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ABSTRACT
Rewriting composite expressions based on eliminating intermedi-
ate results generated by redundant expressions is a traditional op-
timization technique (known as fusion) in both programming lan-
guages community and database community. In XQuery, compos-
ite expressions for node creation are typical in practice, for exam-
ple, in data integration systems for XML with XQuery as schema
mapping. We propose a fusion algorithm for this kind of compos-
ite XQuery. The XQuery fusion is more difficult than the existing
fusion, because naive elimination of node creations does not pre-
serve document order. The document order plays an important role
in XQuery. An XQuery expression is evaluated against an XML
store which contains XML fragments that are created as interme-
diate results, in addition to initial XML documents with their doc-
ument order. So, the XML store is updated as the expression with
node creations is evaluated. In this paper, we show that XML frag-
ments created dynamically as intermediate results in a store can be
emulated statically in such a way that rewriting XQuery to avoid
redundant expressions is enabled. This emulation is achieved by
using an adornment code called extended Dewey’s assigned to the
occurrences of expressions. By using this static emulation, our
XQuery fusion avoids unnecessary expressions including node cre-
ations while preserving the document order in XML.

1. INTRODUCTION
An XML document is modeled as an ordered tree based on doc-

ument order which is the preorder in the tree. Document order
is a total order defined over the nodes in a tree. This order plays
an important role in the semantics of XQuery, especially in node
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creations and axis accesses. An XQuery expression is evaluated
against an XML store which contains XML fragments with their
document order. This store contains the fragments that are created
as intermediate results, in addition to initial XML documents [11].
A node creation by an element constructor generates a new node
which is placed at an arbitrary position in document order between
the already existing trees. An axis access by a step expression re-
turns its result in document order and without duplicates.

Rewriting composite expressions based on eliminating interme-
diate results generated by redundant expressions is a traditional op-
timization technique (known as fusion) [21, 2, 6] in both program-
ming languages community and database community. In XQuery,
composite expressions for node creation are typical in practice, for
example, in data integration systems for XML with XQuery as
schema mapping [19]. We propose, in this paper, a fusion algo-
rithm for this kind of composite XQuery.

The XQuery fusion is more difficult than the existing fusion [21],
because naive elimination of node creations does not preserve doc-
ument order. For example, consider the following two expressions
(Q1) and(Q2) in XQuery.

(Q1): ⟨t⟩($v/c, $v/a)⟨/t⟩/c

(Q2): $v/c

For an arbitrary store — assuming identical bindings of the exter-
nally defined variable$v — both(Q1) and(Q2) always return a
value equivalent data, which is precisely equal when they are seri-
alized and output by the query processor as a final result. So,(Q1)
has redundant expressions, the node construction fort and the path
expression$v/a. However, as intermediate results in a query pro-
cessor, two data evaluated by(Q1) and(Q2) populate in different
document order. When$v/c does not result in an empty sequence
1, the nodes produced by(Q1) populate in the new document order
created by the element constructor⟨t⟩($v/c, $v/a)⟨/t⟩ in (Q1) ,
whereas the nodes returned by(Q2) populate in the document or-
der existing in the input store. Consequently, if you take further
step along parent axis for both queries, namely,(Q1)/.. and

1To simplify the discussion, we do not consider in this paper, the
case that$v/c results in an empty sequence. This is included in our
future work.
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Figure 1: Node creation in the document order

(Q2)/.. , now it is easy to see the differences as intermediates
since the former results in a node created by thet element, whereas
the latter results in a sequence of nodes bound to$v. Therefore,
eliminating redundant expressions including node construction and
preserving document order are conflicting requirements. The pur-
pose of our work is to meet these two conflicting requirements.

In XQuery, node construction is one source of non-determinism.
Although expressions that contain element constructors are non-
deterministic with respect to document order, (1) a node gener-
ated by an element constructor is placed at the first position of the
document order defined by the element constructor, (2) nodes in
a sequence generated by expressions occurring inside the element
constructor are copied deeply and placed following the node in (1)
above with preserving the order in the sequence. This property en-
ables us to emulate newly created document order, statically.

