Diffusion after Fusion

— Deriving Efficient Parallel Algorithms —

Raku Shirasawa', Zhenjiang Hu', Hideya Iwasaki*
T Department of Mathematical Engineering
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan

I Department of Computer Science
The University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585 Japan

Abstract Parallel skeletons are ready-made com-
ponents whose efficient implementations are known
to exist. Using them, programmers can develop par-
allel programs without concerning about lower level
of implementation. However, programmers may of-
ten suffer from the difficulty to choose a proper
combination of parallel skeletons so as to construct
efficient parallel programs. In this paper, we pro-
pose a new method, namely diffusion after fusion,
which can not only guide a programmer to develop
efficient parallel programs in a systematic way, but
also be suitable for optimization of skeleton parallel
programs. In this method, first we remove unneces-
sary intermediate data structure by fusion without
being conscious of parallelism. Then we parallelize
the fused program by diffusion. Using the Line-of-
sight problem, this paper shows that the proposed
method is quite effective.

Keywords: Parallel Skeleton, Bird—Meertens For-
malism, Fusion, Diffusion, Program Transforma-
tion.

1 Introduction

Parallel programming is notoriously difficult.
Factors contributing to this difficulty include
the complexity of concurrency, the effect of
resource allocation on performance and the
portability of the programs. To overcome this
difficulty, skeleton programming [5, 6] has been

proposed, where programimers are able to de-
velop parallel programs using skeletons, higher
order parallel forms, without being conscious
of the low level architectures.

However, developing efficient parallel pro-
grams still remains as a hard task. There are
two main obstacles. First, it is not obvious
how to choose proper parallel skeletons and
integrate them well in order to express given
problems in terms of skeletons. This task often
needs much experience, so the advantages of
the skeleton programming may be wiped out.
Second, it is often the case that programs in
skeletons are easy to understand but may in-
clude inefficiency, so the use of skeletons in
parallel programming does not always result
in efficient programs. To resolve this problem,
there have been many researches. In partic-
ular, Gorlatch [7] showed how to derive more
efficient parallel programs from inefficient ones
by ad hoc algebraic transformation over skele-
tons; an initial program is transformed to a
more efficient parallel program, while each step
has to preserve parallelism.

In this paper, we propose a new parallel pro-
gramming method, namely, diffusion after fu-
sion, enabling programmers to derive efficient
parallel programs from simple but inefficient
ones in a more systematic way. In this method,
first we remove unnecessary intermediate data
structures in a given program by fusion without

being conscious of parallelism. Then, we dif-
fuse the obtained program into that in terms
of parallel skeletons. Our main contribution
can be summarized as follows.

e We give a more systematic method for
both designing and optimizing parallel
programs. Unlike the existing ad hoc
methods like [7], our approach resolves the
usual inconsistent problem between opti-
mization by program transformation and
preservation of parallelism, due to the sep-
aration of optimizing process and paral-
lelizing process.

e Our method is general and can be applied
to a wide class of problems. The first rea-
son is that we use the function foldr as
the basis of our transformation. It is one
of the most general recursive forms for de-
scription of computation over a sequence
of values. The second reason is that we use
two general and powerful transformation
rules, Fusion Theorem [2] and Diffusion
Theorem [9], for optimization and paral-
lelization.

e Derived programs are practically efficient
concerning with implementation. We have
implemented our derived algorithms using
diff [1], a powerful parallel skeleton, and
our experimental results show the promis-
ing of our method.

2 Preliminaries

In this section, we briefly review the notational
conventions and some basic concepts in Bird
Meertens Formalisms (BMF for short) [2, 8,
10], which is the parallel computation model
of this research, and point out some related
results which will be used in the rest of this

paper.

2.1 Functions and Lists

Function application is denoted by a space and
the argument which may be written without
brackets. Thus fa means f(a). Functions

are curried, and application associates to the
left. Thus fab means (fa)b. Function ap-
plication binds stronger than any other op-
erator, so fa @ b means (fa) ® b, but not
f(a ® b). Function composition is denoted by
a centralized circle o. By definition, we have
(fog)a = f(ga). Function composition is
an associative operator. Infix binary operators
will often be denoted by &, ® and can be sec-
tioned; an infix binary operator like @ can be
turned into unary on binary functions by

(a®)b=(Db)a=(®)ab=adb.

