
BiGUL: A Formally Verified Core Language
for Putback-Based Bidirectional Programming

Hsiang-Shang Ko
National Institute of Informatics, Japan

hsiang-shang@nii.ac.jp

Tao Zan Zhenjiang Hu
SOKENDAI (The Graduate University for

Advanced Studies), Japan
National Institute of Informatics, Japan

{zantao,hu}@nii.ac.jp

Abstract
Putback-based bidirectional programming allows the programmer
to write only one putback transformation, from which the unique
corresponding forward transformation is derived for free. The logic
of a putback transformation is more sophisticated than that of a for-
ward transformation and does not always give rise to well-behaved
bidirectional programs; this calls for more robust language design
to support development of well-behaved putback transformations.
In this paper, we design and implement a concise core language
BiGUL for putback-based bidirectional programming to serve as
a foundation for higher-level putback-based languages. BiGUL is
completely formally verified in the dependently typed program-
ming language AGDA to guarantee that any putback transformation
written in BiGUL is well-behaved.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized Application Lan-
guages

Keywords Putback-based bidirectional transformations, dependent
types, formal verification

1. Introduction
Bidirectional transformations (BXs) [5] provide a novel mechanism
for maintaining consistency between two pieces of related infor-
mation, one referred to as the source and the other as the view. A
bidirectional transformation consists of a pair of transformations —
a forward get which extracts information from a source to construct
an abstract view, and a backward put which embeds information of
a view back into a source, producing an updated source — and this
pair of transformations should be well-behaved, i.e., they should
satisfy two round-tripping laws (PutGet and GetPut; see Section 2).
Since writing both transformations while guaranteeing their well-
behavedness can take a lot of effort, many bidirectional program-
ming languages [2, 3, 8, 9, 13–15, 18, 23] have been designed to
aid the user in writing bidirectional transformations, with which the
programmer only needs to write one program that can be interpreted

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEPM’16, January 18-19 2016, St. Petersburg, FL, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4097-7/16/01. . . $15.00.
http://dx.doi.org/10.1145/2847538.2847544

either as get or put, and the two interpretations are guaranteed to be
well-behaved.

Recently there have been investigations into the feasibility of
writing bidirectional programs by describing solely their putback
directions [16, 24, 25]. The rationale behind this putback-based ap-
proach is that the put component of a bidirectional transformation
uniquely determines its get component [7, Lemma 2.2.5]. The com-
binator library PUTLENSES [24] follows this approach, providing
a set of putback-based lens combinators [8] for writing complex
BX programs. Based on PUTLENSES and the functional XML up-
date language FLUX [4], a bidirectional XML update language BI-
FLUX [25] has also been designed and implemented. Putback-based
programming is more delicate than previous approaches which cen-
tre around writing get, not only because put — being an update — is
inherently more complex than get, but also because not all updates
give rise to well-behaved BXs. This introduces a new challenge of
ensuring the well-behavedness of a put, in the sense that a unique
get can indeed be derived from the put to form a well-behaved BX.
PUTLENSES and BIFLUX meet this challenge by inserting dynamic
(runtime) checks around programmer-specified actions used in put,
and the programmer is supposed to supply only actions that can pass
these dynamic checks. While both languages are carefully designed,
the intricate nature of these dynamic checks can still make people
cast doubt on their correctness.

In this paper, we aim to build a clean and solid foundation for
higher-level putback-based languages (e.g., BIFLUX) by focusing
on a small yet sufficiently powerful putback-based core language
BiGUL (for Bidirectional Generic Update Language), which is
completely formally verified to guarantee that any put specified
in the language is well-behaved. In more detail:

• Firstly, BiGUL is a clean revision of the core of BIFLUX, and is
designed to be closer to practical programming languages (than,
e.g., PUTLENSES). It consists of a set of essential and orthogonal
bidirectional statements, such as alignment of source and view
lists, pattern matching–based independent source updates and
invertible view computation, and case analyses on either source
or view. Although currently BiGUL only has a dependently typed
abstract syntax, which is not intended to be programmer-friendly,
BiGUL programs are pretty straightforward to write (or compile
to), thanks to its native support of familiar programming constructs
like pattern matching and case statements.

• Secondly, the semantics of BiGUL is concretely defined in terms
of monadic programs, and all dynamic checks for guaranteeing
well-behavedness appear explicitly in the programs. BiGUL is
thus differentiated from the more abstract treatment by, e.g., Fos-
ter et al. [8], in which partiality is dealt with implicitly and various
well-behavedness conditions are specified set-theoretically, creat-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

PEPM’16, January 18–19, 2016, St. Petersburg, FL, USA
ACM. 978-1-4503-4097-7/16/01...
http://dx.doi.org/10.1145/2847538.2847544

61

ing a gap between the definitions and their implementations. The
concrete semantics of BiGUL, in contrast, can be faithfully ported
to practical programming languages like HASKELL without hav-
ing to fill the gap between abstract mathematics and concrete
implementation.

• Most importantly, BiGUL and its well-behavedness have been
completely formally modelled and verified using the dependently
typed programming language AGDA [20, 21]. (Full source code
is available at http://www.prg.nii.ac.jp/project/bigul,
and has been checked by AGDA version 2.4.2.4 with standard
library version 0.11.) Since BiGUL’s semantics are concrete
programs and directly proved correct, we can highly confidently
guarantee that these programs, when ported to other languages,
are indeed well-behaved.

• The main technique for facilitating the construction of well-
behavedness proofs is worth mentioning: We reify computation
steps of monadic programs as easily manipulable data, so well-
behavedness proofs — which have to cover all possible execution
traces by analysing program structure — can be carried out just
like doing ordinary functional programming.

For the rest of the paper, after explaining how to formalise and
prove well-behavedness of BXs in AGDA in Section 2, we present
BiGUL’s dependently typed syntax and proof-carrying bidirectional
semantics in Section 3 and a showcase example in Section 4, and
conclude with a few remarks in Section 5. This paper is typeset with
a modified version of lhs2TEX such that all global AGDA identifiers
are hyperlinked to their definitions, as an aid to those who read this
paper electronically.

2. Formalisation of Well-Behaved BXs in AGDA
Before presenting the BiGUL language in Section 3, we first give an
account of our AGDA formalisation of the underlying notion of well-
behaved partial bidirectional transformations, and also demonstrate
by a simple example how well-behavedness proofs are constructed
in our setting (Section 2.2). The key to the formalisation is the
reification of computation steps of monadic programs as a type
family 7→ (Section 2.1), which makes the construction of the
proofs as easy as ordinary functional programming.

We follow Foster et al.’s classic lens approach [8], but for the
PutGet and GetPut laws we adopt the variant used by Pacheco
et al. [24]. A lens between a source type S and a view type V is
defined in AGDA as the following record type:1

record Lens (S V : Set) : Set1 where
field

put : S→ V→ Par S
get : S→ Par V
PutGet : {s s′ : S} {v : V }→ (put s v 7→ s′)→ (get s′ 7→ v)
GetPut : {s : S} {v : V }→ (get s 7→ v)→ (put s v 7→ s)

That is, a lens is a pair of functions put and get satisfying the
PutGet and GetPut laws. The two laws are referred to as the well-
behavedness properties. Precise definitions of Par and 7→ will be
presented later in Section 2.1. Here we offer an informal explanation
first: Both put and get are partial functions that may or may not
successfully produce a result. Execution of put s v, if successful,
produces an updated version of the source s by embedding all
information of the view v into s, while get s extracts the view
embedded in s. The PutGet law states that, for all s, s′ : S and

1 Arguments wrapped in curly braces are implicit, and are typeset in a less
obtrusive style in this paper. We do not need to supply the implicit arguments
when applying a function if AGDA can infer what those arguments should
be.

v : V , if put s v successfully computes to s′, then subsequently get s′
should successfully compute to v; this ensures that put does the
embedding properly — after put updates a source with a view,
get can completely recover the view from the updated source.
Conversely, the GetPut law states that, for all s : S and v : V , if
get s successfully computes to v, then subsequently put s v should
successfully compute to s; this ensures that put does not perform
excessive updates — if the view used to update the source is
directly extracted from the source by get, then the source will remain
unchanged after the update.

Note that our definition of lenses is stronger than the definition
of well-behaved lenses given by Foster et al. [8, Definition 3.2]: Our
PutGet law says that successful computation of put guarantees suc-
cess of the subsequent computation of get, whereas in Foster et al.’s
definition there is no such guarantee; the GetPut law is similar.