In this paper, we show that XML fragments created dynami-
cally as intermediate results in a store can be emulated statically
in such a way that rewriting XQuery to avoid redundant expres-
sions is enabled. This emulation is achieved by using an adornment
code called the extended Dewey’s assigned to the occurrences of
expressions. The Dewey encoding has been used in index struc-
ture for XML documents [15, 20]. We have extended the Dewey
code to be suitable for the semantics of XQuery, especially forfor-
expressions. Note that no schema information is required in doing
this rewriting.

Our main contributions can be summarized as follows.

• We show that a static emulation of XML store can be achieved
by using an extended Dewey code, which preserves the doc-
ument order in terms of expressions.

• By using this static emulation, we propose an XQuery fusion
so that unnecessary element constructions are avoided while
preserving the document order in XML.

• We have implemented our XQuery fusion in Objective Caml
with about 4,600 loc, and all the examples in this paper have
been passed by the system.

This paper is organized as follows. After explaining our static
emulation of store in Section 2, we show how fusion transforma-
tion can be correctly performed by partial evaluation of expression
based on three fusion rules in Section 3. We discuss implementa-
tion issues in Section 4, and related work in Section 5. We conclude
the paper in Section 6.

2. STATIC EMULATION OF STORE
Figure 1 shows the treatment of newly created nodes by an ele-

ment constructor relative to existing nodes in the store. An element
constructor that is depicted in the upper center part of the figure
produces tree structure just below the expression (B) within which
nodes are given order in one-dimensional document order axis. For
example, if the topmost node named “a” is given order x, then its
first child node named “b” is given order that is strictly greater than
x, say, x+1, which is also strictly less than the order given to its chil-
dren named “c” and “d”. These ordering is guaranteed to be con-
sistent between elements created in a common element constructor.

On the other hand, order between nodes that are separately cre-
ated by different element constructors in a query is implementation
dependent. For example, consider the following expression(Q3)
in XQuery.

(Q3): (⟨h⟩⟨i/⟩⟨/h⟩, ⟨j⟩⟨k/⟩⟨/j⟩)

In this query, the document order between the tree with root node
named “h” and the one with root node named “j” is implementation
dependent. So, no one can decide the order of these two nodes
by static analysis. In addition, the document order between the
existing nodes – like A and C in the figure – and a newly created
node is also implementation dependent, thus static analysis can not
decide this order either. However, overlap along document order
axis never happens between these nodes. Extended Dewey order
defined in this section is designed to respect all these properties,
namely, (a) no order is predefined statically across nodes that are
separately created in different element constructors in a query, (b)
preorder is defined between nodes inside an element constructor,
(c) orders given to elements that belong to different roots of trees
are pair-wise disjoint.

XML store is used in the semantics of XQuery [11]2 while our
algorithm is based on a static analysis. In this section we show that
a static emulation of XML store can be achieved by using an ex-
tended Dewey order, which preserves the document order in terms
of expressions.

2.1 Simple XML Store using Dewey Order
Dewey Order encoding of XML nodes is a lossless representa-

tion of a position in document order [15, 20]. In Dewey Order,
each node is represented by a path from a root using “.”, which is
depicted byD in Figure 2: (1) a root is encoded byr ∈ S whereS
is a countably infinite set of special codes; (2) when a nodea is the
n-th child of a nodeb, the Dewey code ofa, did(a), is did(b).n.
Note thatϵ in Figure 2 is used for a termination, so every Dewey
code ends withϵ.

D ::= r X wherer ∈ S, S is a set of special codes.
X ::= ϵ | .B
B ::= n X wheren ∈ I, I is a set of integers.

