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Abstract

It is often convenient to write a function and apply it to a spe-
cific input. However, a program developed in this way may be in-
efficient to evaluate and difficult to analyze due to its generality.
In this paper, we propose a technique of new specialization for a
class of XML transformations, in which no output of a function
can be decomposed or traversed. Our specialization is type-based
in the sense that it uses the structures of input types; types are de-
scribed by regular hedge grammars and subtyping is defined set-
theoretically. The specialization always terminates, resulting in a
program where every function is fully specialized and only accepts
its rigid input. We present several interesting applications of our
new specialization, especially for injectivity analysis.

Categories and Subject Descriptors  1.2.2 [Artificial Intelligencel]:
Automatic Programming—Program transformation; D.1.1 [Pro-
gramming Techniques]: Applicative (Functional) Programming

General Terms Languages

1. Introduction

It is often convenient to write a function and apply it to a specific
input. For example, a user may apply function half defined by
half(x) = |z/2] to even numbers, or more generally, apply
function f :: A — B to an input of type A" where A’ is a subtype
of A.

We focus on subtyping in XML transformations (functions).
For example, consider an input document of a type where an ele-
ment <person> must contain exactly one occurrence of <email>,
<tel>, <studentID>, and <postal_address> in any order. Writ-
ing a function that exactly accepts such data is cumbersome be-
cause it would consist of twenty-four branches, i.e., the number of
permutations of four elements 4! = 24. One, however, can easily
define the function as

transformPerson(<person>(z)) = foreachF(x)
foreachF (€) e

foreachF (z :: Elem .1 :: Elem™) = f(z) . foreachF (r)
f(<email>(z)) .

f(<tel>(x))
f(<studentID>(x))
I(

<postal_address>(z))
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if the order of the four does not count. Here, we use ¢ to represent
the empty sequence of XML elements, A* for the Kleene closure
of A, Elem for a type corresponding to any XML element, <t>(x)
for <t>x</t>, and the operator “.” to concatenate two sequences.
Function transformPerson above accepts the input of the type
where <person> contains <email>, <tel>, <studentID>, and
<postal_address> without any restrictions. The input type of
transformPerson is a supertype of the type of input to which a
user wants to apply the function. That is, since the application of
transformPerson to the type of input uses subtyping, the applica-
tion is only valid with subtyping in the sense of type correctness.
Many modern XML transformation languages such as XDuce [16],
CDuce [1], and Xtatic [18] support subtyping. Also, writing a func-
tion like that above supported by subtyping sometimes consid-
ered to be advantageous because a function defined in this way is
reusable and robust to changes in input type, i.e., changes in the
schema of an input XML document.

Despite the convenience of writing flexible programs with sub-
typing, a program defined in this way might be inefficient to evalu-
ate and difficult to analyze.

First, a specific function can be implemented more efficiently
than a general function. Consider the following function.

f(e)
f(<a>(x :: String) . 7)

fr<o>(y))

Function f reverses an input when it only consists of <a> elements,
and does something when it ends in <b>. To directly evaluate f,
we must examine whether an input is a sequence of <a>s or is
a sequence that ends in <b>, which takes O(n) time for each
recursive call of f where n is the length of the input sequence.
However, when a set of inputs of f is restricted to sequences of
<a>s, we do not need to examine the whole input sequence for each
recursion; it is sufficient to check whether the input list is empty or
not, which takes a constant time. Actually, CDuce employs such
a type-based technique of optimization [10]; if the system can
establish that the inputs of f are restricted to sequences of <a>s, the
restricted version of f above runs in O(n) time in CDuce, where
n is the length of the input sequence of <a>s. However, as we do
not know the inputs that have been restricted to sequences of <a>s
by f itself for f above, we cannot enjoy this kind of type-based
optimization.

Second, in program analysis, we want to analyze the behavior
of a general function restricted to specific inputs but not the general
function itself. For example, consider injectivity analysis, which is
important in program inversion [9, 12, 13, 14], program bidirec-
tionalization [24], and the validation of bidirectional transforma-
tion [4]. However, sometimes the injectivity of f| 4/, which reads
the function f whose domain is restricted to A’, is different from
that of f : A — B. For example, consider the following function.

€

f(r) . <a>(x)

> 1> 1

unifyAddress(<email>(x))
unifyAddress(<tel>(z))

<address>(x)
<address>(x)

> 1



Transformation unifyAddress produces an <address> element
from either an <email> element that describes an email address
or a <tel> element that describes a telephone number. In many
situations, a set of strings describing email addresses is disjoint
from a set of strings describing telephone numbers. Consequently,
restricted to type 1" defined by

T = <email>(EmalText) | <tag>(TelNumber)

where EmailText and TelNumber are disjoint, unifyAddress|r
becomes injective. Another example is precise type inference. For
function f : A — B and type A’ C A, the range of function
flar would be smaller than B. For example, the output type of
unifyAddress is <address>(T) where T represents anything,

while the output type of unifyAddress|r is <address>(EmailText |

TelNumber). Precise type inference is not only useful for precise
type checking [23], but also for program inversion [9, 13, 14] in the
derivation of deterministic inverses.

We rephrase the above problems with subtyping as follows. For
general function f :: A — B and a specific input of type A" where
A’ C A, although we want to analyze f| 4/, the only information
available from a program is that of f and A’ but not that of f| 4.

To solve the problem, we propose a new technique of special-
ization for a class of XML transformation languages, in which no
output of a function can be examined by a pattern. The specializa-
tion generates function definitions of f|4 from function f and type
A. For example, for function unifyAddress and type T above, our
specialization generates the following.

unifyAddress|r(<email>(z :: EmailText))
unifyAddress|r(<tel>(x :: TelNumber))

= <address>(x)
= <address>(x)
The method of specialization we propose is type-based in the sense
that the specialization uses the structures of types of specific in-
puts, i.e., a type is described by a regular hedge grammar [6]
and subtyping is defined set-theoretically. Types defined by regu-
lar hedge grammar are commonly used in modern XML process-
ing languages such as XDuce, CDuce, and Xtatic, and a set of valid
XML documents/elements described by core parts of many XML
schema languages such as DTD', XML Schema®, and Relax NG*
can be expressed by the type [28]. The three main contributions
made by this paper can be summarized as follows.

e Type-based specialization that generates f|r from f and T
is proposed. The type-based specialization we propose con-
verts a program to that in which every function, including a
recursively-defined function, is fully specialized and only ac-
cepts its rigid input. After specialization, we can safely ignore
the types of arguments of a function call in program analysis
because the called function is already specialized with respect
to the types.

Our specialization always terminates. Despite the strong prop-
erty that the specialization fully specializes every function, the
specialization always terminates. In addition, our specialization
runs without human interaction.

Several applications demonstrate the effectiveness of our spe-
cialization. We demonstrate the effectiveness of our new spe-
cialization by applying it to several examples, including type
inference, injectivity analysis, and inversion. The property that
the specialization fully specializes every function plays an im-
portant role in these applications.