2.1 Reification of Monadic Combinators and Computation
Steps

The kind of partial transformations we need are actually total
functions which wrap their results in the standard Maybe datatype
with two constructors just : A→Maybe A and nothing : Maybe A
— the result of a successful computation is wrapped in the just
constructor, while failed computation is represented by nothing. It
is thus always possible to know whether a computation succeeds or
not in a finite amount of time. This notion of “decidable partiality”
should be distinguished from the usual partiality as formalised in
terms of continuous functions between complete partial orders:
When defining the semantics of BiGUL (more specifically, for
view case analysis in Section 3.5), we need to write programs that
produce some result or fail respectively when a sub-program fails or
produces some result, but this is not possible if failed computation
is represented as a least element of a complete partial order.

We can choose to write our transformations directly as Maybe-
programs, usually structured with monadic combinators [19, 27] like
“return” and “bind”. This approach does not work too satisfactorily,
though (see the second half of Section 2.2 for an example), when
we consider the kind of proofs we need to construct for these
programs: When proving PutGet and GetPut, given is a proof that
a program — consisting of sub-programs bound together by the
combinators — computes successfully, and we need to analyse it
to obtain proofs saying that each of the sub-programs computes
successfully, and then reassemble these proofs to show that a related
composite program also computes successfully. This task would be
much easier if a proof of a successful composite computation is
exactly a bunch of proofs that all its sub-computations succeed. To
achieve this, we can reify the monadic binding structure of Maybe-
programs by deeply embedding the monadic combinators as the
constructors of a datatype, so that we can define types of proofs of
successful computation by induction on the binding structure.

We thus define a datatype Par, which is a deep embedding of the
operators that we use to write partial transformations:2

data Par : Set→ Set1 where
return : {A : Set}→ A→ Par A
>>= : {A B : Set}→ Par A→ (A→ Par B)→ Par B

fail : {A : Set}→ Par A

There are also other deeply embedded operators for error handling
(see Section 3.5) and assertion, which we omit here. The meaning of
the constructors of Par is formally given by the following interpreter
to Maybe:3

2 Identifiers with underscores can be used either in prefix or infix form. For
example, we can write either >>= mx f or mx >>= f .
3 The with notation evaluates an expression (here runPar mx) and matches
the result with an additional pattern (appearing on the right of ‘|’).

62

http://www.prg.nii.ac.jp/project/bigul

runPar : {A : Set}→ Par A→Maybe A
runPar (return x) = just x
runPar (mx >>= f) with runPar mx
runPar (mx >>= f) | just x = runPar (f x)
runPar (mx >>= f) | nothing = nothing
runPar fail = nothing

We say that mx : Par A computes to x : A exactly when runPar mx ≡
just x, and that mx fails to compute exactly when runPar mx ≡
nothing. The equality runPar mx ≡ just x is already a family of
types of proofs of successful computation, but these equality proofs
are not so straightforward to analyse and construct (see the second
half of Section 2.2). We hence move on to define an equivalent
family of types, whose proofs are easier to manipulate.

For every mx : Par A and x : A, we define a type mx 7→ x
whose inhabitants explain how the sub-programs in mx compute
successfully one by one, eventually producing x:4

7→ : {A : Set}→ Par A→ A→ Set
(return x) 7→ x′ = x≡ x′

(mx >>= f) 7→ y = (x :)× (mx 7→ x)× (f x 7→ y)
fail 7→ x = ⊥

In prose: return x computes to x′ when x is exactly x′; mx >>= f
computes to y when there exists a value x such that mx computes
to x and f x computes to y; and it is impossible for fail to compute
successfully. Here our use of the term “computes to” is justified,
since we can prove that a term of type mx 7→ x can be constructed
if and only if runPar mx ≡ just x, meaning that our reification of
runPar mx ≡ just x as mx 7→ x is accurate. We are thus entitled to
use 7→ in the statements of PutGet and GetPut.

2.2 A Sample Well-Behavedness Proof
To give the reader a taste of how well-behavedness proofs are
constructed in our AGDA setting, let us try to define an operator �
for lens composition:5

� : {A B C : Set}→ Lens A B→ Lens B C→ Lens A C
l � r = record
{ put = λ a c→ Lens.get l a >>= λ b→

Lens.put r b c >>= Lens.put l a
; get = λ a→ Lens.get l a >>= Lens.get r
; PutGet = ? ; GetPut = ?}

The put and get functions for the composite lens l � r can be pretty
straightforwardly constructed from the put and get functions of
the component lenses l and r. As part of the definition of � ,
we also need to prove that PutGet and GetPut hold for the pair of
put and get we provide. For PutGet we need to show that, for all
a, a′ : A, and c : C, from a proof of put a c 7→ a′ we can construct
a proof of get a′ 7→ c. That is, we need to write a function that
converts an inhabitant of the type put a c 7→ a′ to one of the type
get a′ 7→ c. AGDA automatically expands the two types by the
definition of 7→ , the first one to

(b : B)× (Lens.get l a 7→ b)×
(b′ : B)× (Lens.put r b c 7→ b′)× (Lens.put l a b′ 7→ a′)

and the second one to

(b : B)× (Lens.get l a′ 7→ b)× (Lens.get r b 7→ c)

4 We write dependent pair types Σ(x∈ A) B x as (x : A)× B x. The underscore
in (x :)× (mx 7→ x)× (f x 7→ y) leaves the type of x for AGDA to infer.
5 A field of a record is extracted by applying the field’s accessor func-
tion to the record. For example, the accessor function Lens.get has type
{S V : Set}→ Lens S V→ S→ Par V .

Thus all we need to do is convert a five-tuple to a three-tuple. This
is just ordinary functional programming: Applying Lens.PutGet l
to the fifth component of type Lens.put l a b′ 7→ a′ we obtain an
inhabitant of type Lens.get l a′ 7→ b′, and applying Lens.PutGet r
to the fourth component of type Lens.put r b c 7→ b′ we obtain
an inhabitant of type Lens.get r b′ 7→ c. Hence the proof term for
PutGet is simply

λ {(b , x , b′ , y , z)→ (b′ , Lens.PutGet l z , Lens.PutGet r y)} (∗)
With a similar reasoning, we can also construct a proof term for
GetPut:

λ {(b , x , y)→ (b , x , b , Lens.GetPut r y , Lens.GetPut l x)}
completing the definition of � .

For the rest of this paper we will omit the well-behavedness
proofs, but a majority of these proofs — while requiring more
complicated case analyses — are technically as simple as the above
proofs for lens composition.

Working directly with equality proofs. To emphasise the advan-
tage of reasoning with Par and 7→ , let us consider how the well-
behavedness proofs for � would be constructed if we wrote par-
tial transformations simply as Maybe-programs and stated well-
behavedness in terms of AGDA’s equality type ≡ . The put and
get functions would be defined in exactly the same way except that
the bind operator used is the Maybe version. The PutGet law now
reads

pg : {a a′ : A} {c : C}→

(Lens.get l a >>= (λ b→
Lens.put r b c >>= Lens.put l a) ≡ just a′)→

Lens.get l a′ >>= Lens.get r ≡ just c

The logic of proving pg is exactly the same as before, but the
machinery involved is more complex. To analyse the antecedent
equality proof, we can prove a lemma:

bind-computes :
{A B : Set} (mx : Maybe A) {f : A→Maybe B} {y : B}→
mx >>= f ≡ just y→
(x : A)× (mx ≡ just x)× (f x ≡ just y)

Applying the lemma twice analyses the antecedent into three smaller
equality proofs, achieving the same effect as the pattern matching
in the λ -expression (∗). As for establishing the consequent, a
probably easier way is to rewrite Lens.get l a′ to just b′ with an
application of Lens.PutGet l so the consequent type simplifies
to Lens.get r b′ ≡ just c, which can then be discharged by an
application of Lens.PutGet r. The whole proof is

pg {a = a} p with bind-computes (Lens.get l a) p
pg {c = c} p | b , x , q with bind-computes (Lens.put r b c) q
pg p | b , x , q | b′ , y , z rewrite Lens.PutGet l z

= Lens.PutGet r y

which is apparently more heavyweight than the λ -expression (∗).
For more complicated well-behavedness proofs, the above approach
quickly becomes unmanageable, whereas our approach scales nicely.