Figure 2: Pure Dewey code

Using Dewey encoding, sorting and duplicate elimination in doc-
ument order can be achieved by a straightforward way. Now, sim-
ple XML store, in which nodes are restricted to element nodes —
other nodes such as attributes are disregarded here — is defined by
an ordered tree representation using Dewey codes instead of nodes
and edges in [11]. We assume a set of namesN used for element

2The semantics of XQuery is formally given by [22]. However, due
to not being self contained[17] and to simplify the discussion, we
refer [11] instead.
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Figure 3: An input document source.xml, SSt0 and output
store by (Q4) .

names and a countably infinite set of Dewey CodeD, which is de-
picted byD in Figure 2.

DEFINITION 2.1 (Simple XML Store). A simple XML store is a
3-tupleSSt = (D, <, ν) where

• D is a finite subset ofD;

• < is a strict partial order onD;

• ν : D 7→ N maps the Dewey codes to their node name.

Both the strict partial order< and the equality= onD are straight-
forward.

Evaluating an element constructor against an input simple store
will add a tree into the input store. Consider the following XQuery
expression(Q4) when given the input documentsource.xml
shown in Figure 3.

(Q4): let $v := doc("source.xml")/s
return <t>$v/c,$v/a</t>

For an initial storeSSt0 = (D0, <, ν0) where,

• D0 = {r0, r0.1, r0.1.1, r0.1.2, r0.2, r0.3} wherer0 ∈ S;

• ν0(r0) = s , ν0(r0.1) = a, ν0(r0.1.1) = ν0(r0.1.2) = b
ν0(r0.2) = ν0(r0.3) = c where{s , a, c} ⊂ N ,

evaluating(Q4) updatesSSt0 into SSt2(D2, <, ν2) where,

• D2 = D0 ∪ {r1, r1.1, r1.2, r1.3, r1.3.1, r1.3.2}
wherer1 ∈ S ∧ r1 ̸= r0

• ν2 = ν0 + {r1 7→ t , r1.1 7→ c , r1.2 7→ c ,
r1.3 7→ a, r1.3.1 7→ b, r1.3.2 7→ b}
wheret ∈ N

This updating is achieved by the following steps in a recursive
way for nested element constructors.

(i) Generate a new root coder ∈ S for an element constructor.

(ii) Reassign Dewey codes for values produced by evaluated ex-
pressions occurring inside the element constructor.

Axis Access in Store.We will see how a sorting and dupli-
cate elimination in document order is performed using illustrative
examples step by step. Consider the following expression(Q5) .

(Q5): let $u := (Q3)
return ($u/a,$u/c,$u/a)

Since (Q4) returns a node encoded byr1, child nodes ofr1

in SSt2 arer1.1, r1.2 andr1.3. Among these nodesr1.3 is the
only node which is mapped toa by ν2. So,$u/a in (Q5) returns
r1.3. Likewise,(Q5) returns a sequence of nodesr1.3 r1.1 r1.2
andr1.3 in this order. So, the serialized data(Q5) returns is as
follows;

<a><b/><b/></a>,<c/>,<c/>,<a><b/><b/></a>

Now consider the following expression(Q6)

(Q6): (Q4)/self:: *

Since the semantics of axis access “/” requires the sorting and
duplicate elimination in document order,(Q6) returns a sequence
of nodesr1.1 r1.2 andr1.3 in this order. So, the serialized data
(Q6) returns is as follows;

<c/>,<c/>,<a><b/><b/></a>

Note that once the data is serialized, the information about docu-
ment order associated with nodes is lost.

2.2 Emulating Simple Store
In this subsection, we will show that static emulation of newly

created XML fragments in simple store is achieved by using the
extended Dewey Order encoding of expressions. The purpose of
this encoding is to allow operation like sorting, axis access and du-
plicate elimination on expression rather than on the dynamic store.

When expressions contain element constructors, the semantics of
XQuery requires; (1) a node generated by an element constructor
is placed at the first position of the document order defined by the
element constructor, (2) nodes in a sequence generated by expres-
sions occurring inside the element constructor are copied deeply
and placed following the node in (1) above with preserving the or-
der in the sequence[11]. This requirement leads to the following
properties. Note that for an expressione we useJeK for Dewey Or-
der encoding of evaluated data against an arbitrary store(D, <, ν).