Besides, the following functions will be used
later, and they are informally defined by:

maz [T1,22,...,%p] =21 T 22T ... T 2y
foldr (&) e [x1,x2,...,Zn]
=219 (220 (... ® (zn D e)))
2ip [T1,-] [Y1, -5 Yn)
= [(z1,91),-- -5 (T, yn)]
zipwith f [z1,..., 2] [Y1,- -, Yn]
= [f T yla"'af Tn yn]a

where operator (1) returns the bigger of two
operands.

Lists are finite sequences of values of the
same type. A list is either empty, a singleton,
or the concatenation of two other lists. We
write [] for the empty list, [a] for the singleton
list with element a, and z + y for the concate-
nation of two lists and y. Concatenation is
associative, and [] is its unit. For example, the
term [1] ++ [2] ++ [3] denotes a list with three
elements, often abbreviated to [1,2, 3]. We also
write z : zs for [z] + zs.

For other notations we follow those of the
functional language Haskell.

2.2 Parallel Skeletons in BMF

BMF [2] is a nice architecture-independent par-
allel computation model [11], consisting of a
small fixed set of specific higher order functions
which can be regarded as parallel primitives
suitable for parallel implementation. Three
important higher order functions, i.e. parallel
skeletons, are map, reduce and scan.

The map skeleton applies a function to every
element in a list. Informally, we have

map k [x1,%2,...,Zn] = [k T1,k T2, ..., kZp)].

The reduce skeleton collapses a list into a
single value by repeated application of some
associative binary operator. Informally, for an
associative binary operator &, we have

reduce (@) [T1,%2,...,Tn] = T1DT2D- - - Dxp.

The scan skeleton accumulates all interme-
diate results for computation of reduce. In-
formally, for an associative binary operator &
with its unit 1g, we have

scan (®) [x1,2,...,Tn]
= [Lg, 21,1 D X2, ..., L1 B T2 D -+ D Ty).

3 The Line-of-sight Problem:
A Running Example

To explain our idea, we use the line-of-sight
problem as our running example. The prob-
lem can be described as follows. Given a ter-
rain map in the form of a grid of altitudes and
an observation point, find which points are vis-
ible along a ray originating at the observation
point. For instance, the input is a sequence
(list) of points something like

[(1,1),(5,2),(2,3),(7,4),(19,5),(2,6)].

Each element in the sequence is a pair (a,d),
where a stands for the altitude of the point and
d for the distance from the observation point.
Clearly, a point P of (a,d) is visible if its an-
gle, arctan(a/d), is maximum among those of
points before P. For the above example, we
would like to have the result of

[True, True, False, False, True, False].

This problem is of much interest, and has
been studied in [3] where a clever and effi-
cient parallel program using the scan skeleton
is given. However, it remains unclear how to
obtain such a clever program, and in particu-
lar, how to obtain such kind of efficient parallel

programs for other similar but different prob-
lems. In this paper, we would like to demon-
strate how to systematically derive such kind
of efficient parallel programs.

Using the BMF skeletons, one can write
down the following initial and naive solution.

los xs = isvisible ms as
where as = map angle xs
ms = map maz (inits as)

where each point is checked whether its angle
is greater than or equal to the corresponding
maximum angle from the start point. The def-
initions of functions used in los are:

isvisible ms as = zipwith (=) ms as

angle (a,d) = arctan (a/d)

inits | | =]

inits (x 1 xs) = [z] : map (x :) (inits zs).

This initial solution is clear and paral-
lelism has been well specified by the skeletons
map and reduce. However, according to the
cost model in [3], it is rather inefficient with
O(N?3) work, O(log N) depth, and much data
communication due to inits, where N denotes
the number of points. By our approach, we can
systematically derive an efficient one with just
the same depth but only O(N) work and very
little data communication.