3. BiGUL and Its Formally Verified Lens
Semantics

Having explained the infrastructure of our AGDA formalisation, we
now move on to the BiGUL language itself. Following the putback-
based approach, our language BiGUL describes put functions, i.e.,
updates to a source using a view. Figure 1 shows (a simplified
version of) the main definition of BiGUL (which refers to some
auxiliary definitions that will appear in later sub-sections). In

63

data BiGUL : U→ U→ Set1 where
replace : {S : U}→ BiGUL S S
fail : {S V : U}→ BiGUL S V
skip : {S : U}→ BiGUL S one

caseS : {S V : U}→ List (CaseSBranchB S V)→ BiGUL S V
caseV : {S V : U}→ List (CaseVBranchB S V)→ BiGUL S V
align : {S V : U}→ (source-condition : J S K→ Par Bool)

(match : J S K→ J V K→ Par Bool)
(b : BiGUL S V)
(create : J V K→ Par J S K)
(conceal : J S K→ Par (Maybe J S K))→
BiGUL (list S) (list V)

update : {S : U}→ (p : Pattern S) (bs : BiGULs p)→
BiGUL S (Views p bs)

rearr : {S V V ′ : U}→ (p : Pattern V) (q : Pattern V ′)→
Paths p q→ BiGUL S V ′→ BiGUL S V

Figure 1. Top-level definition of BiGUL (simplified)

general, a BiGUL update proceeds by decomposing the source into
several parts to be updated independently (update; Section 3.2), and
accordingly rearranging the view to match with these parts (rearr;
Section 3.3), until the source and the view are reduced to the
extent that basic operations can be applied (replace, fail, and
skip; Section 3.1). When both the source and the view are lists,
there is a powerful alignment operation for synchronising the two
lists (align; Section 3.6). And we can do case analyses on either
the source (caseS; Section 3.4) or the view (caseV; Section 3.5) for
describing more complex update strategies.

Figure 2 gives a running example of a BiGUL program. (A
more complex example, in particular involving caseS and caseV,
is given in Section 4.) The source is a list of book data of type
String× String×N×N×Bool representing a book’s title, author,
publication year, price, and whether it is in stock, and we intend to
update the price of those books published in 2016 that are still in
stock. We thus prepare a list of pairs of book title and price of type
String × N as the view. The BiGUL program then describes how to
update the source with the view: We focus on those books in the
source list which are published in 2016 and still in stock (line 1)
and align them with the view list by title (line 2); for every matched
pair of source and view books, we rearrange the view (lines 3–4) to
match with the shape of the source, decompose the source by pattern
matching (line 5), and replace the title and price of the source with
those from the view (line 6); for every unmatched view book, we
create a source book with default author information and publication
year 2016 and mark it as in stock (line 7), and its title and price will
later be updated by the action for matched pairs (i.e., lines 3–6);
finally, for every unmatched source book, we keep it in the source
list but mark it as out of stock (line 8).

The types of the BiGUL constructors are indexed by the source
and view types of the operations represented by the constructors,
and ultimately we can write a well-typed interpreter to Lens:

interp : {S V : U}→ BiGUL S V→ Lens J S K J V K

(U and J_K are defined in Section 3.2.) Since well-behavedness is
built into the definition of Lens, being able to construct interp means
that we have not only translated BiGUL to put and get functions,
but also proved formally that PutGet and GetPut are satisfied, in the
manner explained in Section 2.2.

Below we will go through each of the BiGUL operations, starting
with the three most basic ones in Section 3.1. We should warn the

reader that the subsequent Section 3.2 is more about the datatype-
generic mechanism underlying a major part of BiGUL and less about
BXs, and we choose to present it earlier because it will be used in
later sections, and also help to clarify most of Figure 2 sooner.
Section 3.4 will be the first section that presents the development of
a nontrivial bidirectional operation in detail.

3.1 Replacing, Failure, and Skipping
The three most basic operations are replace, fail, and skip. The
replace operation is applicable when the source and view are of the
same type. Its put semantics is discarding the original source and
returning the view as the updated source, while its get semantics is
just the identity. This bidirectional semantics can in fact be derived
from a partial isomorphism: We define partial isomorphisms by

record Iso (A B : Set) : Set1 where
field

to : A→ Par B
from : B→ Par A
to-from-inverse : {x : A} {y : B}→ (to x 7→ y)→ (from y 7→ x)
from-to-inverse : {x : A} {y : B}→ (from y 7→ x)→ (to x 7→ y)

of which Lens is a generalisation, as we can easily convert Iso A B
to Lens A B:

iso-lens : {A B : Set}→ Iso A B→ Lens A B
iso-lens iso = record { put = λ b→ Iso.from iso b

; get = Iso.to iso
; PutGet = Iso.from-to-inverse iso
; GetPut = Iso.to-from-inverse iso}

(Note that the put ignores its source argument.) The lens semantics
of replace can then be derived from the identity isomorphism:

id-iso : {S : Set}→ Iso S S
id-iso = record {to = return ; from = return ; . . . }
interp replace = iso-lens id-iso

We can also derive the lens semantics for fail — whose put and get
simply fail to compute for any input — from the empty isomorphism
in the same way:

empty-iso : {S V : Set}→ Iso S V
empty-iso = record { to = λ → fail

; from = λ → fail ; . . . }
interp fail = iso-lens empty-iso

On the other hand, the put semantics of the skip operation is
discarding the view and returning the original source, and its lens
semantics is not an instance of iso-lens:

skip-lens : {S : Set}→ Lens S>
skip-lens = record { put = λ s → return s

; get = λ → return tt ; . . . }
interp skip = skip-lens

Note that the view type is specified as the unit type > (whose only
inhabitant is tt :>) — if the view type were more complex, there
would be no way for get to decide what to return. In general, put
must embed all view information into the updated source so get can
recover the entire view from the updated source, establishing PutGet.
> is a type with no information, and hence Lens.put skip-lens can
safely ignore its view argument of type >, while Lens.get skip-lens
can simply return tt.

3.2 Source Update
A fundamental operation is decomposing a source and updating its
parts, represented by the update constructor of BiGUL. We follow

64

1 align (λ {(, , year , , instock)→ return (year == 2016 ∧ instock)})
2 (λ {(stitle ,) (vtitle ,)→ return (stitle == vtitle)})
3 (rearr (prod var var) (prod var (prod unit (prod unit (prod var unit))))
4 (inj1 refl , tt , tt , inj2 refl , tt)

-- the two lines above are a deeply embedded representation of the function λ {(title , price)→ (title , tt , tt , price , tt)}
5 (update (prod var (prod var (prod var (prod var var))))
6 ((, replace) , (, skip) , (, skip) , (, replace) , (, skip))))
7 (λ → return ("" , "(to be updated)" , 2016 , 0 , true))
8 (λ {(title , author , year , price , instock)→ return (just (title , author , year , price , false))})

Figure 2. Updating the prices of the books published in 2016

the approach taken by FLUX [4], which requires that updates must
be independent — that is, the same part of a source cannot be
updated more than once. (This is for ensuring PutGet: Consider,
for example, the scenario in which the view is a pair (v , v′),
whose components have the same type as the source; if we allowed
the source to be replaced twice, first with v and second with v′,
then v would be overwritten by the second replacing and could
not be retrieved by a subsequent invocation of get.) It turns out
that a pattern matching notation suits this task perfectly: Pattern
matching is arguably the most intuitive way to decompose a source,
and we can specify manifestly independent updates by writing
them at the variable positions in a pattern. For example, at lines
5–6 of Figure 2 we use update to match a source book of type
String × String × N × N × Bool with a five-variable pattern and
update its five components respectively by replace, skip, skip,
replace, and skip. The idea itself is straightforward; what follows,
despite its slight complexity (especially if the reader is not familiar
with dependently typed programming), is merely our datatype-
generic and strongly typed implementation of the idea in AGDA [1,
10]. The definitions for update will be laid out in three levels: We
first define the class of datatypes that we wish to process with
BiGUL; for every datatype, we define the patterns applicable to
the inhabitants of the datatype; finally, every pattern induces a
“container” type, whose inhabitants can be used to store inner BiGUL
statements at the variable positions of the pattern.

Since AGDA is fully dependently typed, we can naturally define
patterns in a type-directed way such that nonsensical patterns are
ruled out by construction. This task starts from the construction of
a universe U, i.e., a datatype whose inhabitants are interpreted as
types. U has appeared in the definition of BiGUL in Figure 1, where
it is used as the type of the indices representing the source and view
types of the operations. The actual AGDA implementation of BiGUL
uses a universe capable of expressing mutually inductive datatypes,
but, to make the presentation easier to follow, the universe U that we
define below — along with its interpretation J_K — is only a much
simplified version:

data U : Set1 where J_K : U→ Set
k : Set→ U J k A K = A
one : U J one K = >
⊕ : U→ U→ U J F ⊕ G K = J F K] J G K
⊗ : U→ U→ U J F ⊗ G K = J F K× J G K

list : U→ U J list F K = List J F K

The types that we can encode within U are those expressible in
terms of atomic types, the unit type >, sum types] (whose two
constructors are inj1 : A→ A] B and inj2 : B→ A] B), product
types × , and List; applying J_K to an inhabitant of the universe
decodes it to the type it represents.