PROPERTY 2.2. For an element constructor,⟨en⟩e⟨/en⟩, where
en is an element name ande is an expression,

(i) J⟨en⟩e⟨/en⟩K = r wherer ∈ S ∧ r /∈ D

(ii) ∀d ∈ JeK,d = J <en>e</ en>K.n3 wheren is an integer.

(iii) whene is a sequence constructor(e1, e2),
∀d1 ∈ Je1K∀d2 ∈ Je2K, d1 < d2

Figure 4 shows this property using concrete examples. This
property enables us to statically emulate newly created XML
fragments — created by element constructors — in simple store.
This emulation is achieved by Dewey encoding of expressions
which exploits PROPERTY 2.2. For an element constructor,
<t>$v/c,$v/a</t> , which is in (Q1) as a subexpression,
the Dewey encoding of the expression results in

(⟨t⟩($v/c)r.1, ($v/a)r.2⟨/t⟩)r

whereed denotes thatd is the Dewey encoding of the expressione,
and we will define this as “annotated XQuery expressions” in the
next section.

Now, consider(Q1) again. Since the element constructor is en-
coded byr, child axis ofr in this expression are($v/c)r.1 and

3We use∈ for sequence containment. And we treat an item identi-
cally to a sequence containing only that item as in the semantics of
XQuery.
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Figure 4: A simple example for the document order in element
creations

($v/a)r.2. Among these expressions($v/c)r.1 is the only expres-
sion which generatesc elements. So, we can get($v/c) as a rewrit-
ten result. This manipulation is done by using PROPERTY2.2. For
(Q1) /.., we can get⟨t⟩$v/c, $v/a⟨/t⟩ by using Dewey encoding
of the$v/c, namely,r.1.

In this paper, as will be seen in next section we extend Dewey
code and its order by introducing new delimiter “#” to be suitable
for the semantics of “for” expressions in XQuery. From now on
to the end of this section, we will see the property of the “for”
expressions occurring inside element constructors and describe the
role of the new delimiter “#”. Figure 4 shows such a property of
the “for” expression(Q7) , bellow.

(Q7): ⟨a⟩ for $u in eb return ($v/c, $v/d)⟨/a⟩

For the expressions(Q7) /d and(Q7) /c we can get easily the
value equivalentexpressions(Q8) and(Q9) , respectively by us-
ing PROPERTY2.2.

(Q8): for $u in eb return $v/d

(Q9): for $u in eb return $v/c

Then, consider the following expression(Q10) .

(Q10): (((Q8) ), ((Q9) ))/ self :: ∗

As described in the previous subsection, since axis access by “/”
requires the sorting and duplicate elimination in document order,
the correct transformation of(Q10) should result in(Q11) , in
which two “for” exrpessions(Q8) and(Q9) are merged accord-
ing to sort expressions appeared in the “return” expression.

(Q11): for $u in eb return ($v/c, $v/d)

The order of expressions occurring in the “return” expressions is
represented by delimiter “#”. So, by encoding(Q7) to

(⟨a⟩(for $u in eb return ($v/c, $v/d))r.1#[1,2]⟨/a⟩)r

and encoding(Q8) and(Q9) to

(for $u in eb return $v/d)r.1#2

and

(for $u in eb return $v/c)r.1#1

respectively, we can get(Q11) . To achieve sorting on subse-

e ::= c constants
| $v variables
| (e, e, ..., e) sequence constructions
| e/α::en location step expressions
| for $v in e return e for-exp.
| let $v := e return e let-expressions
| ⟨en⟩e⟨/en⟩ element constructor

Figure 5: XQuery

B ::= (n|?)X n ∈ I
X ::= ϵ | .B | #[B, . . . , B]
D ::= B | ϵ | r X | # [D, . . . , D] r ∈ S

Figure 6: Abstract syntax of the extended Dewey code

quences produced by “for” expressions, the extended Dewey code
has “#” structure to constitute branches on it.

