = if a < c then c else a
k (x; c) = if x < c then [] else [x]
g1 c = []

g2 x = x

Though the de�nition of di� might seem to
be a bit complicated, it is quite adequate for
a general skeleton in parallel programming for
the following reasons.

� Since di� is directly derived from the con-
sequence of the di�usion theorem, many
natural recursive functions whose de�ni-
tions have the form of h in the theorem
can be expressed in terms of di�.

� In order to write a parallel program using
di�, programmers only need to �nd suit-
able actual parameters given to di�. In
many cases, it is easy to �nd k and g1, be-
cause they are functions applied to each
element of an input list. Therefore, pro-
grammers can focus on �nding suitable as-
sociative operators � and
 together with
g2.

� Although the de�nition of di� looks rather
complicated, programmers need not know
in detail how primitive skeletons such as
map, reduce, and scan are combined to-
gether. In other words, di� provides an
abstraction of a good combination of prim-
itive skeletons, solving the problem of the
skeleton approach, as pointed out in the
introduction.

� Di� has an e�cient implementation in par-
allel environment. In the following sec-
tions, we present an implementation using
the MPI library and some experimental re-
sults.

For a more complicated and practical exam-
ple, recall the tag matching problem in the in-
troduction. It would be di�cult to choose ad-
equate BMF skeletons to develop its e�cient
parallel program. But with the di�usion the-
orem, we can derive systematically a parallel
algorithm using di� in almost the same way as
described in [7].

In fact, we can start with a naive sequential
program to solve this problem using a stack.
When an open tag is encountered, it is pushed
onto the stack. In the case of a close tag, �rst it
is compared with the top of the stack and if it

corresponds, then the corresponding open tag
is popped o� from the top of the stack. This
straightforward program tm can be expressed
recursively with an accumulation parameter in
the following way.

tm [] cs = isEmpty cs

tm (x : xs) cs
= if isOpen x then tm xs (push x cs)

else if isClose x then notEmpty cs ^

match x (top cs) ^ tm xs (pop xs)
else tm xs cs

Here, for simplicity, XML document �le is
supposed to be pre-processed and tm receives
as input a list of separated tags and words.
After some steps for �nding both suitable as-
sociative operators and an adequate represen-
tation of a stack [7], we are able to apply the
di�usion theorem to get the following e�cient
parallel program in terms of di�. Since space
is limited, we show only the �nal result.

tm xs cs = di� (^) (
) k isEmpty g2 xs cs
where

k (x; cs)
= if isOpen x then True

else if isClose x then

notEmpty cs ^ match x (top cs)
else True

g2 x = if isOpen x then ([x]; 1; 0)
else if isClose x then ([]; 0; 1)
else ([]; 0; 0)

(s1; n1; m1)
 (s2; n2; m2)
= if n1 � m2 then (s2; n2; m1+m2�n1)

else

(s2 ++ dropm2 s1; n1 + n2 �m2; m1)

Function drop n xs is to drop the �rst n el-
ements from list xs. In the above de�nition,
a stack is represented as a triple: its �rst el-
ement is a list of unclosed tags, the second is
the length of the �rst element, and the third
is the number of pop occurrences. The initial
value of accumulation parameter cs of tm is the
empty stack ([]; 0; 0).

4 An Implementation of Di�

We implemented di� using MPI, a standard
parallel library widely used for parallel pro-

gramming from massively parallel computers
to PC clusters.

4.1 The Algorithm

In order to give an e�cient implementation
of di�, it is necessary to fuse (or merge) as
many functional compositions as possible with-
out sacri�cing inherent parallelism, by exploit-
ing some techniques for fusion transformation
[2]. By this transformation, we can eliminate
intermediate data structures passed through
composition to gain e�ciency. In the de�ni-
tion of di�, the following parts are taken into
consideration.