We can now define a family of types Pattern : U→ Set such that,
for any D : U, the type Pattern D contains exactly those patterns

sensible for J D K. Below is a simplified version covering the patterns
used in this paper:

data Pattern : U→ Set1 where
var : {D : U}→ Pattern D
unit : Pattern one

left : {D E : U}→ Pattern D→ Pattern (D⊕ E)
right : {D E : U}→ Pattern E→ Pattern (D⊕ E)
prod : {D E : U}→ Pattern D→ Pattern E→ Pattern (D⊗ E)

On all types we can use the var pattern which matches anything,
while on sum types we can use the left and right patterns matching
inj1 and inj2 constructors but not the prod pattern, which only makes
sense for product types. Also we have the unit pattern for matching
tt :>.

Next, patterns are given a different interpretation as “containers”
for storing values — whose types depend on the types of the
variable sub-patterns — at their variable positions. For example,
a pair pattern prod var var : Pattern (D ⊗ E) can be interpreted
as a container storing a pair of type f D × f E for any given type-
computing function f : U→ Set. The types of such containers can
be defined by induction on Pattern:

VarPositions :
{l : Level} {D : U}→ Pattern D→ (U→ Set l)→ Set l

VarPositions (var {D}) f = f D
VarPositions unit f = >
VarPositions (left p) f = VarPositions p f
VarPositions (right p) f = VarPositions p f
VarPositions (prod p q) f = VarPositions p f ×VarPositions q f

A first situation where the notion of pattern-induced containers
is helpful is when formalising pattern matching: The result of a
successful pattern matching can be filled into such a container,
by putting the resulting components at their respective variable
positions. Defining the types of pattern matching results as an
instance of VarPositions:

PatResult : {D : U}→ Pattern D→ Set
PatResult p = VarPositions p J_K

we can formulate pattern matching as a partial isomorphism:

pat-iso : {D : U}→ (p : Pattern D)→ Iso J D K (PatResult p)

whose definition is shown in Figure 3. The to component of the
isomorphism performs pattern matching, and the from component
reverses pattern matching by evaluating a pattern as if it is an
expression, using the input of type PatResult p as an environment
for values at variable positions. (This pattern matching isomorphism
will also play an important role in Section 3.3.)

Now we can explain the syntax of the source updating operation,
i.e., the update constructor of the BiGUL datatype, and define how
it is interpreted, i.e., the update case of interp. By specialising

65

pat-iso : {D : U}→ (p : Pattern D)→ Iso J D K (PatResult p)
pat-iso p = record { to = deconstruct p

; from = return ◦ construct p ; . . . }
where

deconstruct :
{D : U} (p : Pattern D)→ J D K→ Par (PatResult p)

deconstruct var x = return x
deconstruct unit = return tt
deconstruct (left p) (inj1 x) = deconstruct p x
deconstruct (left p) (inj2 y) = fail
deconstruct (right p) (inj1 x) = fail
deconstruct (right p) (inj2 y) = deconstruct p y
deconstruct (prod p q) (x , y) = deconstruct p x >>= λ l →

deconstruct q y >>= λ r→
return (l , r)

construct : {D : U} (p : Pattern D)→ PatResult p→ J D K
construct var x = x
construct unit = tt
construct (left p) x = inj1 (construct p x)
construct (right p) y = inj2 (construct p y)
construct (prod p q) (x , y) = construct p x , construct q y

. . .

Figure 3. Definition of the pattern matching isomorphism

VarPositions, we can place BiGUL statements — along with their
view types — at the variable positions of a pattern:

BiGULs : {D : U}→ Pattern D→ Set1
BiGULs p = VarPositions p (λ D→ (E : U)× BiGUL D E)

The update constructor of BiGUL then takes a pattern p and a bunch
of BiGUL statements collected in bs : BiGULs p. Its view type is a
product of the view types in bs, whose code in U is computed by

Views : {D : U} (p : Pattern D)→ BiGULs p→ U
Views var (E ,) = E
Views unit = one
Views (left p) bs = Views p bs
Views (right p) bs = Views p bs
Views (prod p q) (bs , bs′) = Views p bs⊗ Views q bs′

The lens semantics of update is given by

interp (update pat bs) =
iso-lens (pat-iso pat) � interp-update pat bs

where interp-update has type

interp-update : {D : U} (p : Pattern D) (bs : BiGULs p)→
Lens (PatResult p) J Views p bs K

which inductively interprets and composes the BiGUL statements
in bs into one lens. In prose, the put semantics of update decom-
poses the source by matching it with the pattern p, updates its com-
ponents at the variable positions using the BiGUL statements in bs,
and reassembles the updated components, while its get semantics
again decomposes the source by matching it with p and extracts
views from its components using bs.

3.3 View Rearrangement
The operation rearr is for rearranging the view to a specific shape
suitable for subsequent updates. For example, the update operation
in Section 3.2 demands that the view must be in a shape that matches

the source pattern (as computed by Views), and this is usually
achieved by an outer rearr, as is the case at lines 3–4 of Figure 2.
In essence, rearr performs an invertible computation, while its get
semantics performs the inverse of the computation. The invertible
computation used is usually just moving things around and not
complicated (hence the name “rearrangement”), so instead of letting
the programmer write general invertible functions (probably along
with their inverses), we ask instead for syntactic descriptions of
simple invertible computations, which are more restrictive but allow
automatic inversion.

The kind of invertible computation we wish to express is a
decomposition of an old view followed by an assembling of a new
view using all components of the old view — for example, lines 3–4
of Figure 2 simply express the computation:

λ {(title , price)→ (title , tt , tt , price , tt)}
When it comes to decomposition, pattern matching should come to
mind again; assembling can also be handled by pattern matching,
as we have formulated pattern matching as an isomorphism pat-iso
in Section 3.2. We thus require two patterns p : Pattern D and
q : Pattern E, the former for decomposing the old view of type J D K
and the latter for assembling the new view of type J E K. For the
latter pattern q, we also need to specify which component of the old
view will be used as the value at each variable position. This last
piece of information is represented by specialising VarPositions
again:

Paths : {D E : U}→ Pattern D→ Pattern E→ Set1
Paths p q = VarPositions q (Path p)

where Path p T , defined below, is the type of all paths that lead from
the root of a PatResult p to a component of type J T K at a variable
position:

Path : {D : U}→ Pattern D→ U→ Set1
Path (var {D}) T = D≡ T
Path unit T = ⊥
Path (left p) T = Path p T
Path (right p) T = Path p T
Path (prod p q) T = Path p T] Path q T

If a given bunch of paths : Paths p q use up all components of
the old view, i.e., all possible paths for p are contained in paths,
then p, q, and paths together specify a computation that can be
automatically inverted — since all components of the old view are
present somewhere in the new view, we can always reassemble the
old view from the new view (unless there is inconsistency — a
component of the old view might be copied into more than one
positions of the new view, and the values at these positions of the
new view must be the same when doing the reassembling).

In more detail, we can construct an isomorphism:

rearr-iso : {D E : U}→

(p : Pattern D) (q : Pattern E) (paths : Paths p q)→
Invertible p q paths→ Iso J E K J D K

where Invertible p q paths is defined to state that paths can pass a
check for ensuring that all components of the old view are used. The
from direction matches an inhabitant of J D K with the pattern p and
uses the components as an environment for evaluating the pattern q
to an inhabitant of J E K. The to direction is more delicate: It creates
an empty container of type VarPositions p (Maybe ◦ J_K) (all of
whose variable positions are nothing) and fills it with components
obtained by matching the input J E K with q. If the container can
be completely and consistently filled up — that is, every position
in the container is filled with one and only one value — then
we turn the container into a “necessarily full” container of type
VarPositions p J_K — i.e., PatResult p — by stripping all the just

66

tags, and use it as an environment for evaluating p to an inhabitant
of J D K.

We can now define the semantics of rearr. A natural choice is to
use lens composition defined in Section 2.2:

interp (rearr p q paths b) =
interp b � iso-lens (rearr-iso p q paths . . .)

