Efficient Parallel Skeletons for Nested Data Structures

Tomonari Takahashi’, Hideya Iwasakit, Zhenjiang Hu'

f Department of Mathematical Engineering
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan

! Department of Computer Science
The University of Electro-Communications
1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585 Japan

Abstract Skeleton programming enables program-
mers to build parallel programs easier by providing
efficient ready-made skeletons. In addition to prim-
itive skeletons, diffusion skeleton has been proposed
for rather complicated problems, abstracting a good
combination of primitive skeletons. However, since
they equally treat each element in target data, the
existing skeletons are not always efficient for nested
data structure where sizes of inner elements may be
remarkably different. To resolve this problem, this
paper proposes a new parallel skeleton, segmented
diffusion, specially for nested data structure. The
proposed skeleton is a nested version of the diffu-
ston skeleton and similarly provides a proper com-
bination of primitive nested skeletons. This paper
also describes implementation of the skeleton and
some experimental results, showing that the pro-
posed skeleton is efficient and can be applied to a
wider class of problems.

Keywords: Skeleton Programming, Nested Data
Structure, Segmented Skeleton, Bird—Meertens
Formalism

1 Introduction

Parallel skeletons are a set of functions which
make both programming and parallelization
easier. By using parallel skeletons with effi-
cient implementations, programmers can write
efficient parallel programs without the deep
knowledge of parallel algorithms and hardware.

Programming using parallel skeletons is called
skeleton parallel programming [5, 6, 9], or sim-
ply skeleton programming. FExamples of such
parallel skeletons are higher order functions of
map, reduce and scan in BMF [8].

Unfortunately, parallel skeletons are often
too primitive to describe programs solving a
bit complicated problems. In order to make
programs efficient, programmers are required
to choose appropriate primitive skeletons and
combine them in a suitable way. It is not an
easy task, since programming is apt to become
a process with much trial and error.

To overcome this problem, we proposed a
parallel skeleton, namely diffusion skeleton diff
[1]. This skeleton is derived from the Diffusion
Theorem [7] and is defined in terms of prim-
itive skeletons map, reduce and scan. It ab-
stracts a ‘good’ combination of parallel prim-
itives, and thanks to the underlying theorem,
recursive functions defined naturally in some
specific form over recursive data structure can
be, under some conditions, turned into the
form using the diff skeleton.

These skeletons including the diff are cer-
tainly efficient enough for flat data structure,
e.g. a list of integers, by distributing almost
the same number of elements to each processor.
However, for the case of nested data structure,
e.g. a list of lists of integers, simply distributing
the same number of inner lists to each proces-
sor cannot lead to a good result. The reason
is that when the target data is ‘irregular’ (the

sizes of inner lists are remarkably different),
the amount of data assigned to each processor
is not balanced. This load unbalance cancels
the effect of parallelization, and as a result, the
total computation time depends on that of the
processor burdened with the maximum load.

To remedy this situation, skeletons specially
for nested data structure[4], i.e. segmented
skeletons, have been proposed. Segmented
skeletons deal with nested data structure as flat
one with some additional information about
the original (nested) data (see Section 3). This
flat representation enables us to distribute al-
most the same amount of elements of basic
type to each processor equally, and to make use
of efficient algorithms for flat data structure.
An example of such skeleton is the segmented
scan [3].

For segmented skeletons, however, the same
problem as the case of skeletons for flat data
structure remains: how to combine segmented
skeletons to have a good effect of paralleliza-
tion?

In this paper, we shall propose a new parallel
segmented skeleton called segmented diffusion
(s-diff), which abstracts a good combination of
(primitive) segmented skeletons. The skeleton
applies the diff skeleton to every element (ele-
ment of depth 1) within a given nested data.
We also give an implementation of s-diff, and
describe some experimental results which show
the effect of this new skeleton.