3. XQUERY FUSION
In this section, we propose our algorithm for automatic fusion

of XQuery expressions so that unnecessary element constructions
can be correctly eliminated. Basically, we will focus on fusing the
following subexpression

e/α::en

so that unnecessary element construction in the query expression in
e is eliminated under the context of “selection” byα::en.

3.1 Annotated XQuery Expressions
We consider the XQuery expressions defined in Figure 5. A

query expression can be a constantc, a variable$v, a sequence
expression(e1, . . . , en) where each subexpressionei is not a se-
quence expression, a location step expressione/α::en whereα is
an axis which can bechild , self , or .. (parent), anden is a name
test which can be a tag name or∗ (an arbitrary tag), a “for” ex-
pression, a “let” expression, or an element construction expression
⟨en⟩e⟨/en⟩.

As seen in the introduction, to guarantee the correct transfor-
mation, we should pay attention to the context and the order of
subexpressions. To this end, we would like to associate all expres-
sions, old and new in the later transformation, with an extended
Dewey code. Recall that the usual Dewey code is basically in the
form of a path encoding such asr.3.2 (which denotes a subexpres-
sion which is the second subexpression of the third subexpression
of the expression with coder.) The extension is the code of the
form r#[d1, . . . , dn] for the “for” expression, wheredi’s are again
the extended Dewey code. The formal definition of the extended
Dewey code is given in Figure 6. Informally, we may consider it as

d ::= ϵ | r.d | r#[d1, . . . , dm]

whereϵ denotes the unknown code. The partial order on the ex-
tended Dewey codes are essentially the dictionary order. For ex-

ed ::= cd | $vd | (ed, ed, ..., ed)d | (ed/α::en)d

| (for $v in ed return ed)d

| (let $v := ed return ed)d

| (⟨en⟩ed⟨/en⟩)d

Figure 7: XQueryD



ample,r.1.2 < r.1.3, r.1 < r.1.2 hold. But the following pairs
of codes are incomparable: (ϵ, r) is incomparable becauseϵ is the
unknown code; (r,r′) is incomparable ifr ̸= r′; and (r.1#[3],
r.1#[1, 2]) is incomparable because they represent different data
structures of two “for” expressions.

Now we can add annotations of the extended Dewey codes to
XQuery expression as in Figure 7. We sometimes omit the annota-
tion if it is clear from the context. To simplify our presentation, we
will assume that there is a global environment for storing all anno-
tated expressions during our fusion transformation, and a function

getExpGlobal(r)

that can be used to extract the expression whose code isr from the
global environment.

3.2 Fusion Transformation
Figure 8 summarizes our fusion transformation on XQuery ex-

pressions. Fusion is defined by a partial evaluation functionpeval:

peval :: XQuery → Θ → XQueryD

which accepts an XQuery expression and an environmentΘ (map-
ping variables bound by “let” or “for” to expressions):

Θ :: Var → (XQueryD, let | for)

and produces a more efficient XQuery expression in which subex-
pressions are annotated by the extended Dewey codes. As will be
seen later, the annotation is used to keep track of information of the
order and the context among expressions, and it plays an impor-
tant role in our fusion transformation. When the fusion transforma-
tion is finished, we can ignore all the annotation and give a normal
XQuery expression as the final result.