This definition is not good enough, however. The reason is subtle:
The intended put semantics of rearr is to transform the view and
then use b with the new view, but the above semantics performs
one extra step that uses the get semantics of b to compute an inter-
mediate source, which is then ignored according to the definition
of iso-lens. This extra step turns out to be not only redundant but
also detrimental: It is possible that the put semantics of b can accept
sources that are not in the domain of its get semantics (for example,
when b is a caseS with adaptive branches (Section 3.4)), and when
that is the case, the intended put semantics of rearr should compute
successfully, while the above semantics will fail to compute due
to the extra invocation of get. We hence need to introduce a more
specialised operator for composing a lens with an isomorphism:

/ : {A B C : Set}→ Lens A B→ Iso B C→ Lens A C
l / iso = record
{ put = λ a c→ Iso.from iso c >>= Lens.put l a
; get = λ a→ Lens.get l a >>= Iso.to iso ; . . . }

Note that its put does not invoke Lens.get l on a. The semantics of
rearr can then be defined by

interp (rearr p q paths b) = interp b / rearr-iso p q paths . . .

This is still not the actual definition, in fact — note that the in-
vertibility proof is omitted. To be able to supply the invertibility
proof, interp needs an additional argument consisting of invertibility
proofs for all rearr operations appearing in the program being inter-
preted. This additional argument is omitted from the presentation
for brevity.

3.4 Case Analysis on Source
The next construct caseS is for doing case analysis on the source.
The basic idea of caseS’s semantics is to choose from a list of
branches the first one that matches the source, and then execute the
BiGUL statement of that branch. It is, however, difficult to find a
get to pair with this put semantics: The obvious get which selects
the first branch that matches its source argument does not work,
because, when we consider PutGet, it may well happen that the
updated source produced by put matches a different branch from the
one matching the original source, and hence in general we would
have to guarantee PutGet for put and get coming respectively from
any two branches, which is unmanageable. A more manageable
solution is to insert a dynamic check at the end of put to ensure
that the updated source must match the same branch as the original
source, which is the solution adopted by Foster et al.’s concrete
conditional lens [8, Section 6.1].

3.4.1 Enriching Source Case Analysis with Adaptive
Branches

The above solution, however, is sometimes too restrictive in practice.
For example, in our putback-based language BIYACC [28] for
generating well-behaved pairs of parsers and “reflective” printers,
a program specifies how a printer updates a concrete syntax tree
(the source) to become consistent with an abstract syntax tree (the
view). The printer tries to retain the structure of a source wherever
possible, but when the structure of the source is radically different
from that of the view, we need to change the source completely,
and this change of source structure would fail the aforementioned
dynamic check that prevents branch switching. We therefore need a

more flexible case analysis on source. (See Section 4 for a simpler
scenario where we also need this increased flexibility.)

Our solution is to add a special kind of branches called adaptive
branches to source case analysis, in addition to normal branches.
The two kinds of branches are defined by the following datatype:

data CaseSBranchType (S V : Set) : Set1 where
normal : Lens S V → CaseSBranchType S V
adaptive : (S→ Par S)→ CaseSBranchType S V

A normal branch is just a lens, while an adaptive branch is a
source transformation. With each branch we also need to associate
a decidable predicate on the source type specifying when a source
matches the branch, so the complete definition of the type of
branches is

CaseSBranch : Set→ Set→ Set1
CaseSBranch S V = (S→ Par Bool)× CaseSBranchType S V

The lens semantics of caseS is then given by

caseS-lens : (S V : Set)→ List (CaseSBranch S V)→ Lens S V

which is built from a list of branches.

3.4.2 The put and get Semantics
The put and get components of caseS-lens are shown in Figure 4.
For the put semantics, we might think of a source case analysis
as still consisting mainly of normal branches, but we can now
specify additional cases such that when a source matches none
of the normal branches, the source can still be accepted, which is
then transformed — or adapted — to one that will match a normal
branch. More explicitly, the case analysis may be run twice: If
a normal branch is chosen the first time, then the case analysis
succeeds and we execute the branch; otherwise, we adapt the source
and rerun the case analysis, and must match a normal branch this
time. A single round of the case analysis is performed by the
function put-with-adaptation, which takes a continuation of type
S→ Par S that, when an adaptive branch is matched, is invoked
on the adapted source. The put semantics, which consists of up
to two rounds of the case analysis, is put-with-adaptation with a
second instance of put-with-adaptation as the continuation, and
the continuation for the latter is the computation that always fails
— that is, the second round cannot fall into an adaptive branch.
In either round, if a normal branch is matched and executed, we
must ensure that the updated source satisfies the predicate of the
branch and also none of the predicates of the previous branches,
so a subsequent execution of get on the updated source — which
chooses a branch in the same way as put — will go through the same
branch as put, establishing PutGet. In put-with-adaptation, there is
an accumulating parameter bs′ keeping hold of the mismatched
branches; if a normal branch is matched and executed, the function
check-diversion will be invoked to ensure that the updated source
matches none of the branches in bs′.

The get semantics, on the other hand, simply tries to match the
source with each of the branches and execute the first matched
branch if the branch is normal, or fail if the branch is adaptive. A
quick reasoning for the behaviour about adaptive branches is as
follows: An abstract reading of the well-behavedness laws says that
the domain of get must coincide with the range of updated sources
produced by put. Since a successfully updated source necessarily
comes out from, and will again match, a normal branch, get must
fail for any source matching an adaptive branch.

Example. Of course, we still need to prove the well-behavedness
properties to actually say that the put and get functions are defined
correctly. But before doing so, let us look at a minimal example that
uses adaptation. Suppose that the source is a natural number and the
view has type >. That is, there is no information in the view to be

67

caseS-lens : (S V : Set)→ List (CaseSBranch S V)→ Lens S V
caseS-lens S V bs = record { put = λ s v→ put-with-adaptation bs [] s v (λ s′→ put-with-adaptation bs [] s′ v (λ → fail))

; get = get bs ; . . . }
where

branch : {l : Level} {X : Set l}→ (Lens S V→ X)→ ((S→ Par S)→ X)→ CaseSBranchType→ X
branch f g (normal l) = f l
branch f g (adaptive u) = g u

check-diversion : List (CaseSBranch S V)→ S→ Par >
check-diversion [] s = return tt
check-diversion ((p ,) :: bs) s = p s >>= λ matched→ if matched then fail else check-diversion bs s

put-with-adaptation : List (CaseSBranch S V)→ List (CaseSBranch S V)→ S→ V→ (S→ Par S)→ Par S
put-with-adaptation [] bs′ s v cont = fail
put-with-adaptation ((p , b) :: bs) bs′ s v cont =

p s >>= λ matched→ if matched then branch (λ l→ Lens.put l s v >>= λ s′→ p s′ >>= λ matched′→
if matched′ then check-diversion bs′ s′ >>= (λ → return s′) else fail)

(λ u→ u s >>= cont) b
else put-with-adaptation bs ((p , b) :: bs′) s v cont

get : List (CaseSBranch S V)→ S→ Par V
get [] s = fail
get ((p , b) :: bs) s = p s >>= λ matched→ if matched then branch (λ l→ Lens.get l s) (λ → fail) b else get bs s

. . .

Figure 4. Definitions of put and get for source case analysis

put back. There is, however, a requirement that the source should be
“normalised” to an even number. We can turn this requirement into a
dynamic check by wrapping skip in a caseS:

caseS ((return ◦ isEven , normal skip) :: [])
-- isEven : N→ Bool

Both the put and get semantics of this BiGUL program compute
successfully if and only if the input source is even. However, we can
make put also accept odd sources by adding an adaptive branch:

toEven : BiGUL (k N) one
toEven = caseS
((return ◦ isEven , normal skip) ::
((λ → return true) , adaptive (λ n→ return (n− 1))) :: [])

That is, normally we expect the source to be an even number, but if
an odd source does show up, put will be capable of “normalising”
it: The odd source will fall into the second adaptive branch and get
transformed into an even number, which will then match the first
normal branch, and be returned as the updated source.

3.4.3 Sketch of the Well-Behavedness Proofs
As explained in Section 2.2, the well-behavedness proofs for
caseS-lens proceed by analysing all possible ways for put or get to
compute successfully, and then showing how their successful com-
putation guarantees successful computation of the corresponding
get or put. The only slight complication about caseS-lens is that
put-with-adaptation has an accumulating parameter, which implies
that we need to prove generalised versions of the well-behavedness
statements. For PutGet, the main statement we prove is

PutGet-with-adaptation :
(bs bs′ : List (CaseSBranch S V))
{s s′ : S} {v : V } {cont : S→ Par S}→
({s : S}→ (cont s 7→ s′)→ (get (revcat bs′ bs) s′ 7→ v))→
(put-with-adaptation bs bs′ s v cont 7→ s′)→
(get (revcat bs′ bs) s′ 7→ v)

where revcat is defined by

revcat : {l : Level} {A : Set l}→ List A→ List A→ List A
revcat [] ys = ys
revcat (x :: xs) ys = revcat xs (x :: ys)

which is the usual way of implementing linear-time list reversal,
and coincides with how branches are moved from bs to bs′ in
put-with-adaptation. PutGet is then proved by setting bs′ to []
and applying PutGet-with-adaptation to itself in a way similar to
how we define put in terms of put-with-adaptation. For GetPut, the
generalisation we need is relatively simpler:

GetPut-with-adaptation :
(bs bs′ : List (CaseSBranch S V))
{cont : S→ Par S} {s : S} {v : V }→
(check-diversion bs′ s 7→ tt)→
(get bs s 7→ v)→ (put-with-adaptation bs bs′ s v cont 7→ s)

GetPut is then proved by setting bs′ to [], in which case the premise
about check-diversion becomes trivially true.