2 Diffusion Skeleton on Flat
Data Structure

In this section, we give some notational con-
ventions, and basic concepts in Bird-Meertens
Formalism (BMF) [2, 9], which is the parallel
computation model of this research. We also
review the Diffusion Theorem [7] and the defi-
nition of the diffusion skeleton [1].

2.1 Notations

Function application is denoted by a space and
the argument which may be written without

brackets. Functions are curried, and applica-
tion associates to the left. Thus f a b means
(f a) b. Function application binds stronger
than any other operator, so f a @ b means
(fa)®b, and not f (a ®b). Function com-
position is denoted by a centralized circle o.
By definition, we have (fog)a = f (ga). Note
that function composition is an associative op-
erator. Infix binary operators will often be de-
noted by &, ®, ®, etc. and can be sectioned;
an infix binary operator like & can be turned
into unary or binary functions by

a®b=(a®)b=(®b)a=(P)ab.

Lists are finite sequences of values of the
same type, and denoted by sequentially list-
ing each element separating by comma within
square bracket, e.g. [1,2,3]. A list is either
empty, or a cons of a value and a list. We
write [] for the empty list and z : zs for cons
whose first element is z and the rest is the list
zs. We also write zs 4 ys for the concatenation
of two lists zs and ys. For example, [1] + [2, 3]
denotes a list with three elements [1, 2, 3].

Given a binary operator @ and two lists, we
define the element-wise binary operator @®. It
applies @ to corresponding elements of the two
lists. Informally speaking,

[T1,Z2,---,Tn] ® [Y1,Y25-- - Yn]
= [T1 @ y1, T2 D Y2, .-, Tn B Yn)-
For other notations, we follow those of the
functional language Haskell.
The most important (primitive) skeletons in
BMF are map, reduce and scan. Their informal
definitions are:

mapf[.Z'l,l'Q,..-,IEn] = [fmla fa"Qa et f.Z‘n]
redUCG(@) [mlal‘Q""axn]:-TIEBIQGB“‘@.’ER
scan (@) [z1,z2, ..., Ty

=g, 1, L1 D T2, ..., T1 B T2 D+ D Ty).

where @ is an associative binary operator
whose unit is ¢g.

The length of the result of scan is N + 1
when its input list is of length N, but some-
times it is convenient to have the result of the
same length. Scan’ and prescan [4] skeletons
can be used for this purpose. Their informal
definitions are:

scan’ (&) [z1, 2, ..., Tn]

= ['Tl, 1D T2 ..., .Tl@.’L'QEB@.Tn]
prescan (@) [z1,Z2,- -, Tn_1,Zn)

=L@, 21, Z1® T2, ..., L1 DT2D - D Tp_1].

It may be curious that x, is not used at all
in the result of prescan. However, from the
implementation point of view, 1 @ o @ ---
T, can be easily calculated as a side effect of
computation of prescan.

For these skeletons, we have efficient parallel
implementations. Let the size of input list be
N, and the number of processors be P. Then
map needs O(N/P) time, reduce, scan, scan’
and prescan need O(N/P + log P) time [3, 1],
assuming that calculation of f and @ needs
constant time.

2.2 The Diffusion Skeleton

Diffusion Theorem [7] describes a transforma-
tion rule from a recursive definition into a com-
position of map, reduce and scan.

Theorem (Diffusion) Given is a function h
defined in the following recursive form:
hlle=g1¢c

h(z:zs)c=k(z,c) ®hzs(c® g2).

If ® and ® are associative and have units, then
h can be diffused into the following form.

h zs c = reduce (®) (map k as) D g1 b

where
bs + [b] = map (¢ ®) (scan (®) (map g2 zs))
as = zip s bs |

This transformation can be applied to a wide
class of recursive functions which naturally in-
duct over a given list. Based upon this theo-
rem, the diff parallel skeleton [1] is defined.