Uhttp://www.w3.org/TR/REC-xml/#dt-doctype
Zhttp://wuw.w3.org/XML/Schema
3http://relaxng.org/

‘We have also implemented a prototype system of our proposed spe-
cialization, which is available at http://www.ipl.t.u-tokyo.
ac.jp/~kztk/sp/.

This paper is organized as follows. Section 2 roughly explains
the idea behind our type-based specialization. Section 3 describes
the language used to describe XML transformations. Section 4 de-
scribes the new method of type-based specialization for the lan-
guage in Section 3, and gives a proof for termination. Section 5
presents several interesting applications of the specialization. Sec-
tion 6 discusses extensions of the proposed approach. Section 7
concludes the paper and discusses future directions.

Related Work

Our specialization is a modest extension of the pre-processing
method used in the exact type checking for a tree transduction [23].
The main differences between our method and theirs are as follows:
(1) we permit concatenations in patterns, e.g., « :: <a>* .y :: <b>,
and (2) our specialization returns deterministic programs.

In specialization, we use a technique similar to type inference
of a variable in a pattern where the pattern is restricted to a type.
Our type inference technique in specialization is more precise for
the restricted target language than that of existing approaches [1,
15, 16]. The preciseness of type inference is important for the fully
specialized results of the specialization.

Our target language discussed in Section 3 is a simple exten-
sion of Wadler’s treeless and affine language [32], to which con-
catenation operator “.” have been added in both patterns and ex-
pressions. The extension is also inspired by tree transducers with
look-ahead [7] and patterns in XDuce [16]. Actually, type 7" in
variable pattern « :: 1" can be viewed as “look-ahead” in treeless
language, and a pattern in our target language is a subset of pat-
terns in XDuce. The specialization we propose can be applied to
a wider class of languages, e.g., allowing accumulation parameters
as macro forest transducers [30], which will be explained in Sec-
tion 6. It is worth noting that, with the extension in Section 6, the
language to which the specialization can be applicable is strictly
more expressive than deterministic macro forest transducers [30],
i.e., a model of recursive XML transformations. Many XSLT* pro-
grams can be expressed by a composition of deterministic macro
forest transducers [8, 25, 21]. A transformation defined by a com-
position of deterministic macro forest transducers can be written
by a deterministic macro forest transducer if the output data size is
always proportional to the input data size [20].

In the applications presented in Section 5, we use type infer-
ence algorithm in [23], a variant of injectivity checking used in
XSugar [3, 4], and a naive inversion by swapping left-hand sides
with right-hand sides. A formal discussion on the inversion by
swapping left-hand sides with right-hand sides for treeless lan-
guage is found in [29].

There has been research on type-based optimization for pattern-
matching [10, 19]. Although they carry out type-based “special-
ization” as we do, there are many differences between their spe-
cialization and ours. First, our purpose is to derive the definitions
of f|a from f and A while theirs is to provide efficient evalua-
tion mechanisms of pattern-matching. Second, we specialize pat-
terns and function calls but do nothing on pattern-matching, while
they specialize pattern-matching mechanisms using compilations
of patterns but not function calls. Third, in our specialization, for
a recursively-defined function, a function call of the function may
be specialized with respect to different types like reverse in Sec-
tion 2, while, in their specialization, the input type of a function
is given beforehand. Note that patterns in their languages are more
expressive than that in our target language.

“http://www.w3.org/TR/xslt



2. Idea of Specialization

This section roughly explains the idea behind our specialization and
problems with its naive execution.

Our specialization approach, which will be discussed more in
Section 4, targets a class of first-order functional programming
languages. The target language is similar to ordinary functional
programming languages such as Haskell [2] except that the target
language contains variable pattern z :: 7' where 1" is given by
regular hedge grammar [6] and concatenation patterns/expressions
«.”, like the function splitA B’ defined by

splitAB(x :: <a>* .y 1 <b>™) = <as>(x) . <bs>(y).

Some syntactic restrictions have also been added to the language.
One of the most important syntactic restrictions in our target lan-
guage is that no output of a function can be examined by a pattern.
The formal definition of the language will be given in Section 3.

2.1 Idea

The basic idea behind our specialization is quite simple: we pro-
duce new definition rules for function f|s where S is type of its
argument. That is, for type S, function f defined by

flozaT..)=...9(x)...

is specialized to the following f|s.

flsCocx =T )= glr(z). ..
Here, T” is a calculated type from T' so that the semantics of

function f for the inputs in S is preserved (Section 4). For example,
the specialization of the following reverse

reverse(e)
reverse(a :: Elem .r :: Elem™)

€
reverse(r) «a

(> 1P

with respect to type S = (<a> . <b>)" results in

€
reversels:/(r) . a
reverse|s(r) . a

reverse|s(e)
reverse|s(a :: <a>.r 1 S’)
reverse|gs(a :: <b>.r :: S)

> b1

where S’ is a type defined by S’ = <b>. S.

This idea of type-based specialization itself is not new and is
nothing but partial evaluation. A similar method is adopted for a
similar purpose in [23]. One of the contributions in this paper is to
discuss our construction of type-based specialization in which the
properties below are guaranteed to hold.

Termination of Specialization

Termination is one of the most important properties of program
transformation. However, the proof is not entirely direct for our
target language. Recall that, when a specialization of f

flozaT..)=...g()...
with respect to type S generates a rule

fls(ocx =T .) = glr()...,

new type 7" and new function call g|7+(x) are produced. Then, the
specialization specializes function g with respect to 7" to obtain
the definition rules of g|7-. The specialization process will finish
when the rules of every called functions in generated rules have
been generated. However, it is not clear whether the specialization
terminates or infinitely produces new types and new definition rules
of new functions. A pattern like x :: U . y :: V makes the problem
more difficult. Without this kind of pattern, we can easily give a
proof using the technique of product-construction [6] of automata,
similarly to [23].

3 Here, <a> is shorthand for <a>(¢).

Determinism of Specialized Programs

Another important issue is that specialization generates determinis-
tic programs. Nondeterminism of a program may make a program
difficult to analyze. Specialization may produce more than one rule
from a rule. For example, the specialization of g defined by

idAB(z :: (<a>[<b>) .y i1 (a>|<b>)) =z .y
with respect to type T' = (<a> . <b>) | (<b>. <a>) results in g|r
defined as follows.
1dAB|r(x : <a>.y :: <b>)
idAB|r(z :: <b> .y :: <a>)

Ty
Ty

This production of more than one rule from a rule may result in a
nondeterministic program.

> 1>

3. Target Language

This section describes our target language to describe XML trans-
formations.

3.1 Hedge Values

In our language, XML elements, XML documents, and strings are
represented by hedge values, i.e., sequences of (unranked) trees.
For example, an XML fragment as

<name>kztk</name><email>...</email>
is internally represented by
<name>(k() . z() « t() « k()) « <email>(...)

where <name>, <email>, and k,z,t are labels to construct the
hedge value. Formally, hedges are defined inductively from a set
of labels X:

e Empty hedge ¢ is a hedge.
e For hedges h1 and h2, a concatenation h; . h2 is a hedge.
e For label o € X and hedge h, o(h) is a hedge.