� By using scanl which can have an initial
value (seed) of scanning:
scanl (�) e [x1; x2; : : : ; xn]
= [e; e� x1; e� x1 � x2;

: : : ; e� x1 � x2 � � � � � xn];
we can fuse map (c
) (scan (
) ys) into
scanl (
) c ys.

� By using map2, a natural extension of
map, which traverses two lists simultane-
ously:
map2 f [x1; x2; : : : ; xn] [y1; y2; : : : ; yn]
= [f (x1; y1); f (x2; y2); : : : ; f (xn; yn)];

we can avoid zip operation.

� By using reducer, a kind of reduction
which can also have an initial value (seed)
of its operation:
reducer � e [x1; x2; : : : ; xn]
= x1 � x2 � � � � � xn � e;

we are able to fuse reduce (�) ys � e into
reducer (�) e ys.

Therefore the de�nition of di� after these fu-
sion transformations becomes:

di� (�) (
) k g1 g2 xs c
= reducer (�) (g1 b) (map2 k xs bs)

where bs ++ [b] = scanl (
) c (map g2 xs).

Our implementation is based on the above
de�nition. Let N be the number of elements
of the entire input list, and P be the number
of processors. We assume that these elements
are divided into P sublists, and each sublist
is distributed beforehand to the correspond-
ing processor. So each processor has a list of

length N=P . Also we assume that each proces-
sor is assigned an integer between 0 to P � 1
called processor identi�er (PID). According to
the distribution of the input list, we can think
a tree structure of all processors; each inter-
nal node of this tree is assigned to the same
processor as that of its left child (Figure 1(a)).

Implementations of map, map2, reducer are
straightforward. For map and map2, each
processor simply traverses its list (represented
as an array) sequentially, hence they need
O(N=P) time if computing each application of
the mapped function is in constant time. For
reducer(�)e, each processor �rst reduces its lo-
cal list and gets its local value, then according
to the tree structure, upwardly sweeps the val-
ues reducing by �, by inter-processor commu-
nication. After the upward sweep, processor 0
has the resultant value v of the sweep, and cal-
culating v�e leads to the �nal value of reducer.
The cost of local reduction is O(P=N) and that
of the upward sweep is O(logP), so the total
cost of reducer (�) e is O(N=P + logP) time,
provided that � is a constant time operation.

To implement scanl (�) e, we adopted an al-
gorithm based on Blelloch's [3], but with the
following extensions. First, our algorithm al-
lows the scan to accept an initial value e other
than just the unit of �. This enhances the
descriptive power of scanl without extra over-
head. Second, taking data dependencies within
di� into account, we carefully store in local
memory of processors some values which will
be consumed later by map2 and reducer. This
is quite helpful to reduce total cost of inter-
processor communication.

The detailed step of our algorithm to calcu-
late scanl (�) e is as follows. To illustrate the
idea concretely, we show the process of com-
puting scanl (+) 50 [1; : : : ; 8] in Figure 1.

Step 1 First, each processor scans the dis-
tributed list locally to form a scanned list.
This phase can be executed totally in par-
allel and needs O(N=P) time.

Step 2 Similar to the process of reducer, up-
ward sweep of the �nal values from the
scanned lists using � is executed. This

[1,2] [3,4] [5,6] [7,8] [1,3] [3,7] [5,11] [7,15]
3 7 11 15

10 26

36

PID 0 PID 1 PID 2 PID 3PID 0 PID 1 PID 2 PID 3

[1,3] [3,7] [5,11] [7,15]
3 7 11 15

10 26

36

PID 0 PID 1 PID 2 PID 3

[1,3] [3,7] [5,11] [7,15]
3 7 11 15

36

PID 0 PID 1 PID 2 PID 3

[1,3] [3,7] [5,11] [7,15]

36

PID 0 PID 1 PID 2 PID 3

36

PID 0 PID 1 PID 2 PID 3

50

50

50 60 50 60

50 53 60 71
[51,53] [56,60] [65,71] [78,86]

(a) (b) (c)

(d) (e) (f)

50 53 60 71

Figure 1: Implementation of scanl.

phase needs O(logP) time. After this
phase, processor 0 has the value of the scan
of the input list (Figure 1(b)).