4 Fusion and Diffusion

Before proposing our approach, we explain two
concepts, fusion and diffusion, which play im-
portant roles in our new method.

4.1 Fusion

Fusion [2] is a standard optimizing process
whereby compositions of small functions are
fused into a single one and unnecessary inter-
mediate data structures are removed.

A recursive function f which consumes a list
can be naturally defined with e and & as fol-

lows.
fll=e
flr:azs)=z® f xs

Such function f is expressed by foldr (®) e.

It is well known that foldr is suitable for pro-
gram transformation in that there is a general
rule called Fusion Theorem [2].

Theorem (Fusion)

he=¢, h(zdr)=zQ(hr)
= ho foldr (®) e = foldr (®) ¢ n
As an example of the application of this the-
orem, let us consider the following function:

F xs = map maz (inits (map g s)).

Noticing that function (map g) can be ex-
pressed as

map g = foldr (&) []
where t®r =g x :r,

according to the theorem, we can get ¢’ and ®
based on the following relation.

e/ = map maz (inits [])
x @ map maz (inits r)
= map maz (inits (z 1)) (*)

It is obvious that €/ = []. Next,

map maz (inits (z ® 1))
= {def. of ®}

map maz (inits (g : 7))
= {def. of inits}

map maz ([g x| : (map (g :) (inits T)))
= {def. of map, map promotion}

maz [g] : map (mazo (g x :)) (inits r)
= {def. of maz, map promotion}

g z:map (g 1) (map maz (inits r)).

In this calculation process, we applied a rule
called map promotion. This rule is described
as follows.

map f (map g zs) = map (f o g) s

Matching the last expression with LHS of
(%) soon gives:

a®b=ga:map (g a?) (map maz (inits b)).

As a result, we have got the fused version of ¥
in terms of foldr.

F = foldr (®) []

4.2 Diffusion

Diffusion [9] is a transformation turning a re-
cursive definition into a composition of parallel
skeletons, namely map, reduce and scan.

Theorem (Diffusion) Given is a function h
defined in the following recursive form:

hlle=g1 ¢
h(z:zs)c=k (z,c)®h zs (c® g2 x).

If ® and ® are associative and have units, then
h can be diffused into the following form.

h zs ¢ = reduce (Q) (map k as) ® g1 b
where
bs + [b] = map (¢ ®)
(scan (®) (map g2 z3))
as = zip Ts bs B

This diffusion transformation has the follow-
ing two features. First, the diffusion transfor-
mation can be applied to a wide class of recur-
sive functions of interest. Second, the resultant
parallel program gives a good combination of
parallel skeletons, and is efficient, in the sense
that if the original program uses O(N) sequen-
tial time, then the derived parallel one takes at
most O(log N) parallel time. We give an exam-
ple of an application of the theorem to program
transformation in Section 5.

Based on the diffusion theorem, a parallel
skeleton called diff [1] is defined.

Definition (diff)
diff (@) (®) k g1 g2 xs ¢
= reduce (®) (map k as) D g1 b
where
bs ++ [b] = map (c ®)
(scan (®) (map g2 z3))
as = zip xs bs

5 Diffusion after Fusion

This section first describes the strategy of our
approach, called diffusion after fusion, for ob-
taining an efficient parallel program in terms
of parallel skeletons. Then we apply it to our
running example, the Line-of-sight problem.

5.1 Derivation Strategy

Given a problem, diffusion after fusion can be
summarized as follows.

Step 1: Specifying Initial Solution using Skele-
tons

We describe the problem straightforwardly
in terms of the parallel skeletons of map,
reduce and scan. In this step, rather than con-
cerning with efficiency, we should concentrate
on expressing concisely our solution, and spec-
ifying explicitly parallelism using skeletons.

Step 2: Eliminating Unnecessary Computation by
Fusion

We eliminate unnecessary intermediate data
passed between functions by applying the fu-
sion transformation. This is an important
optimization process for eliminating memory
spaces as well as for reducing data communi-
cation. Notice that in this step, we do not care
about parallelism. This is in sharp contrast to
existing approaches like [7], where all transfor-
mation is required to keep parallelism.