We assume that all the tree-labels and characters are encoded to
labels 3. Note that hedge concatenation . is associative and ¢ is the
unit of hedge concatenation; hi + (h2 + hs) = (hi + h2) . hs and
h.e = e.h = h hold. We sometimes write a tree o(g) as o() or
o. For convenience, we sometimes omit . and write ¢; ¢ instead of
t1 .+ t2 if no confusion would arise. Context C is a hedge containing
special hole variable O; we write the hedge that is obtained from C
by replacing hole O with hedge h as C[h].
XML Attributes or IDREFs are not treated in this paper.

3.2 Types

Set-theoretic types [11] defined by regular hedge grammars [6] are
used in our language. As an example of regular hedge grammars, a
set of hedges described by regular expression A = <a>* | <b>
is represented by regular hedge grammar A — <a>A’, A —
<b>E A — e, A — e, A — <a>A' | E — e. As examples given
in the Introduction and Section 2, the types are used in patterns.

Definition 1 (Regular Hedge Grammar). A regular hedge gram-
mar (RHG for short) is a triple (2, N, R) where X is a finite set
of labels (or terminals), IV is a finite set of nonterminals, and R
is a finite set of production rules with the form T' — o (7 )7% or
T —e.

The definition for RHGs is the same as that for regular tree
grammars [6] on the binary tree encoding of hedges [16] except
that the above definition does not include the start nonterminals.
Note that the definition looks different from the definition for RHGs
given in [27] but the two definitions are the same in terms of
expressive power.



Syntax:
prog = prody ...prod, rulei ...ruley, (Program)
prod ::= dataT =t (Production Rule)

t =c|tiata|o(t)| T (Type Expression)
rule = f(p) =e (Definition Rule)
e =clerwea|o(e) | x| f(z) (Expression)

p s=c|pr.p2|olp)|x=T (Pattern)

(z is a variable, T" is a type name, f is a function name, and o is a label)

Semantics:
EPs elu CoN erdor ez v CAT

ele o(e) I o(v) e1se2 | v1 .02
30,3f(p) =e.pd =v, el u

f@) bu

FunN

Figure 1. The language describing forward transformations

We write A = h if nonterminal A generates hedge h. The
semantics, or the language, of nonterminal A in G is defined by
[Al = {h | A 5 h,hdoes not contain any nonterminal}. For
simplicity, we sometimes write [A] instead of [A] if G is clear
from the context. A language of an RHG is called a regular hedge
language.

We define the following relation for the discussions that follow.

Definition 2 (Horizontal Parallel). Let R and S be sets of hedges.
We define R || S if and only if there exist no hedges h1, hs € R,
hQ, h4 € S such that h1ho = hshy but hy ;é hs and ho 75 ha.

3.3 Syntax and Semantics

The syntax of the language is summarized in Figure 1. Formally,
program P is a pair (G, R): RHG G defining types and set R
defining rules of functions.

A type declaration

dataT =t

describes production rule 7 — ¢ in the RHG G. For convenience,
we sometimes use regular expressions and production rules beyond
RHG when we present examples of programs written in the lan-
guage, if they actually define regular hedge language.

A rule of a function takes the form

f(p)=e

where p is a pattern and e is a treeless expression [32]. In treeless
expressions, all the arguments of a function call must be variables,
i.e., there is no nested function application. Note that we treat
hedge concatenation “.” as a “freeze”d data constructor rather than
a function. To simplify our presentation, we add some restrictions
to the language: every variable on the left-hand side of a rule
must be used at most once on the corresponding right-hand side
and the number of parameters of a function is always one. These
restrictions are not essential and even the treeless restriction can
be relaxed (Section 6). Note that, in the language, no output of a
function can be decomposed by a pattern. For convenience, we use
type expressions in variable patterns in addition to type names, as
x :: <a>*. Some example programs in this language have been
given in the Introduction and Section 2.

We write a type environment obtained by gathering variable
patterns in pattern p as I'p,. For example, for p = (z :: T, <t>(y ::
T")), we have T, = {z — T,y — T'}. Substitution 6 is a
function that maps a variable to a hedge or to the same variable.
We write a pattern/expression obtained from ¢ by replacing each
variable x in ¢ with hedge 6(z) as ¢0. Especially for a pattern, we
assume that pf implies 6(z) € [I'y(x)]; for each variable z in p.
The set of all hedges matching pattern p in a program P, [p] 5, is
defined by [p], = {h | 30. h = pf}. Note that variable pattern

x :: T only accepts the values in [T] ;, e.g., [z :: <a>], = {<a>}.
For simplicity, we write [p] instead of [p], if 7 is clear from the
context.

In this paper, we assume that transformation programs are de-
terministic in the sense that pattern matching is unique. Formally,
for any concatenation pattern py .p2 , [p1]5 || [p2] holds, and for
any two rules f(p) = eand f(p') = ¢/, [p], N [p']» = 0 holds.
For example, functions f and g below are not deterministic.

flx s <a>™ .y <a>™)
g(z 2 <a>)
gz : <a>* .y it <a>)

> 10 1P

The semantics of the language is defined by the call-by-value
semantics shown in Figure 1.

4. Type-Based Specialization

This section introduces a program transformation method that spe-
cializes functions with respect to the types of their arguments. In
a specialized program, for any function call f(x) with = :: A and
rules f(p1) = e, ..., f(pn) = e, of f, the apparent domain of f,
Uy <;<n[p:i], is equal to [A]. The specialization, roughly speaking,
with respect to type S, converts function f

flozaT..)=...g()...

to function f|g

flsC.ox =T ..) = .glr(2)...

where each variable pattern z :: 7" in a pattern is replaced with
x = T' by pattern specialization of the pattern with respect to S.
Then, the specialization attempts to generate rules of function g
with respect to T”. Let us roughly explain the specialization with
concrete examples of reverse and idA B below.

Consider the following function, reverse.

dataT = <a> | <b>
reverse(e)
reverse(a :: T r 2 T)

€
reverse(r) . a

> 1P

We specialize function reverse with respect to type S = (<a> . <b>)
Here, the semantics of S, T, and T™ is defined by the following
RHG.