Definition (Diffusion Skeleton)

diff (&) (®) k g1 g2 zs ¢

= reduce (@) (mapkas) ® g1 b

where
bs + [b] = map (¢ ®) (scan (®) (map g zs))
as = zip zs bs

where @ and ® are associative operations with

units. B

Clearly, the function A in the Diffusion The-
orem can be represented in terms of the diff
skeleton as:

h zs c = diff (@) (®) k g1 g2 zs c.

Diff is a higher-order function which de-
scribes a general pattern of efficient parallel
programs. It gives a good combination of prim-
itive skeletons map, reduce and scan, hiding the
details how they are combined. Also, as de-
scribed in [1], programs in terms of diff can
be executed efficiently in parallel environment,
in the sense that if the original program uses
O(N) sequential time, then the parallel one us-
ing diff takes at most O(log N) time.

3 Primitive Segmented Skele-
tons

In this section, we introduce a set of primitive
segmented skeletons [4] for nested data struc-
ture. In the rest of this paper, we restrict our
target nested data structure to a list of flat
lists, that is, a list whose depth is two such as
[[1,2],[3,4,5]]. We call them nested lists.

To make segmented skeletons efficient, we
represent a nested list using a flat list of pairs.
Each element in this flat list is a pair of flag,
a boolean value, and an element of inner list
of the original nested list. If the element is the
first of an inner list, flag is T, otherwise flag is
F. We use the term specification as the nested
list of depth two itself, and its implementation
as the list of pairs described here.

For example, if the specification is

[[‘771’ T2, .’L‘3], [$4’ '7"5]’ [wﬁ]a [567’ xS]]a

then its implementation is the following list of
length 8.

[(Tvml)a (Fa 372)7 (va?))v (T,£C4),
(F7$5)a (Ta 3:6), (T7$7)a (F7'T8)]'

Using this implementation with a flat
list, each processor can be assigned al-
most the same number of data elements,
and therefore, reasonable load balancing can
be achieved. For the above example, if
there are four processors, they are assigned

to [(T,$1),(F,.’L‘2)], [(F,$3),(T,$4)], [(F,.Z‘5),

(T,z6)], and [(T,z7),(F,zg)], respectively.
Note that elements of the same inner list in
the specification may be divided and assigned
to more than one processors.

We have parallel skeletons for nested lists
which correspond to map, reduce, scan fam-
ily for flat lists. To each inner element within
a given nested list, they apply corresponding
skeletons for flat lists. As described above, we
have two kinds of representations for nested
list: specification and implementation. We
put ‘S-’ to the names of segmented skeletons
for specification, and ‘s-’ for their implemen-
tations. For example, S-map is the segmented
map for specification, and s-map is that for im-
plementation which are used in the real pro-
gramming

We show definitions of segmented map, scan,
prescan and reduce below.

Segmented map
Segmented map applies map to each list within

a given nested list.

e Specification:

S-map f [] =]
S-map f (zs: zss) = map f zs: S-map f zss.

e Implementation:

s-map f [] = []
s-map f ((b,x) : bzs) =

Segmented scan and prescan

(b, fx) : s-map f bzxs.

Segmented scan and prescan apply scan’ and
prescan respectively to each list within a given
nested list.

e Specification:
S-scan (&) [] = []
S-scan (@) (zs : zss)
= scan’ (®) zs: S-scan (&) zss

S-prescan (&) [] =[]
S-prescan (@) (zs : xss)
= prescan (@) zs : S-prescan (D) zss.

e Implementation:

s-scan (@) bzs = scan’ (®) bzs © bxs

where (b1,21) ® (T, z2) = (T, z2)
(bl,ml) (F CL‘Q) (bl, X1 D CL‘Q)
(b1,21) © (ba, 32) = (b1, 22)

s-prescan (@) bxs = rshift 1 (s-scan (@) bzxs).