The definition ofpeval in Figure 8 is rather straightforward. For
a constant expressionc, we return itself but annotate it with the
Dewey codeϵ. For a variable, if it is bounded by the outside
“let”, we retrieve its corresponding expression from the environ-
ment, otherwise it must be a variable bound by the outside “for”
and we leave it as it is. For a sequence expression, we partially
evaluate each element expression, and then group them to a new
sequence annotated with a Dewey that are gathered from the result
of each element expression. Note that we useflatten to remove
nested sequences (e.g.,flatten((er1

11, e
r2
12)

[r1,r2], er3
3 )[[r1,r2],r3] =

(er1
11, e

r2
12, e

r3
3 )[r1,r2,r3]), and extract dc to get annotated Dewey

code from an expression (i.e.,extract dc ed = d). For a loca-
tion step expressione/α::en , we perform fusion transformation
to eliminate unnecessary element construction ine after partially
evaluatinge. We will discuss the definitions of the three important
fusion functionspeval (e/ child :: en) , peval (e/ self :: en) ,
peval (e/ parent :: en) in Section 3.2.2. For a “let” expression,
we first partially evaluate the expressione1, and then partially eval-
uatee2 with an updated environment and return it as the result.
For a “for” expression, we do similarly as for a “let” expression
except that we finally produce a new “for” expression by glueing
partially evaluated results together. For an element construction,
after partially evaluating its content expressione to e′, we create
a new Dewey code for annotating this element, and propagate this
Dewey code information to all subexpression ine′ (with function
dc assign) so that we can access (recover) this element construc-
tor when processing subexpressions ofe′. It is this trick that helps
solving the problem in(Q1)/.. in Introduction. We will discuss
this Dewey code propagation in Section 3.2.1.

3.2.1 Dewey Code Propagation

Propagating the Dewey code of an element construction to its
subexpressions plays an important role in constructing our rules
(Section 3.2.2) for correct fusion transformation.

Figure 9 defines a functiondc assign e r:

dc assign :: XQueryD → D → XQueryD

which is to propagate the Dewey coder into an annotated expres-
sione by assigning proper new Dewey codes toe and its subexpres-
sions. We will explain some important equations in this definition.
Note that we writee− to denote that the Dewey code ofe is “don’t
care”.

The equation (DCPSEQ) places horizontal numbering to se-
quence expressions. Functionsucc is used to enforce number-
ing using strictly greater value relarive to previously processed
expressions (e.g.,succ r.1 = r.2). (DCPEC) introduces vertical
structure to the numbering by initiatingdc assign for subexpres-
sione by adding “.1” to its second parameter. The equations that
needs additional attention is (DCSTP) and (DCPFOR) above. In
(DCSTP), it may seem unusual fordc assign not to recurse subex-
pressione. However, considering that path expression itself do not
introduce additional parent-child relationship, and thatdc assign
always handle expressions that is already partially evaluated, there
is no additional chance to simplify the path expression further
using Dewey code allocated to the subexpression. Particularly
characteristic equation (DCPFOR), which introduces # structure to
the Dewey code, numbers the expressione at return clause. Note
that the second parameter to recursive call fore is reset to 0.bs
that reflects the horizontal structure produced by the return clause
is combined by the # sign to producer#bs as the top level code
allocated to the “for” expression.

3.2.2 Fusion Rules
Our fusion transformation one/α::en is based on the three fu-

sion rules (functions)child fusion, self fusion andparent fusion
in Figure 10, which correspond to three types of axis. The basic
procedure is as follows:

1. Extract (get) subexpressions according to the axisα;

2. Select those who produce nodes whose name is equal to the
tag nameen using a filter;

3. Sort the remained subexpressions according to their Dewey
codes;

4. If the above sort step succeeds, we remove the duplicated
subexpressions and return its sequence as the result, other-
wise we give up fusion.

More concretely, consider the definition ofchild fusion. We use
get children e to get a sequence of subexpressions that contribute
to producing children of the XML document that can be obtained
by evaluation ofe, and usefilter(equal to en) function to keep
those that are equal toen wherefilter p xs = [x | x ← xs, p x].
The resulting sequence expression is sorted according to their
Dewey codes bydc sort. Since not all Dewey codes are compara-
ble, we may fail in this sorting. If the sorting succeeds, we return
a sequence expression by removing all duplicated element subex-
pressions, otherwise we give up fusion by returning the original
expressione/ child :: en.