S — <a>s’ S — € S' — <p>S
T — <a>T’ T — <o>T’ T — ¢
T - <a>T* T =<p>T* T" —>¢

First, the specialization tries to specialize the rule
reverse(e) = €

with respect to type S. To achieve this specialization, our special-
ization tries to specialize pattern € with respect to type €. Since a
set of inputs S contains ¢, i.e., ¢ € [S], pattern ¢ is specialized to
€, and the following rule is produced by the specialization.

reverse|s(e) =€
Then, the specialization tries to specialize the rule
reverse(a :: T o1 :: T*) = reverse(r) . a

with respect to S. To achieve this, we try to specialize pattern
a = T.r @ T" to pattern a :: Hy . r :: Hy with respect
to S. To find sets of hedges H; and H>, we consider hedges
hi € [T], he € [T7] satisfying hy « ha € [S]. For this purpose,
we try to find nonterminal N satisfying S - hiN, N = ha,
ININ[T*] # ®,and {h | S = RN} N [T] # 0. Since we have
{h]|S 5 hSIN[T] = 0 but [S'] N [T*] = [<b>.T"*] and



{h|S 5 hS"}N[T] = {<a>}, a rule and types

data H; = <a>
data H, = <b>. S
reverse|s(a :: Hi .1 :: Ha) = reverse|m, (1) «a

are produced. Since reverse|m, () appears on the right-hand side
of newly produced rules and the rules of function reverse|m, (1)
have not been produced, the specialization tries to specialize func-
tion reverse with respect to type Ho. First, the specialization tries
to specialize the rule

reverse(g) = €

with respect to H>. To achieve this specialization, we specialize
pattern € with respect to H». Since H» does not contain ¢, i.e., the
rule is never used for an input in Ha, no rule is produced. Then, the
specialization tries to specialize the rule

reverse(a :: T o1 :: T") = reverse(r) . a

with respect to Ha. By a similar procedure to the above, the follow-
ing rule is produced by the specialization.

reverse|m, (a :: <b>.r 1 S) = reverse|s(r) . a

Since the rules of reverse|s have already been produced, the spe-
cialization is complete. If we simplify H; by H; = <a>, special-
ized function reverse|s is as follows.

data S = (<a>. <b>)”
data T = <a> | <b>

data Hy = <b>. S
reverse|s(g)

reverse|s(a :: <a>.r :: Hy)
reverse|m, (a :: <b>.7 :: S)

€
reverse|m, () « a
reverse|s(r) . a

1> 11> 1P

Sometimes, the specialization produces more than one rule from
arule. Consider function idA B defined by

1dAB(x :: (<a>|<b>) .y = (Ka>|<b>)) =z .y

and the specialization of function idA B with respect to type T' =
(<a>.<b>) | (<b>.<a>). Here, T is represented by the following

T—<a>U T —<b>V U —=<b>W V —w<a>W W — ¢

Then, we try to specialize pattern x :: (<a>|<b>) .y :: (<a>|<b>)
with respect to 7'. Similar to the above procedure, we try to find
h1, ha such that hy, he € [<a>|<b>] and hi « ho € [T7]. Unlike
reverse, the choice of hs affects the choice of h1; if we choose
ha = <b> then we must choose h; = <a>, while if we choose
ha = <a> then we must choose h; = <b>. In other words, sets
{h | T 5 hU}and {h | T 5 AV} are different, where U
and V are only nonterminals such that [<a>|<b>] N [U] # 0 and
[<a>|<b>] N [V] # 0 hold. Hence, two rules

idAB|r(x s <a>.y = <b>) =z .y
tdAB|r(z : <b>.y m<a>) = z.y

are produced for one rule of idAB.
To use the specialization in other analyses or in another auto-
mated frameworks, we should clarify two points.

e Whether the specialization terminates.
e Whether the specialization generates deterministic programs.

The second point requires careful treatment of cases where the
specialization generates more than one rule from a rule.

4.1 Pattern Specialization

In the examples above, we consider set {h | A = hB} for nonter-
minals A, B in an RHG. This kind of set is always regular hedge

language, i.e., there exists an RHG that describes the set. However,
if we naively produce a new RHG when we encounter a concatena-
tion pattern, a discussion on whether or not the specialization ter-
minates becomes difficult. To make the discussion easier, we intro-
duce a notion of chopped RHG, by which a set like {h | A = hB},
which is obtained by “chopping” the language of the original RHG
at nonterminal B, can easily be represented.

Definition 3 (Chopped RHG). A chopped RHG GeE consists of
an RHG G and set E of nonterminals in G, where the semantics of
nonterminal A in the chopped RHG GeE is defined by [A] ., =

{h| A hB,Be€ E}.

Note that every RHG G can be converted to a chopped RHG
GeF where F = {A | A — ¢ € R} withthe Rof G = (_,_, R)".
It is not difficult to show that every chopped RHG GeE can be
converted to an RHG G’ where, for any nonterminal A in G, there
exists a corresponding nonterminal A" in G’ such that [A], =
[A'] .. We write an RHG obtained from an RHG G and an RHG
G’ by product-construction [6] as G x G’, under which nonterminal
(A, A") € GxG"haslanguage [(4, A)] 5o = [AlcN[A ] -
Similarly, we write RHG (G x G")e(F x E) as G x G'eE’ where
F={A|A— ¢ € R}withthe Rof G = (_,_, R). For example,
types H1, H» in the example of reverse satisfy

[[Hlﬂ = [[(Tv S)]]GXGSS’
[H] = [(T", 9)] gxe-

To simplify our explanation in this section, we represent type A by
Ac (Ageg) where G (GeE) is an RHG (a chopped RHG) used to
define A. For example, reverse can be rewritten as follows.

reverse(e) =e
reverse(a :: Tg .1 :: T¢y) = reverse(r) . a

Here, G is the RHG used to define types S, T, and 7.

Pattern specialization is formally described by pattern special-
ization procedure psp(p; Agr.g) in Figure 2 that calculates a set
of specialized patterns from pattern p and a type described by A in
G’cE. Roughly, the behavior of psp for each line of the definition
is as follows.

1. For pattern ¢, the first line of psp returns pattern ¢ if [A] 5,5
contains €.

2. For pattern = :: Tg, the second line of psp returns pattern
z (T, A)gxceg if the newly generated pattern accepts at
least one hedge.

3. For pattern o(p), the third line of psp tries to find patterns
p’ such that (Jo(p') = [A],s. - To find such patterns p’,
the third line calls psp(p; Bg) for rule A — o(B)C in G’
with B € E. Here, we use G’ as psp(p; Bg) instead of
psp(p; Bgreg) because E is a set of horizontally chopping
nonterminals. Pattern p in o(p) is not located on the same
horizontal level as o(p).

4. For pattern p1 . p2, the fourth line of psp tries to find patterns
ph, P such that [pi] C [pi], [p2] € [p2] and U[ph - po] =
[A] 5. - To find such patterns p?, p5, the fourth line “chop”s
Agrcp to Agregpy and Berog, and calls psp(p1; Agrc(53)
and psp(p2; Bgr. ) for any nonterminal B in G'.

5. The fifth line implies that the input pattern of psp cannot be
used for input in [A] &/ -

Examples 1 and 2, which will be explained later, include the exam-
ples of psp.

6 The notation “_” means that we do not care what “  is, as  ”* in Haskell.



{e} fA€eFE
{z (T, A)gxarep}

psp(e; Agreg)
psp(z : Tg; Agreg)
psp(o(p);  Agreg)
psp(p1 = p2; Acrer)
psp(_; Agreg)

I L T I

if [[(T, A)HGXG/EE # 0
{o(p’) | P’ € psp(p; Bg), A — o(B)C € Rulesg, C € E}
épi Py | Py € psp(p1; Acregy), Ph € Psp(p2; Barep), B € NonTermsc:}

where Rules g is a set of all the production rules in G’, and NonTerms g is a set all the nonterminal in G”.