3.4.4 Fitting the Lens to the Interpreter
The final step is to define a corresponding constructor, caseS,
in the BiGUL datatype. We start with defining a variant of
CaseSBranchType whose source and view type parameters are
codes from the universe U (Section 3.2) and whose normal con-
structor takes a BiGUL statement instead of a Lens:

data CaseSBranchTypeB (S V : U) : Set1 where
normal : BiGUL S V → CaseSBranchTypeB S V
adaptive : (J S K→ Par J S K)→ CaseSBranchTypeB S V

and also a variant of CaseSBranch:

CaseSBranchB : U→ U→ Set1
CaseSBranchB S V =

(J S K→ Par Bool)× CaseSBranchTypeB S V

68

-- Assume S : Set and V : Set

get-with-check : (V→ Par Bool)→ Lens S V→ S→ Par V
get-with-check p l s = Lens.get l s >>= λ v→

p v >>= λ matched→
if matched then return v else fail

put : (bs : List (CaseVBranch S V))→ S→ V→ Par S
put [] s v = fail
put ((p , l) :: bs) s v =

p v >>= λ matched→
if matched then Lens.put l s v

else put bs s v >>= λ s′→
catch (get-with-check p l s′) (λ → fail)

(return s′)

get : (bs : List (CaseVBranch S V))→ S→ Par V
get [] s = fail
get ((p , l) :: bs) s =

catch (get-with-check p l s) return
(get bs s >>= λ v→ p v >>= λ matched→
if matched then fail else return v)

Figure 5. Definitions of put and get for view case analysis

As shown in Figure 1, the caseS constructor of BiGUL takes a list
of CaseSBranchBs. Its interpretation is, unsurprisingly, caseS-lens:

mutual
. . .

interp (caseS {S} {V } bs) =
caseS-lens J S K J V K (interp-caseS bs)

. . .

interp-caseS : {S V : U}→ List (CaseSBranchB S V)→
List (CaseSBranch J S K J V K)

interp-caseS [] = []
interp-caseS ((p , normal b) :: bs) =

(p , normal (interp b)) :: interp-caseS bs
interp-caseS ((p , adaptive u) :: bs) =

(p , adaptive u) :: interp-caseS bs

The helper function interp-caseS simply maps interp into the normal
branches. To help AGDA see that interp is terminating, though, we
need to define interp-caseS explicitly (instead of using the standard
map function on lists) and put the definition along with interp in a
mutual block.

3.5 Case Analysis on View
For caseV, we still try to match the view with a list of branches, and
execute the first branch that matched, like for caseS. Unlike caseS,
though, there are no adaptive branches for caseV, so the definition
of branches is more straightforward:

CaseVBranch : Set→ Set→ Set1
CaseVBranch S V = (V→ Par Bool)× Lens S V

The lens semantics we assign to caseV then has type

caseV-lens : (S V : Set)→ List (CaseVBranch S V)→ Lens S V

Its put and get are shown in Figure 5. The definition of put is
basically what one would expect. As for get, there is no obvious
way to decide which branch to go — unlike put, we are not given
a view to match with the branches. Here we try to execute each of
the branches until we reach one that computes a view successfully,

which is the approach taken by Pacheco et al. [24]. This requires
Par to be extended with one more constructor:

catch : {A B : Set}→ Par A→ (A→ Par B)→ Par B→ Par B

interpreted by

runPar (catch mx f my) with runPar mx
runPar (catch mx f my) | just x = runPar (f x)
runPar (catch mx f my) | nothing = runPar my

That is, catch mx f my behaves like mx >>= f when mx computes
successfully, or becomes my when mx fails. Execution of get can
then be specified to try subsequent branches if the current branch
fails to compute.

Example. Suppose that the source is a natural number and the
view is >]>, and the source should be even if the view is inj1 tt,
or odd if the view is inj2 tt. To establish this relationship, we can
use the toEven program presented at the end of Section 3.4.2 and an
analogous program toOdd inside a caseV:

caseV ((return ◦ isInj1 , -- isInj1 : {A B : Set}→ A] B→ Bool
rearr (left unit) unit tt toEven) ::

((λ → return true) ,
rearr (right unit) unit tt toOdd) :: [])

If the view is inj1 tt, we rearrange it to tt and invoke toEven to
update the source to an even number; the case where the view is
inj2 tt is analogous. This is a common pattern for caseV (which
will appear again in Section 4): Each branch begins with a view
rearrangement which gets rid of some information that has been used
to choose this branch, and then uses a caseS to update the source to
correspond to the view. As for the get semantics, an even source will
successfully compute to tt through toEven and then to inj1 tt by the
rearrangement, while an odd source will fail to compute through
toEven and fall to the second branch, eventually producing inj2 tt.

Well-behavedness. For the well-behavedness properties, PutGet
is the more difficult one to establish, as we cannot easily guarantee
that executing put followed by get will both go through the same
branch. Our compromised solution is to make put do an expensive
check after a branch is matched and executed, requiring that the get
for each of the previous branches must fail. For the programmer,
this means that, in order for a caseV to be able to pass this check,
the ranges of the put semantics of the branches (which coincide with
the domains of get) should be disjoint.

3.6 List Alignment
For the semantics of align, which is the key operation used in
Figure 2 (and in the BIFLUX language [25]), we employ a particular
parametrised strategy for updating a list of sources of type S with
a list of views of type V , which tries to align/match the sources
with the views, synchronise the matched pairs of sources and views
by an inner lens, and process the unmatched sources and views in
some programmer-specified ways. The purpose of align is similar to
Barbosa et al.’s matching lenses [2], but we do not intend align to be
as expressive as matching lenses yet — a few of the design choices
made below will appear somewhat arbitrary and inflexible, but the
semantics is already interesting enough such that formal verification
is desirable.

The lens semantics of align has type

align-lens : {S V : Set}→

(source-condition : S→ Par Bool)
(matching-condition : S→ V→ Par Bool)
(l : Lens S V)
(create : V→ Par S)

69

(conceal : S→ Par (Maybe S))→
Lens (List S) (List V)

To explain its put semantics more concretely, below we will use the
program in Figure 2 to put the view list

("Pottery" , 850) :: ("Hiking" , 550) :: []

into the source list

("Pottery" , "Rowling" , 2016 , 950 , true) ::
("Habits" , "Tolkien" , 1937 , 450 , true) ::
("Nanny" , "Lewis" , 2016 , 650 , true) :: []

step by step.

• First, from the source list we can select a sub-list that we intend
to align with the views by specifying a decidable predicate
source-condition : S→ Par Bool. For our example, the sub-list
consists of the entries for the books Pottery and Nanny.

• The sub-list of sources satisfying source-condition are then
aligned with the list of views by finding pairs of source and
view satisfying a given binary predicate matching-condition :
S→ V → Par Bool. The matching order is fixed in our strategy:
For each view we find the first matching source that has not been
matched with a previous view. For our example, there is one
matching pair, namely the source and view entries for Pottery.

• On each matched pair of source and view we execute an inner lens
l : Lens S V to update the source with the view. For our example,
l updates the title and price, so the price of Pottery is set to 850 in
the updated source.

• For unmatched views, we should create corresponding sources
in the source list (so a subsequent get can produce these views).
This is done by first applying a programmer-specified function
create : V→ Par S to the view to create a temporary source, and
then updating this source with the view by l. For our example,
Hiking in an unmatched view, so we create a temporary source
and update its title and price to "Hiking" and 550 respectively,
producing an entry

("Hiking" , "(to be updated)" , 2016 , 550 , true)

• For unmatched sources, we can choose to simply delete them
or transform them such that they do not satisfy source-condition.
This is specified by a function conceal : S → Par (Maybe S):
An unmatched source is deleted if applying conceal to it pro-
duces nothing, or transformed if conceal produces a new source
wrapped in just. For our example, Nanny is an unmatched source,
and we conceal the entry by setting its instock flag to false. These
transformed sources can be placed anywhere in the source list;
currently we simply place all of them towards the front of the list.