The s-scan skeleton makes use of scan’ with
the associative operator ®. This operator
scans and combines the values in a given list,
paying attention to flag values. If the T flag,
the sign of the beginning of a new inner list, is
encountered, it resets the scanning value. How-
ever, since scan’ with ® collapses flag values, ©
is necessary to restore correct flags.

In the implementation of s-prescan, rshift is
used to shift elements of each inner list within
the original nested list to the right direction,
dropping the rightmost element and supplying
L into the leftmost position. For example,

rshift v [(T,z1), (F,z2), (T, z3), (F,z4)]

= [(T’ l’@)’ (Fa '7"1)’ (T7 LGB)’ (F7 .'I:3)]

At the first sight, this operation seems to be
complex, but under the condition that rshift
is applied to the result of s-scan skeleton, it is
simple and inexpensive since adjacent proces-
sors can share the ‘border’ value of s-scan.

Segmented reduce

Segmented reduce applies reduce to each list
within a given nested list. Note that the re-
sulting list must be flat one.

¢ Specification:

S-reduce (@) [] =[]
S-reduce (@) (zs : zss)
= reduce (@) zs : S-reduce (@) zss.

e Implementation:

s-reduce (@) bzs = ext (s-scan (&) bzs)
where
ext[] = []
ext [(b,z)] =
ext ((b,z1) : (T, z2) : bxs)
=z : ext ((T,z2) : bxs)
ext ((b,z1) : (F,z2) : bxs)
= ext ((F,z2) : bzs).

Because the result of reduce is equal to the
rightmost value of scan, function ezt gathers
only the rightmost values from flat representa-
tion of nested list. To do this, ezt pays atten-
tion to the flag, and picks up values just before
T flag together with the last value.

4 Segmented Diffusion Skele-
ton

As mentioned in Introduction, diff is certainly
efficient for flat data structure, however, di-
rect application of diff to irregular nested data
structure cannot show their full power because
of unbalance of the sizes of inner lists. In this
section, we shall propose a new parallel skele-
ton, segmented diffusion, which can be applied
to a wide class of problems, integrating primi-
tive segmented skeletons.

As an example, assume that we are given
a document composed of many paragraphs of
various lengths. It contains many open and
close tags like XML document, and each para-
graph must be consistent, i.e. open and close
tags must perfectly match within each para-
graph. And assume that the document is rep-
resented as a list of lists xss, where each in-
ner list correspond to each paragraph. If we
have a function tagmatch which judges whether
a given list (paragraph) has consistent open
and close tags, then the problem is specified
as map tagmatch zss. Since it is known that
tagmatch can be expressed in terms of diff
skeleton [7, 1], this problem can be seen as to
map the diffusion skeleton to the entire doc-
ument (nested list). The segmented diffusion
skeleton is necessary to write a program for this
kind of problem.

Segmented diffusion skeleton applies diff to
every element of the nested list.

e Specification:

S-diff (&) (®) kg1 92 [] ¢ =[]

S-diff (@) (®) k g1 g2 (zs : zs5)

=diff (®) (®) kg1 g2 zs¢

: S-diff (@) (®) k g1 g2 wss c.

Implementation of this segmented diffusion
skeleton can be expressed as a combination of
primitive segmented skeletons. We show the
result first, and then give the underlying theo-
rem of the implementation.

e Implementation:

s-diff (®) (®) k g1 g2 basc
= s-reduce (@) (s-map k bzs) @ (map gy bs)

where
bys = s-map (¢ ®)
(s-prescan (®) (s-map g2 bzs))
bs = map (c®)
(s-reduce (®) (s-map g2 bzs))
bzs = bxs © bys
(blax) S/ (any) = (bla (‘T,y))

The s-diff can be efficient on parallel envi-
ronment, since all the skeletons used in s-diff
can be implemented efficiently, and they are
well combined for implementation of the seg-
mented diffusion skeleton.

This implementation is based on our foll-
wing theorem.