Figure 2. The definition of pattern specialization procedure psp

Theorem 1. Function psp correctly specializes pattern p with
respect to type Ag. g, i.e.,

[Alrer N 1Pl = HIPT

| p’ € psp(p; Acrer)}-

Proof Sketch. Theorem 1 is easily proved by using the induction
on the structure of p. To clarify the behavior of psp, we prove the
induction step where p = p1 . p2 because the discussion on other
cases is rather easy.

First, we show the following statement.

[Algr.pNIpr-p2] © (JLIR5-p2] | P1eph € psp(prps; Agrer)}

Let = and y be hedges such that = . y € [A] 5/ . ¢ € [p1] and
y € [p2]. Since we have = . y € [A] /. there exists at least one
nonterminal B in G such that A = B and B = yC for some
C. That is, we have = € [A] /() and y € [B] s/, . From the
induction hypothesis, we have

[Algreipy Npad € U{[[Plﬂ] | p1 € psp(p1; Acre(py)}
and
[Blarep 0 Ip2] € (J{IP2] | P2 € psp(p2; Agrer)}-

Hence, there exist patterns p) € psp(p1; Agrepy) and py €
psp(p2; Acrer) such that x € [pi],y € [p]. By using the
definition of psp, we have

Py Py € psp(p1 « p2; Agrer),

which implies the statement.
Then, we show the following statement.

[Algr.pNIp1epe] 2 | J{IPL-p2] | PLop5 € psp(props; Acrer)}

Let z and y be hedges such that z € [p}] and y € [p5] for
some patterns p’, p5 such that p} . p5 € psp(p1 - p2; Agrer). By
using the definition of psp, we have pi € psp(p1; Ag’e{p}) and
ph € psp(p2; Bgrer). From the induction hypothesis, we have

[Al ez N Il 2 JLIP1D | 1 € psp(p1; Acre(sy)}
and

[Bler.p N Ip2] 2 J{IP2] | P2 € psp(pa; Agrer)}-

Hence, we have & € [A] g/ 5y N [p1] and y € [B] g N [p2]-
By using the definition of ., we have .y € [p1 . p2]. By using the
definition of chopped RHG, we have .y € [A].,_,. Hence, we
have .y € [A] 5/ N [p1 - p2], which implies the statement. [

4.2 Specialization Algorithm

We use the following notion of unambiguous RHGs in the special-
ization algorithm.

Definition 4 (Unambiguous RHG). An RHG G = (X, N, R) is
unambiguous if

VA,BEN. A+ B = [Ac]N[Bc] =0 (UnAmb)

and
VA€ N. [Ac] #0
hold.

It is known that using conversion from NFTA to DFTA [6] every
RHG G can be converted to unambiguous RHG G’ in which, for
any nonterminal A in G, there exist nonterminals A’ , ..., A}, in G’
satisfying [A], = U, {17_._7n}[[A§]]G,. Similarly, every chopped
RHG GeEF has a corresponding unambiguous RHG G’.

Now, we are ready to define our specialization procedure.

Algorithm (Type-Based Specialization).
Input: A program.

Output: A specialized program.
Procedure:

1. For each function call f(z) in each rule h(q) = C[f(z)] in a
program with I'y () = Ag/cE, and then repeat Steps 2-5.

2. Construct an unambiguous RHG G” corresponding to G'¢ E, in
which the nonterminals A7, ..., A, satisfy |J [AY] =
IIA]] GeE’"

3. For each rule f(p) = e of f in the original program, repeat
Steps 3-5.

4. For each specialized pattern p’ € Uicqr...ny PSP(P; AY o),
generate a rule f|a,_ . (p') = € where € is obtained from e
by replacing function calls g(y) by g|r(y) where T' = Ty (y).

5. Recursively apply this algorithm to all the function calls occur-
ring in the newly-produced rules until no new rules are gener-
ated in Step 4. O

ic{l...n}

The construction of an unambiguous RHG in Step 3 guarantees
that the specialized programs are deterministic.

Let us explain the behavior of the specialization algorithm step-
by-step using the examples of reverse and idAB, which were
presented earlier in this section.

Example 1 (reverse). Let us consider a program as follows.
main(z :: S) = reverse(x)

Here, type S is defined by S = (<a>.<b>)". Let G be the RHG
used to define S, T and T in reverse. First, by using Step 1, we
target reverse and type Sq. Second, by using Step 2, from G, we
construct an unambiguous RHG G’ that defines the semantics of
S. Here, this is easily done by collecting production rules that are
relevant to S. Third, by using Step 3, for two rules of reverse, we
specialize the rule reverse(e) = e with respect to Sg-. Fourth, by
using the Step 4, since we have psp(e; Sgr) = {e} by definition, a
rule
reverse|s,, (€) = ¢

is generated. Fifth, by using Step 5, since there is no function on
the right-hand side of the generated rule, we go back to Step 3 to
deal with the rest of the rules of reverse. Sixth, by using Step 3,

we specialize the rule reverse(a :: Tg « 1 :: T¢y) = reverse(r) . a
with respect to Sg-. Seventh, by using Step 4, since we have

psp(a :: Ta w1 i T¢i; Sar)

={a: (T, axqres 7 (T, axar }s



arule

reverse|s,, (a :: (T, S)axares » 7 (T, 58 ) axar)
= reverse|(r« sy, o () v @

is generated. Eighth, by using Step 5, since the generated rule
contains function call reverse|(Txﬁs/) axare We try to specialize
reverse with respect to type (T, S”) g x ¢ - Ninth, by using Step 2,
we obtain unambiguous RHG G’ defined by the rules

U—=<>().V V—=<a>().U Ve

where [U] . = [(T*,S")] g - Tenth, by using Step 3, we spe-
cialize rule reverse(e) = e with respect to type Ug . Eleventh, by
using Step 4, since psp(g; Ugr ) = (), we go back to Step 3 without
producing any rules. Twelfth, by using Step 3, we specialize rule
reverse(a :: Tg .7 :: T¢y) = reverse(r) « a with respect to type
Ugr . Thirteenth, by using Step 4 since we have

psp(a :: Tavr 2 Te; Ugr)
= {a s (T7 U)GXG”EV Tl (T*,V)Gxg//}
arule
reverse|(r= sty o (@ (T,U)gxarev 7 (T, V)axgr)
= reverse|(r+v), o (T) @

is generated. Note that here we have the following equations on
regular hedge languages.

(T, S)axares'] = {<a>}
(T*, S exa] ={<b>.h|heE [[S]]G}
(T, U)oxarev] = {<b>}
[(T*,V)axar] = [S]g

Fourteenth, at Step 5, we do nothing and the specialization is com-
plete while reverse\(T*,V)GXc,, appears on the right-hand side
of the generated rule, because reverse|(r+ v ax e 18 nothing but
reverse|s,, whose rules have already been generated. Collecting
the generated rules, we obtain the following program.

data S = (<a>.<b>)"
dataU =<b>.V
dataV =<a>.U | e
reverse|s(e)

reverse|s(a :: <a>.r : U)
reverse|y(a :: <b>.r :: S)

Ensure that [U] = [<b>. S].