• Finally, the list of updated sources is merged with those not
satisfying source-condition in the beginning. The merging order
is chosen such that GetPut can be established automatically. For
our example, the resulting list is

("Nanny" , "Lewis" , 2016 , 650 , false) ::
("Habits" , "Tolkien" , 1937 , 450 , true) ::
("Pottery" , "Rowling" , 2016 , 850 , true) ::
("Hiking" , "(to be updated)" , 2016 , 550 , true) :: []

The corresponding get semantics extracts from the input source
list all the sources satisfying source-condition and then uses
Lens.get l to get a list of views from these sources. For exam-
ple, running the get direction of Figure 2 on the updated source
above will first extract the entries for Pottery and Hiking, and then
get their title and price, producing the view list we started with (and
thus conforming to the PutGet law).

To guarantee well-behavedness, a few checks about l and conceal
need to be inserted: After a pair of source and view are synchronised
by l, the updated pair should again satisfy matching-condition, and
also the updated source should still satisfy source-condition. And a
source produced by conceal must not satisfy source-condition. The
program in Figure 2 is written such that these checks will always be
successful: Since the lens l updates the title, the matching-condition
— which compares the titles — will definitely hold for the updated
source and view. Also, the updated source will continue to satisfy
source-condition because the publication year and instock flag are
not changed by l. Finally, conceal sets the instock flag to false,
necessarily invalidating source-condition.

4. A Showcase Example: Transatlantic
Corporation

In this section we look at an example in detail, which requires
nontrivial putback logic, in particular involving caseS and caseV.
Suppose that a transatlantic corporation regularly relocates employ-
ees between its UK and US offices, and pays them in the local
currency. The payroll database stores for each employee their name,
salary (a number interpreted as pounds or dollars depending on
which country the employee works in), and current office location:

Employee = Name⊗ (Salary⊗ Location) : U

where Name : U and Salary : U are datatypes representing name and
salary encoded as elements of U (e.g., k String and k N). Location
is defined as a disjoint sum:

Location = UKLocation⊕ USLocation : U

where UKLocation : U and USLocation : U are, again, encoded
datatypes representing UK and US office locations. To manage
relocation, we extract from the payroll database each employee’s
current office location:

Office = Name⊗ Location : U

We would like to add, remove, or relocate employees by modifying
the extracted list and put the modified list back to the payroll
database. Most interestingly, when an employee is relocated to a
different country, their salary should also be converted to the local
currency. Below we describe this putback logic in BiGUL.

At top level, we align a list of Employees with a list of Offices:

relocate-employees : BiGUL (list Employee) (list Office)
relocate-employees = align

(λ → return true)
(λ {(sname ,) (vname ,)→ return (sname == vname)})
relocate-employee
(λ {(, loc)→ return ("" , 0 , loc)})
(λ → return nothing)

We are considering all Employees in the list, so the source condition
is always true. Entries from the two lists are matched by employee
name. Pairs of matched Employee and Office are synchronised by
an inner BiGUL statement relocate-employee, to be defined later.
An unmatched Office means that a new employee is inserted, so
we create a temporary Employee in the source list, which is then
updated by relocate-employee using the unmatched Office. (We put
the view location in the temporary Employee merely for efficiency,
as relocate-employee would not have to deal with mismatching
source and view locations.) An unmatched Employee means that
the employee is removed from the view, so we conceal the entry by
deleting it from the source.

Matched pairs of Employee and Office are synchronised by

relocate-employee : BiGUL Employee Office
relocate-employee =

70

update (prod var var)
((, replace) , (, adjust-salary-and-office)))

We decompose the source by pattern matching to replace the name
in the source with the name in the view — this looks like a
redundant step but is required because BiGUL enforces that all view
information, in particular the name, must be put into the source. The
rest of the source, i.e., salary and location, is further synchronised
with the remaining view by

adjust-salary-and-office : BiGUL (Salary⊗ Location) Location
adjust-salary-and-office =

caseV ((return ◦ isInj1 ,
rearr (left var) (prod unit var) (tt , refl)

-- λ {(inj1 loc)→ (tt , loc)}
relocate-to-UK) ::

((λ → return true) ,
rearr (right var) (prod unit var) (tt , refl)

-- λ {(inj2 loc)→ (tt , loc)}
relocate-to-US) :: [])

In adjust-salary-and-office, we use caseV to distinguish which
country the employee will work in, and use rearr to get rid of the
inj1 or inj2 tag and also insert a tt as the view to be used to update
the Salary in the source later. If the employee will work in the UK,
the update to the source is

relocate-to-UK : BiGUL (Salary⊗ Location)
(one ⊗ UKLocation)

relocate-to-UK = caseS

((return ◦ isInj1 ◦ proj2 , -- proj2 : {A B : Set}→ A× B→ B
normal (update (prod var (left var))

((, skip) , (, replace)))) ::
((λ → return true) ,

adaptive (λ {(salary ,)→
return ($⇒£ salary , inj1 "")})) :: [])

We probe which country the employee is in originally with a
caseS. If the original country is the UK, the employee is not
being relocated to a different country, so we can skip updating
the salary and just replace the location. If it is the US, we adapt
the source by changing the salary from dollars to pounds (by a
function $⇒£ : Salary→ Salary defined elsewhere) and change the
location to an empty one in the UK, which will be replaced by
the view location in the second round of the source case analysis
following the adaptation. The other branch relocate-to-US is defined
symmetrically.

To ensure totality of put, we should now check whether all
constraints for passing dynamic checking are met, working from
the inner statements towards the outer ones. For the caseS state-
ments in relocate-to-UK and relocate-to-US, the normal branches
do not change the source country and thus do not switch branch,
and the adaptive branches do change the source so it matches
a normal branch. For the caseV in adjust-salary-and-office, the
ranges of relocate-to-UK and relocate-to-US are disjoint since
they respectively produce UK and US locations. For the align in
relocate-employees, since the source condition is always true, what-
ever relocate-employee produces necessarily satisfies the source
condition, and we must conceal unmatched sources by deleting
them, which is indeed what we specify; finally, we must guarantee
that the updated source produced by relocate-employee and the view
again satisfy the matching condition, even when the view is an un-
matched one and the original source is a temporary one created from
the view, and this is indeed guaranteed because relocate-employee
puts the name in the view into the source.

5. Concluding Remarks
We have given an account of the design and semantics of BiGUL
and also how the language and its well-behavedness are formalised
and proved in AGDA. Below we conclude this paper by commenting
on the putback-based approach to bidirectional transformations,
emphasising our formal development and the monad reification trick,
discussing issues about dynamic checking, comparing BiGUL with
its closest relative PUTLENSES, and talking briefly about porting
BiGUL to HASKELL.

One might wonder how BiGUL, being described as a putback-
based language, stands out from existing work on lenses — after all,
the fundamental definition of Lens is exactly the classic definition
which does not emphasise either the put or get side. We designed
BiGUL such that the natural way to understand a BiGUL program
is to read it as a description of putback logic, and, more importantly,
a BiGUL program can be written by thinking solely in the putback
direction (as opposed to programming the get direction or, worse,
switching between get and put). (It may appear that the programmer
needs to devise a get before programming a corresponding put,
but that impression most likely stems from the confusion between
general BX specifications — e.g., consistency relations between
sources and views — and get functions as a much more specialised
form of BX specifications. The programmer should of course have a
specification in mind before programming put, but that specification
is not necessarily a get function.)

We have to admit, though, that the expressive power of the cur-
rent BiGUL is not stronger than existing work on lenses. In par-
ticular, we came up with the adaptive caseS to solve a practical
problem we encountered [28], but realised only later that the idea
already existed as Foster et al.’s “fixup functions”; the common
pattern using adaptive caseS inside caseV, which appears in the
examples in Sections 3.5 and 4, is essentially their general condi-
tional lens [8, Section 6.3]. (Foster et al. did not give an example
using their general conditional lens, though, possibly due to the com-
plexity of its putback semantics. It might be argued that, without
switching to the putback-based perspective, it is hard to use this
kind of more complex lenses. This is only an indirect support of the
putback-based approach, though.) We thus believe that the main con-
tribution of this paper should be its completely formal development:
Grohne et al. [12] have also worked on formal verification about
BXs (in AGDA), but their work was about semantic bidirectionalisa-
tion based on parametric polymorphism [26]. Our work is the first to
formally describe and verify a collection of nontrivial and practically
implemented lenses in a dependently typed language, in particular
utilising the power of dependent types to design a logically clean
abstract syntax and make well-behavedness proofs much easier to
handle.