Step 3 Starting from the root of the tree
structure, downward sweep to the leaves
is executed. Initially, the initial value e
is put on the root (Figure 1(c)). At each
step, every node applies � to its own and
its left child's values and then passes the
application result to its right child. The
node also passes its own value to the left
(Figure 1(d)�(e)).

Step 4 Finally, each processor maps the re-
sultant value obtained in the previous
phase to the locally scanned list using the
operator � (Figure 1(f)). Obviously this
phase needs O(N=P) time.

Total cost of scanl (�) e is also O(N=P +
logP) time, provided that � can be carried
out in constant time.

It is worth noting that the values of 53, 60,
71 in Figure 1(f) reside repeatedly in adjacent
processors: 53 in PID 0 � 1, 60 in PID 1 � 2
and 71 in PID 2 � 3. In addition, proces-
sor 0 can have the �nal value (86) of the en-
tire scanl operation by adding 50 (the initial
value) to 36 (the value obtained after Step 2
of the algorithm). These kinds of memoization
avoid extra inter-processor communication in
di�, leading to an e�cient implementation.

To sum up, our implementation of di� uses
O(N=P+logP) parallel time, but the constant
factor is rather small.

4.2 The Library in C++

We have implemented di� and other simpler
skeletons in C++ along with MPI. With this
implementation, we provide these skeletons as
a library which programmers can use easily. To
make the skeletons practical, they must be ex-
ible (or polymorphic) enough to accept various
types of user-de�ned functions.

For example, consider map which has the
type of (a! b)! [a]! [b], where a and b are
parameterized type variables . Type variables
will be instantiated to some concrete types
such as Int and Char depending on problems.
Rather than de�ning many library functions
for map, such as a function for a = Int and
b = Int and another function for a = Int and
b = Char, we provide a polymorphic function
which can generate various instances according
to the given types.

Another problem is that even though we can
�x the types of a and b to some concrete types,
say a and b are both Int, the function used
in map may have the type of int(*)(int) or
void(*)(int*,int*) in C++. Library func-
tion for map must accept these variety of func-
tions.

Since this kind of programming in C is not
easy, we have decided to use the template
and overloading mechanisms in C++. Tem-
plate enables us to parameterize types in func-
tion de�nition, while overloading enables type-
directed selection of adequate C++ function.
By using these mechanisms, we are able to
make the functions compatible to any combi-
nations of data types. For example, the C++
function cmap which implements map skeleton
is de�ned as follows.

template <class A, class B>

void cmap(B (*f)(A), A *from, B *to,

int size)

{ }

template <class A, class B>

void cmap(void (*f)(A*,B*), A *from,

B *to, int size)

{ ... }

In this de�nition, lists are supposed to be

represented as arrays.

We have implemented di� in the same way.
One de�nition of the C++ function cdiff

which implements the skeleton di� is as follows.

template <class A, class B, class C>

C cdiff(C (*oplus)(C,C),

B (*otimes)(B,B),

C (*k)(A,B),

C (*g1)(B),

B (*g2)(A),

A *xs, int size, B *c,

MPI::Datatype db,

MPI::Datatype dc)

{ }

Note that there are other de�nitions of
cdiff for overloading. In this way, the pro-
grammer only needs to de�ne suitable actual
parameters | �ve functions, pointers to pro-
cessing data and data types.

In the current version of our library, the pro-
grammer needs to give correct data types of
MPI::Datatype, which are used in communica-
tion. In the above de�nition, db and dc corre-
spond to classes B and C respectively. Although
they might be derivable from other parameters,
in this version, it is the programmer's respon-
sibility to give the corresponding data types.