€
reverse|u(r) . a
reverse|s(r) . a

(> 10 1P

Example 2 (idAB). Let us consider a program as follows.
main(z :: Tg) = idAB(z)
where idA B is defined by
tdAB(xz :: Sg.y::8g) =z.y
and G is a grammar defined as follows.

S —<a>s §—<p>S S —¢
T —<a>U T —<b>V U —-<o>W V - <a>W W — ¢

First, by using Step 1, we target idAB and type T¢. Second, by
using Step 2, from G, we construct an unambiguous RHG G’
that defines the semantics of 7. In this case, this is easily done
by collecting production rules that are relevant to 7'. Third, by
using Step 3, since idAB only has one rule, we specialize rule
tdAB(z :: Sg .y :: Sg¢) = z .y with respect to Tgs. Fourth,
by using Step 4, since we have

psp(x :: Sg .y :: Sg; Tar)

_Jz (S, Taxcrev Y (S, V)axars
z (S, Taxarev -y (S U)axar |7

the rules

idAB|r(z 2 (S, T)axarev «y = (S, V)axar) =
1dAB|r(z 2 (S, T)axgrev Y 2 (S, U)axar) =

are generated. Fifth, at Step 5, we do nothing and the specialization
is complete because the generated rules do not contain any func-
tion call on the right-hand sides. If we simplify the patterns, the
following program is obtained by the specialization.

Ty
Ty

1dAB|r(x :<b>.y = <a>) =z .y
tdAB|p(z :<a>.y = <b>) =z.y

4.3 Properties of Specialization

We then prove that the specialization algorithm terminates. Thanks
to chopped RHGs, we can avoid introducing a new type de-
scribed by a new RHG in pattern specialization; psp only gener-
ates a type expressed by the composition of existing (chopped)
RHGs, which serves as a key to our proof. In advance to the
proof of termination, we prove the lemmas below. In the proof
of the lemmas for an unambiguous RHG G, we use the notations
Dq(z), Dg (), D¢ (x), DE () to represent some disjunctive nor-
mal forms (DNFs) on the predicates of form pa,s(z) for A, B € G
where predicate pa,g(x) means Jy. (z.y) € [Alg Ay € [Blg.
The number of all DNFs on the predicates of form pa,z(z) is fi-
nite because the number of the predicates is finite. Note that, for an
unambiguous GG, we have

V. (Hy. (z.y) €[Alg Ay e[Blg ez e [[A]]GE{B}) :

Roughly, Lemma 1 says that, when psp introduces type Ag s,
if the semantics of all the nonterminals in an RHG associated with
the input of psp can be expressed by the composition of existing
types, then the semantics of all the nonterminals in G” also can
be expressed by the composition of existing types. Lemma 2 states
that all the nonterminals in a chopped RHG G"’¢ E” where E" is a
set of nonterminals in G’ also can be expressed by the composition
of existing types if G is unambiguous. Lemma 3 and 4 state that
there exist methods transforming RHGs to suitable RHGs preserv-
ing the property where the semantics of all the nonterminals in the
RHG can be expressed by the composition of existing types.

Lemma 1. Let P = (G, _) be program where G = (_, N, _). Let
q be a pattern in the program, psp(q; Ag/) with G = (_,N', )
satisfies the following statement.

VT € N,3Dq. (Vz. z € [T"]; = Da(z))

AVT' € N',3D%. (Vo z € [T'] g = Ds(x))

Vq' € psp(q; Agr),

Vz € vars(q').

let (_,G"eE") =Ty (z) withG" = (_,N",_),

vI" e N, 3D¢. V. z € [T"] o = DE())

=

Proof. By using the definition of psp, when Bg// g = Ty (x) for
x € vars(q') with ¢’ € psp(q; A/ ), G” and E” take the form

G"¢eE" =G x G'eE' = (G x G)e(F x E')
for some E' C N’ where F = {A | A — ¢ € R} with R of
G = (_,_, R). Therefore, (T',T") € N" implies [(T,T")] 5 =
[T]; N [T']5:- By using the premise of the lemma, we have
z € [T)s = Do(z) and z € [T"] 5 = Dg(x). Then, there exists
DNF D¢ (z) on the atomic predicates with form p 4, 5 () such that

z € [(T, T/)]]G// = z€([T]gn [[T/]]G/)
= Dg(z) A Dg(x)
Dg/(x)
Thus, the proof is done. O



Lemma 2. For unambiguous G = (X,N,R), if any T € N
satisfies x € T = Dg(x) for some Dg(z), then any T € GeE
forany E C N satisfies 2 € T' = Dg(x) for some D'g(x).

Proof. The language of nonterminal 7" in Ge E' can be expressed in
the following form because G is unambiguous.

[[T}]GEE:{Q: \/TLQZS/\SLQJ}

SeE
= {gj

\/ Jy. (x.y) € [Tg -y € [S]a }
SeE

When we write a corresponding DNF to a nonterminal A in G as

DE (), the above formula can be rewritten as follows.

[T]ger = {m

V ay.DE(x-y)ADéw)}

SEE

Using the fact that pa, p(z.y) = V cen Pa,c(2) Apc,(y) where
G = (_,N,_), let Fi(z), Fi(z) be logical formulae containing A,
— on atomic predicates with form pa g (z) fori € {1,...,n} for
some n; rearranging DNF, we can rewrite the above formula as
follows

where we use I-distributivity (3z. p(z) V p'(z) = (3z.p(x)) Vv
(3z.p'(x))). Since each F;(x) is irrelevant to quantifier Jy, we
have

[Tleer = {w \ Fi(z) A Jy. Fi(y) } :
Since each Jy. F;(y) is true or false, i.e., removable, we obtain

[[T]]GEE = Dé;(l')

for some Dg(x), which implies the statement of the lemma. O

Lemma 3. There exists a method of constructing RHG G’ =
(_, N',_) form chopped RHG GeFE with G = (_, N, _) satisfying

VI € N,3T"' € N'. [T] o5 = [T
and

VT € N,3D¢. z € [T] 4. = Do(x)
= VT" € N',3Dg. z € [T'] o = De(x).

Proof Sketch. For each nonterminal 7" in N, two nonterminals are
introduced in G": T” for [T].p and T for [T]. Productions
rules of these nonterminals are obtained straightforwardly. Note
that XDuce uses a similar conversion method [15]. O

Lemma 4. There exists a method of constructing unambiguous
RHG G’ = (_,N’,_) from RHG G = (_, N, _) satisfying

VT € N,3Dc. z € [T = Do(x)
=>VI" € N',3D;. z € [T"] o» = Dg(x).

Proof Sketch. The subset construction that converts NFTA to DFTA [6]

satisfies the above condition. The minimization of RHGs [6] after
disambiguation can also be applied preserving the condition. [

Theorem 2. The specialization terminates.

Proof Sketch. We prove the theorem by showing that the number of
regular hedge languages appearing in the algorithm is finite.