As explained in Section 2, crucial to the ease of our formal
development is the monad reification trick. Essentially, this is
another demonstration of the flexibility of deep embedding (see,
e.g., [11]). By deeply embedding the monadic program structure,
we are able to interpret it in two different but related ways, either
as a Maybe-program or as a proposition stating that the Maybe-
program computes successfully. We believe that the trick is generally
applicable, and may well have been applied elsewhere.

One might be sceptical about the use of dynamic checks to
guarantee the well-behavedness of BiGUL, as the programmer
can write programs that fail inadvertently and only realise that at
runtime. We currently deal with this problem by informally stating
the constraints that should be satisfied by the programmer-supplied
actions in order to pass the dynamic checks. It is also possible
to turn such statements into formal theorems saying that a put
succeeds if relevant constraints are satisfied. We do not take this
step because, as future work, we plan to jump further by switching
to a dependently typed setting where constraints on programmer-

71

supplied actions can be directly specified in their types. This will
not only eliminate all dynamic checks from the lens semantics, but
also help the programmer to write correct putback programs with
the type system (as demonstrated by, e.g., Norell [22]).

BiGUL is closely related to PUTLENSES [24]: Both BiGUL and
PUTLENSES are datatype-generic and describe partial putback trans-
formations that use dynamic checks to guarantee well-behavedness.
BiGUL does not strive for maximal expressiveness like PUTLENSES
(in particular, BiGUL does not consider effectful computations in
put), but instead takes a more cautious approach by focusing on
a smaller set of essential features and formally proving their well-
behavedness. The dynamic checks are sometimes tricky to get right,
and proofs about them can require detailed case analyses that are
not so easy to manage. (Indeed, during the formalisation we did
not get everything right the first time and had to make corrections
after failing to complete the proofs.) Thus the fact that the whole
BiGUL language is formally verified is a firm step towards reliable
putback-based bidirectional programming: As BiGUL is intended
to serve as the (new) core of higher-level putback-based languages
like BIFLUX [25] and BIYACC [28], the well-behavedness of the
latter languages will be established beyond doubt.

To (re-)implement BIFLUX and BIYACC, we have ported
BiGUL to HASKELL. The types need some adaptation because
HASKELL is not fully dependently typed (but close enough; see,
e.g., Lindley and McBride [17]), while the transformations can be
more or less faithfully transcribed. A significant difference between
AGDA and HASKELL is that HASKELL freely allows general re-
cursion, whereas AGDA requires every recursive program to be
evidently well-founded. We do not consider recursion in the AGDA
formalisation, but we need general recursion in BIFLUX and BI-
YACC, which is a major reason for porting BiGUL to HASKELL.
We believe that the total correctness proved in AGDA can be trans-
lated into some sort of partial correctness in HASKELL (perhaps
along the line of Danielsson et al. [6]); that is, a BiGUL program in
HASKELL may not terminate, but when it does, it is guaranteed to
be well-behaved.

Acknowledgements
We would like to thank Li Liu, Hugo Pacheco, Jeremy Gibbons,
and the anonymous reviewers of APLAS ’15 and PEPM ’16 for
their valuable comments. This work is partially supported by JSPS
Grant-in-Aid for Scientific Research (A) No. 25240009 in Japan.

References
[1] T. Altenkirch and C. McBride. Generic programming within depen-

dently typed programming. In IFIP TC2/WG2.1 Working Conference
on Generic Programming, pages 1–20. Kluwer, B.V., 2003.

[2] D. M. J. Barbosa, J. Cretin, J. N. Foster, M. Greenberg, and B. C.
Pierce. Matching lenses: alignment and view update. In International
Conference on Functional Programming, pages 193–204. ACM, 2010.

[3] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses: a
language for updatable views. In Principles of Database Systems, pages
338–347. ACM, 2006.

[4] J. Cheney. FLUX: functional updates for XML. In International
Conference on Functional Programming, pages 3–14. ACM, 2008.

[5] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. Ter-
williger. Bidirectional transformations: a cross-discipline perspective.
In International Conference on Model Transformation, volume 5563 of
Lecture Notes in Computer Science, pages 260–283. Springer-Verlag,
2009.

[6] N. A. Danielsson, J. Gibbons, J. Hughes, and P. Jansson. Fast and loose
reasoning is morally correct. In Principles of Programming Languages,
pages 206–217. ACM, 2006.

[7] J. N. Foster. Bidirectional Programming Languages. PhD thesis,
University of Pennsylvania, 2009.

[8] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt.
Combinators for bidirectional tree transformations: a linguistic ap-
proach to the view-update problem. ACM Transactions on Program-
ming Languages and Systems, 29(3):17, 2007.

[9] J. N. Foster, A. Pilkiewicz, and B. C. Pierce. Quotient lenses. In
International Conference on Functional Programming, pages 383–396.
ACM, 2008.

[10] J. Gibbons. Datatype-generic programming. In Spring School on
Datatype-Generic Programming, volume 4719 of Lecture Notes in
Computer Science, pages 1–71. Springer-Verlag, 2007.

[11] J. Gibbons. Functional programming for domain-specific languages.
In Central European Functional Programming School, volume 8606
of Lecture Notes in Computer Science, pages 1–28. Springer-Verlag,
2015.

[12] H. Grohne, A. Löh, and J. Voigtländer. Formalizing semantic bidi-
rectionalization with dependent types. In International Workshop on
Bidirectional Transformations, pages 75–81. CEUR-WS, 2014.

[13] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano.
Bidirectionalizing graph transformations. In International Conference
on Functional Programming, pages 205–216. ACM, 2010.

[14] M. Hofmann, B. C. Pierce, and D. Wagner. Symmetric lenses. In
Principles of Programming Languages, pages 371–384. ACM, 2011.

[15] M. Hofmann, B. C. Pierce, and D. Wagner. Edit lenses. In Principles
of Programming Languages, pages 495–508. ACM, 2012.

[16] Z. Hu, H. Pacheco, and S. Fischer. Validity checking of putback trans-
formations in bidirectional programming. In International Symposium
on Formal Methods, volume 8442, pages 1–15. Springer-Verlag, 2014.

[17] S. Lindley and C. McBride. Hasochism: the pleasure and pain of
dependently typed Haskell programming. In Haskell Symposium,
pages 81–92. ACM, 2013.

[18] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidi-
rectionalization transformation based on automatic derivation of view
complement functions. In International Conference on Functional
Programming, pages 47–58. ACM, 2007.

[19] E. Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, 1991.

[20] U. Norell. Towards a Practical Programming Language based on De-
pendent Type Theory. PhD thesis, Chalmers University of Technology,
2007.

[21] U. Norell. Dependently typed programming in Agda. In Advanced
Functional Programming, volume 5832 of Lecture Notes in Computer
Science, pages 230–266. Springer-Verlag, 2009.

[22] U. Norell. Interactive programming with dependent types. In Inter-
national Conference on Functional Programming, pages 1–2. ACM,
2013.

[23] H. Pacheco and A. Cunha. Generic point-free lenses. In Mathematics
of Program Construction, volume 6120 of Lecture Notes in Computer
Science, pages 331–352. Springer-Verlag, 2010.

[24] H. Pacheco, Z. Hu, and S. Fischer. Monadic combinators for “putback”
style bidirectional programming. In Partial Evaluation and Program
Manipulation, pages 39–50. ACM, 2014.

[25] H. Pacheco, T. Zan, and Z. Hu. BiFluX: a bidirectional functional
update language for XML. In Principles and Practice of Declarative
Programming, pages 147–158. ACM, 2014.

[26] J. Voigtländer. Bidirectionalization for free! In Principles of Program-
ming Languages, pages 165–176. ACM, 2009.

[27] P. Wadler. The essence of functional programming. In Principles of
Programming Languages, pages 1–14. ACM, 1992.

[28] Z. Zhu, H.-S. Ko, P. Martins, J. Saraiva, and Z. Hu. BiYacc: roll your
parser and reflective printer into one. In International Workshop on
Bidirectional Transformations, pages 43–50. CEUR-WS, 2015.

72

	Introduction
	Formalisation of Well-Behaved BXs in Agda
	Reification of Monadic Combinators and Computation Steps
	A Sample Well-Behavedness Proof

	BiGUL and Its Formally Verified Lens Semantics
	Replacing, Failure, and Skipping
	Source Update
	View Rearrangement
	Case Analysis on Source
	Enriching Source Case Analysis with Adaptive Branches
	The put and get Semantics
	Sketch of the Well-Behavedness Proofs
	Fitting the Lens to the Interpreter

	Case Analysis on View
	List Alignment

	A Showcase Example: Transatlantic Corporation
	Concluding Remarks