3.2.3 Examples
We demonstrate our fusion transformation by using some ex-

amples. For readability, we use “/” for “child::” and “/..” for
“parent::”.



peval c Θ = cϵ

peval $v Θ =

ȷ

Θ($v) if $v is letvar
$v otherwise

(PEVR)

peval (e1, ..., eN ) Θ = let e′i = peval ei Θ
di = extract dc(e′i)

in flatten ((e′1, ..., e
′
N )[d1,..,dN ])

(PESEQ)

peval (e/ child :: en) Θ = child fusion (peval e Θ) en (PECSTP)

peval (e/ self :: en) Θ = self fusion (peval e Θ) en (PESSTP)

peval (e/ parent :: en) Θ = parent fusion (peval e Θ) en (PEPSTP)

peval (let $v := e1 return e2) Θ = let e′1 = peval e1 Θ
e′2 = peval e2 (Θ ∪ {$v 7→ (e′1, let)})

in e′2

(PELET)

peval (for $v in e1 return e2) Θ = let e′1 = peval e1 Θ
e′2 = peval e2 (Θ ∪ {$v 7→ (e′1, for)})
d = extract dc e′2

in (for $v in e′1 return e′2)
#d

(PEFOR)

peval (⟨en⟩e⟨/en⟩) Θ = let e′ = peval e Θ
r = new rootD
e′′ = dc assign e′ r.1

in (⟨en⟩e′′⟨/en⟩)r

(PEEC)

Figure 8: Fusion by partial evaluation

dc assign c r = cr

dc assign $v r = $vr

dc assign (e/c) r = (e/c)r (DCSTP)

dc assign (e1, . . . , en) r = let r0 = r
e′i = dc assign ei ri−1

ri = succ(extract dc e′i)

in (e1, . . . , en)[r1,...,rn]

(DCPSEQ)

dc assign (<t>e</ t>) r = let e′ = dc assign ei r.1
in <t>e′</ t>r

(DCPEC)

dc assign (for $v in e0 return e) r = let e′ = dc assign e 0
bs = extract dc e′

in (for $v in e0 return e′)r#bs

(DCPFOR)

Figure 9: Dewey code propagation

First, for (Q1) our fusion functionpeval computes as follows.

peval ((⟨t⟩($v/c, $v/a)⟨/t⟩)/c) Θ
= {(PECSTP); (PEEC)}

child fusion (⟨t⟩(($v/c)r.1, ($v/a)r.2)⟨/t⟩)r c
= {definition of child fusion}

($v/c)r.1

So for(Q1) /.., which is from the introduction,peval performs the
correct transformation.

peval ((Q1) /..) Θ
= {(PEPSTP); (PECSTP); (PEEC)}

parent fusion ($v/c)r.1 ∗
= {definition of parent fusion}

(⟨t⟩(($v/c)r.1, ($v/a)r.2)⟨/t⟩)r

Next, consider the following expression(Q12) ,

(Q12): let $v := ⟨a⟩()⟨/a⟩ return ($v, $v)/ self :: a

In (Q12) subexpression($v, $v)/ self :: a is redundant be-
cause duplicate elimination is needed for this subexpression. The
functionpeval eliminates duplicate.

peval ((Q12) ) Θ
= {(PELET); (PEEC); (PESEQ); (PEVR)}

self fusion ((⟨a⟩ () ⟨/a⟩)r, (⟨a⟩ () ⟨/a⟩)r)[r,r] a
= {definition of self fusion}

(⟨a⟩ () ⟨/a⟩)r

For more complicated case, we show that afor expression oc-
curring inside an element constructor appends “#” to the extended
Dewey code. This is the prominent feature of our extension to the
extended Deweys’ which is explained using(Q10) described in
Section 2.2. Before we explain(Q10) , consider(Q13) which is
the subexpression of(Q10) .