Let P = (G, _) be program with G = (_, _, R). We define G as
an unambiguous RHG corresponding to G. Then, any nonterminal
T in G satisfies

ze[T], = \/

ic{1,....,n},CE€F

for some D¢ where [Ar1,..., Arnr]e = [T]g and F = {X
X — e € R} with G = (_,_,R). Using Lemmas 1, 2, 3 and 4,
by using the induction of the number of times psp is applied, every
type T appearing in the program satisfies Yz € [T] = Dg(z) for
some Dg. Recall that the number of the DNFs is finite.

In the algorithm, we also use the fact that the equivalence of two
regular hedge languages is decidable [6]. O

Par (@) =Dg(x)

The proof of the termination also gives an upper bound for pro-
gram growth. Since the number of DNFs on m atomic predicates
isO(2%"), an upper bound for the number of rules in a specialized

program is 0(2271 ) where n is the number of nonterminals in G
of program P = (G, ).

One may think that there is a simpler and more concise proof
for the above theorem. The reason we proved the theorem as above
is that we wanted to introduce flexibility to choose an internal
representation of a type, i.e., an RHG. For example, we can apply
minimization [6] to the unambiguous RHGs obtained in Step 2,
and we can merge some patterns returned by psp as long as the
merges preserve the semantics of the program. These techniques
have improved the efficiency of our prototype implementation.
Note that the specialization algorithm contains equivalence checks
between types and both techniques benefit by reducing the number
of equivalence checks. Equivalence checks on types described by
RHGs are decidable but are EXPTIME-complete problems [6].

To guarantee that the programs after the specialization are de-
terministic, we must ensure that the following condition holds for
pattern p and nonterminals AY ..., A/ in unambiguous G’.

(3i-p',p" € psp(p; A ) = P IN[P"]=0  (D-PSP)

Thanks to the unambiguity (UnAmb) of G’, we have the following
lemma for determinism.

Lemma 5. For any nonterminal A in G, and any pattern p, the
condition (D-PSP) holds.

Hence, we have the following theorem.
Theorem 3. The specialization returns deterministic programs.

Note that the method of specialization does not infer the out-
put types of functions. In the specialization, we have assumed that
any output of a function cannot be decomposed by a pattern of an-
other function. In other words, an input to be decomposed by the
pattern of a function is always part of an input of a function that
calls the function. Also note that the domain of a function in our
target language may be beyond the regular hedge language, con-
cretely, context-free. This context-freeness results from the recur-
sion structure of functions. Note that the specialization does not
change the recursion structure; if the domain of the original func-
tion is context-free then the domain of the specialized function is
also context-free. For example, function c¢f defined by

data T = (<a>|<b>)*

of (::T) = g(x)

9(e) =e
g(<a>.r.<b>) = <c>.g(x).<d>

is specialized to the following function.
of (@ ::T) = glr()

g|r(e
glr(<a>.r T . <b>)

13
<c> . glr(z) . <a>



The specialization eliminates the use of subtyping by replacing a
type in a variable pattern and generating new rules of specialized
functions so that everything is clear from the recursion structures
in a specialized program.

Theorem 4 (Fully-Specializedness). After specialization, for any
function call f(x) occurring in rule g(p) = C[f(z)], for any
substitution 6, Jv. f(x6) | v implies O(z) € [I'p(z)].

Theorem 5 (Correctness). For f|r obtained from function f and
type T by the specialization, v € T, f(v) | wu if and only if

flr(v) 4 u.

Theorem 4 is the main result of the specialization. The theorem
states that, after specialization, we do not need to consider types of
variables in estimating the type (range) of an expression except a
variable expression. For example, in the type inference of expres-
sion f(z), we do not need to consider the type of x while, in the
type inference of expression x, we must consider the type of x.

5. Applications

This section explains the effectiveness of our proposed specializa-
tion by presenting applications in which the specialization plays an
important role.

5.1 Type Inference

The specialization enables us to do simple and exact type infer-
ence/checking. Type inference and type checking are important fea-
tures of languages for for XML transformations and much research
has been done in this area [11, 16, 22, 23].

Precise type inference for our target program without special-
ization is not straightforward because the output type of function
f may differ from the type of function call f(z). For example, the
type of function call f(z) in g is actually singleton set {<a>} while
the range of function f is a set described by <a>*.

g(x :: <a>) = f(x)
flz<a>") =2

However, in specialized programs the output type of function f and
the type of function call f(z) coincide. Thanks to this property,
we can apply an algorithm similar to the type inference in [23],
by which the types of expressions are exactly calculated by using
context-free grammars.

For example, consider the following specialized program.

data C =
data S = (<section>(<title>(String).P))
data P = (<p>(String))*
c2r(e) =e
c2z(<chapter>(<title>(t :: String) .p:: Pus::S).r:: C)
= <h1>(t) . p. s2z(s) . c2z(r)
s2x(e) =¢
s2z(<section>(<title>(¢ :: String) .p:: P).r 2 S)
= <h2>(t) v p. s22(r)

(<chapter>(<title>(string) . P.S))"

*

This function transforms a hedge with a paper-like structure as

<chapter>(<title>(t1) . <p>(p1)
. <section>(<title>(t1).<p>(p2)))
<chapter>(<title>(t3))

to an XHTML fragment as
<h1>(t1) . <p>(p1) - <h2>(t2) « <p>(p2) « <h1>(t3).

Inference of the output types of a function is sufficient because the
output types of functions and the types of function-call expressions
coincide and the types of other expressions are calculated easily
from the types. The basic idea underlying Maneth et al.’s algorithm

is to forget the parameters of functions to generate a grammar
that describes the range of functions. For example, from the above
program, we obtain a grammar

Tc?z — &
Teor — <h1>(String) « P Toop « Tess
TeZz — £
Tsoz — <h2>(String) « P Tsor
that exactly calculates the ranges of functions c2z and s2z. Some-
times, the range of a function is not regular as function f defined
by
f(e) €
f(<e>(x)) = <a>. f(z) . <b>
and the corresponding context-free grammar

> 1

Ty — ¢
Ty — <a>.Tj . <b>.

This context-freeness of the range is not problematic for type
checking because for type R described by an RHG and type C
obtained by Maneth et al.’s algorithm, C' C R is known to be
decidable while R C C'is not [23].

Note that a nondeterministic program is sufficient for type in-
ference. Without a guarantee that the specialized programs are de-
terministic, we can provide another version of specialization that
runs faster than that with a guarantee. The other version is ob-
tained by removing Step 3 in the specialization algorithm, which
constructs unambiguous RHGs. The other version also terminates
because only the operations on types in the other version of special-
ization are taking products and switching chopping nonterminals.
We have not given any formal proof of termination of the other ver-
sion because it is beyond the scope of this paper. An upper bound
for the program growth by the other version of specialization is

0(2"z ), where n is the number of nonterminals in G of a program,
P = (G, _). The difference in complexities between the other ver-
sion of our specialization and the pre-processing used in [23] re-
sults from the difference in patterns: pattern = :: 7' introduces a

2 .
power of 2 and pattern p; . p introduces a square of n2.

5.2 Injectivity Analysis

In addition to the determinism of a program, the exact types of
expressions for a specialized program can be obtained as previously
noted. We can then adopt the injectivity analysis used in XSugar [3,
4] with slight modifications.