Theorem (Segmented Diffusion)
S-diff (@) (®) k g1 g2 zss ¢
= S-reduce (@) (S-map k ass) @ (map g; bs)
where
bss = S-map (c ®)
(S-prescan (®) (S-map g9 55))
bs = map (¢ ®)
(S-reduce (®) (S-map g ss))
ass = S-zip 1ss bss
S-zip (][] =]
S-zip (ps : pss) (gs : gss)
= 2ip pS qS : S-zip PSS qss.
Proof: In this proof, for simplicity, we omit
operators and functions (@, ®, k, g1 and g9)
and an accumulating parameter ¢ in diff and
S-diff. The proof proceeds in an inductive way.

e Base case (zss = []).

It is easy to show that S-diff [] = []. Since
the space is limited, we omit this caluculation
process.

e Inductive case (zss = zs' : zss').
We show that
S-diff (zs' : zss') = diff zs' : S-diff zss'.
S-diff (zs' : zss')
= {new definition}
S-reduce (®) (S-map k ass) @ (map g1 bs)
where
bss = s-map (cQ®)
(S-prescan (®) (S-map go (2§’ : z55')))
bs = map (c®)
(S-reduce (®) (S-mapgs (zs' : z55')))
ass = S-zip (zs' : zss') bss.

Here, we proceed calculation of bss and bs
separately.
bss = s-map (cQ®)
(S-prescan (®) (S-map g2 (z¢' : 755)))
= {S-map, S-reduce, map}
map (c®) (prescan (®) (map g2 zs'))
: s-map (c®) (S-prescan (®)(S-map gy zss'))
= bs' : bss
where
bs' = map (c®) (prescan (®) (map g zs'))
bss' = s-map (c®)
(S-prescan (®)(S-map g2 755')).
bs = map (c®)
(S-reduce (®) (S-map go (zs' : zs5')))
= {map, S-reduce, S-map}
¢ ® (reduce (®) (map g2 zs'))
: map (¢®) (S-reduce (®) (S-map g3 zs5'))
— blI . bS”
where
b" = ¢ ® (reduce (®) (map g2 z5'))
bs" = map (c®)
(S-reduce (®) (S-map g2 z55)).

Next, we calculate ass.
ass = S-zip (zs : zsd) bss
= S-zip (zs' : zss') (bs' : bss)
= zip zs' bs' : S-zip zss’ bss'
= as' : asd
where as’ = zip 25 bs'

ass’ = S-zip zss bss'.
Then we return to the first equation.
S-reduce (@) (S-map k ass) @ (map g; bs)
= S-reduce (@) (S-map k (as' : ass’)
& (map g1 (V' : bs"))
= {map, S-map, S-reduce }
reduce (&) (map k as’) & g1 b”
: S-reduce (®) (S-mapk ass') & mapgi bs”.

Putting the above results together, we have:

S-diff (®)(®) k g1 g2 (28 : zss') ¢
= reduce (@) (mapk as’) ® g1 b
: S-reduce (®) (S-mapk ass’) & mapg; bs"
where
bs' = map (c®)
(prescan (®) (map g2 z5'))
bss' = s-map (c®)
(S-prescan (®) (S-map go zs5'))
b" = ¢ ® (reduce (®) (map g2 z5'))

" s-diff applied to irregular data ——
<-diff applied to uniform data -~—-—

Excution time Ratio

L L L
5 6 7 8

L L
1 2 3 4
Number of Processes

Figure 1: s-diff to uniform and irregular data

bs" = map (c®)

(S-reduce (®) (S-map g2 zss'))
as = zip zs' bs
ass’ = S-zip zss bss'

= {inductive hypothesis and definition of diff}
diff zs' : S-diff zss'.

Then S-diff skeleton has been proved to be
equivalent to the specification. |

With the suitable conversion of data format,
we can define s-diff skeleton described before.