5 An Experiment

To take a look at the e�ectiveness of the di�

skeleton, we have conducted a preliminary ex-
periment on the tag matching problem, whose
parallel program in terms of di� is introduced
in Section 3.

Figure 2 shows the results of the program
executed on our PC cluster consisting of 3 mul-
tiprocessor (total of 9 processors) PC's con-
nected by a 100Base-TX fast Ethernet. The
MPI implementation used is MPICH1 version
1.1.

The cost of parallelized tm is O(N=P+logP)
time. Due to the restrictions of our computer
environment and to the fact that we are using
a PC cluster, the communication time becomes

1http://www-unix.mcs.anl.gov/mpi/mpich/

�

��

��

��

��

���

� � � � � � � � � �

1XPEHU�RI�3URFHVVHV

(
[
H
F
X
W
L
R
Q
�
7
L
P
H

5
D
W
L
R
�
>
�
@

Figure 2: Experimental Result of tm.

a substantial factor.

We have executed tm with data size (the
length of input list) of 50,000 whose levels of
nested tags are within 10. It can be seen from
the results in Figure 2 that the speed up is not
linear. This is due to that fact we are using a
PC cluster where the communication cost can-
not be ignored. However, the execution time
for 9 processes is approximately 14%, which
shows that we have achieved a fairly good re-
sult. We believe that a result close to linear
speed up could be achieved if it is executed on a
shared memory parallel machine. This clearly
shows the e�ectiveness of the di�usion skeleton
in creating an e�cient parallel program.

6 Conclusion

In this paper, we have proposed a new skeleton
di� for parallel programming. Thanks to the
underlying di�usion theorem, recursive func-
tions with some speci�c form are easily turned
into the form using di� skeleton. Since di�

can be e�ciently implemented, these recursive
functions can enjoy good performance on par-
allel environments.

Although our discussion in this paper is lim-
ited to the list data type, our di�usion theorem
can be extended to other recursive data types
such as trees [7]. According to this extension,
we can think of new parallel skeletons depend-
ing on the data type of interest. Our future
work is to implement these skeletons in an ef-
�cient way to make them practically useful in

parallel programming.

References

[1] Bird, R. An introduction to the theory
of lists. In M. Broy, editor, Logic of Pro-
gramming and Calculi of Discrete Design,
pages 5{42. Springer-Verlag, 1987.

[2] Bird, R. Introduction to Functional Pro-

gramming using Haskell. Prentice Hall,
1998.

[3] Blelloch, G.E. Scans as primitive op-
erations. IEEE Trans. on Computers,
38(11):1526{1538, 1989.

[4] Cole, M. Algorithmic skeletons : a struc-

tured approach to the management of par-

allel computation. Research Monographs
in Parallel and Distributed Computing,
Pitman, London, 1989.

[5] J. Darlington, A.J. Field, P.G. Harrison,
P.H.J. Kelly, D.W.N. Sharp, Q. Wu, Dar-
lington, J., Field, A.J., Harrison, P.G.,
Kelly, P.H.J., Sharp, D.W.N., Wu, Q. and
While, R.L. Parallel programming us-
ing skeleton functions. In Parallel Ar-

chitectures & Languages Europe. Springer-
Verlag, 1993.

[6] High performance Fortran language speci-
�cation. In High Performance Fortran Fo-
rum, 1993.

[7] Hu, Z., Takeichi, M. and Iwasaki, H.
Di�usion: Calculating e�cient paral-
lel programs. Proc. 1999 ACM SIG-

PLAN Workshop on Partial Evaluation

and Semantics-Based Program Manipula-

tion, pages 85{94, San Antonio, Texas,
1999. BRICS Notes Series NS-99-1.

[8] Skillicorn, D.B. Foundations of Paral-

lel Programming. Cambridge University
Press, 1994.

[9] Skillicorn, D.B. The Bird-Meertens For-
malism as a Parallel Model. In NATO

ARW \Software for Parallel Computa-

tion", 1992.