The nondeterminism of a program may make injectivity anal-
ysis more difficult. If two rules of function f in a deterministic
specialized program, have range-overlapping expressions e1, e2

f(p1)
f(p2)

then f is non-injective because (1) the deterministic property en-
sures that a set [p1] of values matching p; and a set [p2] of
values matching p» are disjoint, and (2) Theorem 4 ensures that
Fv. ef || v implies pf € [p] for any f(p) = e. However, in a non-
deterministic program there is an injective function in which the
range of right-hand side expressions of two rules overlap. For ex-
ample, the following injective nondeterministic function has range-
overlapping right-hand side expressions.

€1
€2

(> 1b

f(<true>) = <true>
f(<true>) = <true>

Consequently, it is more difficult to precisely analyze injectivity for
nondeterministic programs than for those that are deterministic.
Also, recall that there is a case where, while generic function
f :: A — B is not injective, specific function f|4, with A" C A
is injective, as was the unifyAddress in the Introduction. Since



we have obtained a program for f| 4+ after specialization, we can
analysis injectivity more precisely.

There are only three types of non-injective programs in our
specialized program, which is simply proved using induction. The
first type of program is one that does not use a variable with
a type whose cardinality is more than one on some right-hand
sides, as f(x :: <a>™ .y 1 <b>*) = z. The second type of
program is one that concatenates two expressions whose exact
types 11, T satisfy [T1] } [12] as f(z : <a>" vy 2 <b>" .z =
<a>™) = x .z .y. The third type of program is one that contains
two rules of a function in which right-hand-side expression ranges
overlap as f(<true>) = <true>; f(<false>) = <true>. In
addition, we must also examine whether or not such a non-injective
function above will be called from the function whose injectivity
one wants to check. The specialization also simplifies this process;
after specialization, a syntactically-called function, i.e., a function
that appears on the right-hand side, is semantically called with
some input, i.e., a function is used in evaluation for the input.

Hence, injectivity analysis can be achieved by examining ex-
istence of the three places above. However, it is known that, with
exact types of expressions, checking whether two ranges overlap or
not is undecidable [3]. We must approximate the exactly-inferred
types as in XSugar [3, 4], where Mohri and Nederhof’s regular
approximation algorithm of context-free grammars [26] is used. To
use the algorithm for programs in our target language, we must
modify it slightly because the original algorithm is for strings but
not for hedges. Using a hedge version of their regular approxima-
tion algorithm, we can analyze the injectivity of a function writ-
ten in our target language. To do this, we approximate the types
of function calls and then determine the types of other expressions
according to approximated type for the later inversion step. This
ensures that the approximated type of expression and the pattern
generated from the expression in the later naive inversion will coin-
cide. Note that context-freeness is only caused by the function-call
structure of a program.

Note that there is no exact algorithm for analyzing injectivity for
our target language, which can be shown by reducing the problem
to Post’s Correspondence Problem [31].

5.3 Inversion

With specialization, we can perform correct inversion by naively
swapping left-hand sides with right-hand sides. In contrast, without
specialization, this naive inversion produces incorrect results. For
example, for function g defined by

gla = A') = f()

with f :: A — Band A’ C A, even when f is injective, naive
inversion would produce the following inverse.

g (w) = )

Function g~ is problematic because f~! may return a value that
does not belong to A’, i.e., the domain of g. We can avoid the
problem with specialization, because the exact range of function
flar is known.

Approximated types, i.e., estimated ranges of functions, also
work properly as long as the injectivity analysis discussed above
determines a program is injective. For such a program, naively
swapping left-hand sides with right-hand sides produces a correct
inverse program in our target language because variable pattern
x :: T where T is defined by an RHG is permitted in our target
program. For example, the role of the types of function calls is clear
in the following inverse of the function, c2z, presented earlier in

this section.

data T} = (<h2>(String) . P)"
data 7> = (<h1>(String) . P . (<h2>(String) . P)*)”
data T3 = T1

27 l(e) £ ¢
c2z H(<h1>(t :: String) ap : Povy Ty wvo =2 Th)
= <chapter>(<title>(t) .p.s2x ' (v1)) . 22~  (ve)
s2r7 () £ ¢
82z (<h2>(t :: String) «p 2 Pavs 2 T3)
= <section>(<title>.p).s2z ' (v3)

Here, T1,T5, and T35 are the types of function calls s2z(s) and
c2z(r) in the second rule of c¢2z, and s2z(z) in the second rule
of s2z, respectively. For example, the following inverse of cf
discussed in Section 4 demonstrates that naive inversion works
properly for functions of which the domain and the range are
beyond regular hedge language.

cf Hx : 8) = g7t (v)
gl7 ()
9\;1(<c> v S.<d>)

£
<a>.gl7' (v) . <>

> 1

Here, S = (<c>|<d>)" is an approximated type of the output type
of g|T.

Injectivity analysis on approximated types guarantees that the
obtained inverses are deterministic, and in the same class as the
original programs. It is common to use the results of injectivity
analysis to obtain deterministic inverses [9, 12, 13, 14].

6. Extensions

To simplify our presentation, we have restricted each variable oc-
curring on the left-hand side to occur at most once on the corre-
sponding right-hand side and the number of parameters for every
function to one. Relaxing this restriction is straightforward. Essen-
tially, the properties of the specialization algorithm (Theorems 2, 4
and 5) only depend on the characteristics of a program where no
output of a function can be examined by a pattern. For example,
accumulation parameters as in macro forest transducers [30] can
be introduced without violating the properties. Then, Theorem 4
changes slightly; variables passed to the accumulation parameters
of a function must be treated in the same way as variables in vari-
able expressions, i.e., the types of such variables must be consid-
ered in type inference. Multi-return [17] can also be permitted, for
which some program analyses might be easier.

Attributes in XML can be permitted because they can be en-
coded into RHGs. However, naively-encoding XML attributes into
RHGs causes an explosion in the number of nonterminals in the re-
sulting RHG; an RHG generating n-different XML attributes con-
tains more than 2" nonterminals because it must distinguish which
attributes have appeared. Note that the XML attributes of an ele-
ment appear in any order but they all appear exactly once. A discus-
sion of record types [5] might make the specialization that supports
XML attributes more efficient.

7. Conclusion

We proposed a method of program transformation that generates
specialized function definitions from the use of a function, i.e.,
a function-call expression. The method of specialization always
terminates and generates deterministic programs. In the proofs of
properties of the specialization, we used the characteristics of our
target program where no output of a function cloud be examined
by a pattern. We demonstrated the effectiveness of the new special-
ization using many applications: type inference/check, injectivity
analysis, and inversion.



We intend to explore all other applications of the proposed
method of specialization. We especially think we will use the new
method in bidirectionalization [24] where precise injectivity anal-
ysis plays an important role. Although the new technique of spe-
cialization does not improve efficiency at all, we believe that type-
based optimization techniques [10, 19] would work effectively for
specialized programs because the specialization would enable us to
infer the precise input and output types for all functions.
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