5 An experiment

To take a look at the effectiveness of the seg-
mented diffusion, we made some preliminary
experiments on the paragraph-wise tag match-
ing problem in Section 4. We implemented the
primitive (segmented) skeletons given in Sec-
tion 3 and segmented diffusion s-diff by C lan-
guage and MPI library. Our machine environ-
ment consists of two multiprocessor PCs: one
has 4 processors (PentiumlIII Xeon 550MHz)
and the other has also 4 processors (Pentiu-
mIIT Xeon 450MHz).

Test data of the entire document has 100
paragraphs with 5,000,000 characters. Figure
1 shows the results. The solid line represents
the case where the sizes of paragraphs are quite
unbalanced, and the broken line represents the
case where the sizes of paragraphs are almost
uniform. We can see that two lines are very

Excution time Ratio

L L L L
1 2 3 4 5 6 7 8
Number of Processes

Figure 2: s-diff and map diff to irregular data

similar, showing that the proposed s-diff is ef-
ficient enough even though the input (nested)
data is irregular.

To compare s-diff skeleton with a combina-
tion of map and diff skeleton for flat data struc-
ture, we have conducted another experiment.
The input data is the same as that used in the
experiment of the solid line in Figure 1, ex-
cept that the original representation is used in
this experiment. Same number of inner lists
in the nested list are distributed to each pro-
cessor without taking their sizes into account,
and they are supplied to diff skeleton. The re-
sult is shown by a broken line in Figure 2. The
total computation time does not decrease even
though total number of processors increases.
This fact suggests that the computation time
depends on the paragraph of the largest size.
The solid line is the same as that of Figure 1,
but we plot it in Figure 2 for comparison.

These results clearly show the effectiveness
of the proposed segmented diffusion skeleton.

6 Conclusion

In this paper, we have proposed a new seg-
mented skeleton s-diff for nested data struc-
ture. Combined with other parallel segmented
primitives, segmented diffusion can be applied
to a wide class of problems on nested data
structure. Since the proposed skeleton can be
efficiently implemented, even though a given

nested data is irregular, we can enjoy good per-
formance on parallel environment. Our future
work is to extend the s-diff skeleton to other re-
cursive data types such as trees [7] to make the
skeleton more useful in parallel programming.

References

[1] S. Adachi, H. Iwasaki, and Z. Hu.
Diff: A powerful parallel skeleton. In
PDPTA 2000, pages 525-527 (Vol.4),
2000. CSREA Press.

[2] R.S. Bird. An introduction to the theory
of lists. In M. Broy, editor, Logic of Pro-
gramming and Calculi of Discrete Design,
pages 5b—42. Springer-Verlag, 1987.

[3] G.E. Blelloch. Scans as primitive op-
erations. IEFE Trans. on Computers,
38(11):1526-1538, November 1989.

[4] G.E. Blelloch. Vector Models for Data-
Parallel Computing. MIT Press, 1990.

[5] M. Cole. Algorithmic skeletons : a struc-
tured approach to the management of par-
allel computation. Research Monographs
in Parallel and Distributed Computing,

Pitman, 1989.

[6] J. Darlington, A.J. Field, P.G. Harrison,
P.H.J. Kelly, D.W.N. Sharp, Q. Wu, and
R.L. While. Parallel programming us-
ing skeleton functions. In Parallel Ar-

chitectures & Languages Furope. Springer-
Verlag, June 1993.

[7] Z. Hu, M. Takeichi, and H. Iwasaki. Dif-
fusion: Calculating efficient parallel pro-
grams. Proc. PEPMY99, pages 85-94, 1999.
BRICS Notes Series NS-99-1.

[8] D.B. Skillicorn. The Bird-Meertens For-
malism as a Parallel Model. In NATO
ARW “Software for Parallel Computa-
tion”, June 1992.

[9] D.B. Skillicorn. Foundations of Paral-
lel Programming. Cambridge University
Press, 1994.