Step 3: Parallelizing by Diffusion

We parallelize the program obtained in Step
2 by applying the Diffusion Theorem, result-
ing in an efficient parallel program using par-
allel skeletons. The difficulty lies in the deriva-
tion of associative binary operators as required
in the theorem. Fortunately, with the context
preservation approach [4], we can systemati-
cally derive such associative operators.

Step 4: Coding with diff Library

We code the parallel program obtained in
Step 3 using some existing programming lan-
guage depending on the environment. In our
experiment discussed in Section 6, we used our
MPT skeleton library for C++ [1]. This coding
process is actually a straightforward transla-
tion.

5.2 Example

We shall demonstrate our approach by the run-
ning example Line-of-sight problem (los) in
Section 3.

Step 1:

Initial solution has already been given in
Section 3.

los zs = isvisible ms as
where
as = map angle Ts
ms = map mazx (inits as)
isvisible ms as = zipwith (=) ms as
angle (a,d) = arctan (a/d)
inits [| =]
inits (z : s) = [z] : map (x :) (inits zs)

Step 2:

We will try to eliminate unnecessary inter-
mediate data structures in ms and isvisible.
For ms, i.e., we want to fuse the definition of
the following F,,s into a single foldr.

Fp.s xs = map maz (inits (map angle xs))

This fusion process has already been given
in Section 4.1 with the following result.

Frns = foldr (®) []

z ®r = angle z : map (angle z 1) r

Here, the obtained F;,s can be improved fur-
ther, because map is called in each recursive
step. In this case, we rewrite the function to
another one with extra parameter, removing
potential inefficiency.

F. . zsc=map (c?1) (F,,, zs)

By the generalization method [9], we can
have

Fps s =F),, s 0
P lle=]]
Fl (x:zs)c

= (¢ 1 angle z) : F) . zs (c 1 angle x).

Next, we fuse los xs = isvisible ms as. Be-
cause the function F), has an extra argument,
we change the definition of los accordingly to

los s = los' zs 0
los' zs c
= zipwith (=) (F},, xs ¢) (map angle zs).

Now we can apply the fusion transformation
similarly. Since the space is limited, we show
only the following result which does not gener-
ate intermediate data structure.

los s = los' zs 0
los' [Je=1]
los' (z:xs) ¢
= (¢ < angle x) : los' xs (c 1 angle).

Step 3:

After obtaining an efficient linear algorithm
for the problem, we proceed to parallelize los’
using the Diffusion Theorem. To apply the the-
orem, we have to make sure that two operators
(: and 1) in the above definition are, as required
by the theorem, associative. The operator 7 is
obviously associative. For :, we can represent
it using the associative operator . So the
function los' becomes:

los zs =los' s 0
los' []e=1]
los' (z:zs) ¢
= [c < angle z] ++ los' zs (¢ T angle x)

Applying the diffusion theorem gives the fol-
lowing program using the parallel skeleton diff.

los' £s ¢ = diff (4+) (1) k g1 go s ¢
where

k (z,c) = [c < angle z]

g1 c=[]

g2 © = angle x.

Step 4:

Now we code the obtained program using
C++ and MPI Library. Thanks to the library
functions [1] which implements the diff skele-
ton, we need only to code the arguments to
diff: g1, g2, k,® and ®.

typedef pair {

int altitude, distance;
};
int* oplus(int*,int*) {...}
int otimes(int,int) {...}
int k(pair x,int c¢) {...}
int gi(int ¢) {...}
int g2(pair x) {...}

Execution Time Ratio
o
@

6 8 10
Number of Processes

Figure 1: Experimental Result of los

int* los(pair *xs) {
return los’(xs,0);
}
int* los’(pair *xs,int c) {
return diff(oplus,otimes,k,
gl,g2,xs,c);

6 An Experiment

To take a look at the effectiveness of a program
derived by our method, we have conducted pre-
liminary experiments on the line-of-sight prob-
lem given in Section 5.

Figure 1 shows the result of the pro-
gram executed on SR2201, which is a HI-
TACHI’s massively parallel supercomputer
(300MFLOPS/PE, 256MB/PE of memory
size, 300MB/s of communication rate), using
1 to 16 processors. We have executed los
with data size (the length of the input list) of
100,000. The linear speed-up shows the effec-
tiveness of our method.

7 Another Example

Another example is the maximum segment
sum (mss) problem. This problem has been
studied by many researchers [10, 8, 7], and our
result gives another efficient parallel program.

Starting with the following obviously correct
solution to the problem:

mss = max © map sSuim o segs

segs [] =]
segs (x : zs) = inits (z : xs) + segs zs,

we can systematically derive the follow efficient
parallel program.
mss 1s =y where (z,y, z,w) = Fl . 1s
E] .. zs = reduce (®) (map k zs)
where
(21,72, 23, T4) ® (Y1, Y2, Y3, Ya)
= ((y1 +x3) T 21, (Y1 + 24) T y2 T 2,
Y3 + 3, (T4 +y3) T ya)
k x = (z,0,z,0)

8 Conclusion

In this paper, we have proposed a new method
for parallel programming. Thanks to the un-
derlying fusion theorem, diffusion theorem and
diff skeleton, many skeleton parallel programs
can be transformed into more efficient ones.
Although this paper is about skeleton pro-
grams over list data structures, the fusion the-
orem and the diffusion theorem can be ex-
tended to other recursive data types such as
trees [2, 9]. We are investigating how to deal
with skeleton programs on trees efficiently.

References

[1] S. Adachi, H. Iwasaki, and Z. Hu. Diff:
A powerful parallel skeleton. In The
2000 International Conference on Paral-
lel and Distributed Processing Techniques
and Application, pages 525-527 (Vol.4),
Las Vegas, 2000. CSREA Press.

[2] R. Bird. An introduction to the theory
of lists. In M. Broy, editor, Logic of Pro-
gramming and Calculi of Discrete Design,
pages 5—42. Springer-Verlag, 1987.

[3] Guy E. Blelloch. Scans as primitive op-
erations. IEEE Trans. on Computers,
38(11):1526-1538, November 1989.

[4] W.N. Chin, A. Takano, and Z. Hu. Paral-
lelization via context preservation. IEEE
Computer Society International Confer-

ence on Computer Languages ICCL’98,
May 1998.

[5] M. Cole. Algorithmic skeletons : a struc-
tured approach to the management of par-
allel computation. Research Monographs
in Parallel and Distributed Computing,
Pitman, London, 1989.

[6] J. Darlington, A.J. Field, P.G. Harrison,
P.H.J. Kelly, D.W.N. Sharp, Q. Wu, and
R.L. While. Parallel programming us-
ing skeleton functions. In Parallel Ar-
chitectures & Languages Furope. Springer-
Verlag, June 93.

[7] S. Gorlatch. Systematic efficient paral-
lelization of scan and other list homomor-
phisms. In Annual European Conference
on Parallel Processing, LNCS 112/, pages
401-408, LIP, ENS Lyon, France, August
1996. Springer-Verlag.

[8] Z. Hu, H. Iwasaki, and M. Takeichi. For-
mal derivation of efficient parallel pro-
grams by construction of list homomor-
phisms. ACM TOPLAS, 19(3):444-461,
1997.

[9] Z. Hu, M. Takeichi, and H. Iwasaki.
Diffusion: Calculating efficient paral-
lel programs. In 1999 ACM SIG-
PLAN Workshop on Partial FEvaluation
and Semantics-Based Program Manipula-
tion, pages 85—94, San Antonio, Texas,
January 1999. BRICS Notes Series NS-99-
1.

[10] D.B. Skillicorn. Foundations of Paral-
lel Programming. Cambridge University
Press, 1994.

[11] D.B. Skillicorn. Architecture-independent
parallel computation. IEEE Computer,
23(12):38-51, December 1990.