child fusion :: XQueryD → QName → XQueryD

child fusion e en = let (e′1, ..., e
′
N ) = dc sort(filter(equal to en)(get children e))

in

ȷ

remove duplicate (e′1, ..., e
′
N ) if dc sort succeeds

(e/ child :: en)ϵ otherwise

(CFUSION)

self fusion :: XQueryD → QName → XQueryD

self fusion e en = let (e′1, ..., e
′
N ) = dc sort(filter(equal to en)(get self e))

in

ȷ

remove duplicate (e′1, ..., e
′
N ) if dc sort succeeds

(e/ self :: en)ϵ otherwise

(SFUSION)

parent fusion :: XQueryD → QName → XQueryD

parent fusion e en = let (e′1, ..., e
′
N ) = dc sort(filter(equal to en)(get parent e))

in

ȷ

remove duplicate (e′1, ..., e
′
N ) if dc sort succeeds

(e/ parent :: en)ϵ otherwise

(PFUSION)

get children :: XQueryD → XQueryD

get children c = ()[]

get children $v = ($v/ child :: ∗)ϵ

get children ()[] = ()[]

get children (e1, ..., eN ) = let e′i = get children ei

di = extract dc(e′i)
in flatten ((e′1, ..., e

′
N )[d1,..,dN ])

(GCSEQ)

get children (e/ child :: en) = (e/ child :: en)ϵ

get children (for $v in e return (e1, ..., eN ))r#[b1,...,bN ] = let (ei1, . . . , eini) = get children ei

rij = extract dc e′ij

in

0

B

B

B

B

B

@

for $v in e return (e11, e12, . . . , e1n1 ,
e21, e22, . . . , e2n2 ,
· · ·
eN1, eN2, . . . , eNnn)

1

C

C

C

C

C

A

r# [b1.r11, . . . , b1.r1n1 ,
b2.r21, . . . , b2.r2n2 ,
...
bN .rN1, . . . , bN .rNnn ]

(GCFOR)

get self :: XQueryD → XQueryD

get self er = er

get parent :: XQueryD → XQueryD

get parent er.(n|?) = getExpGlobal(r)

Figure 10: Fusion rules for three kinds ofaxis

(Q13): ⟨a⟩ for $v in eb return ($v/c, $v/d)⟨/a⟩

Partial evaluation of(Q13) assigns the extended Dewey code.

peval ((Q13) ) Θ
= {(PEEC); (PEFOR); (DCPFOR)}

(⟨a⟩(for $v in eb return (($v/c)1, ($v/d)2))r.1#[1,2]⟨/a⟩)r.

So,((Q13) /d) is transformed in the following way.

peval ((Q13) /d) Θ
= {(PECSTP)}

child fusion (peval ((Q13) ) Θ) d
= {(CFUSION)}

(for $v in eb return (($v/d)2))r.1#[2].

Also, ((Q13) /c) is transformed in the following way.

peval ((Q13) /c) Θ
= {(PECSTP)}

child fusion (peval ((Q13) ) Θ) c
= {(CFUSION)}

(for $v in eb return (($v/c)1))r.1#[1].

Now, return to(Q10) . With the above results, partial evaluation
of peval performs as follow:

peval ((Q10) ) Θ
= {(PELET); (PEEC); (PESEQ)}

self fusion (e1, e2)
[r.1#[2],r.1#[1]] ∗

= {definition of self fusion}
(for $v in eb return (($v/c)1, ($v/d)2))r.1#[1,2]



where,e1 = (for $v in eb return (($v/d)2))r.1#[2] and
e2 = (for $v in eb return (($v/c)1))r.1#[1].

4. IMPLEMENTATION
We have implemented a prototype system in Objective Caml. It

consists of about 4600 lines of code. Although the framework has
been represented using simple function definitions, actual imple-
mentation uses more complex structure to achieve static emulation
of the store more precisely. Main enhancements in the actual im-
plementation are:

• achieving both sorting and duplicate elimination in the ex-
tended Dewey order simultaneously using one higher-order
function exploiting the algebraic structure shown in Ap-
pendix A.

• keeping track of the success or failure of the partial evalua-
tion in order to recover original expression when subexpres-
sion fails to simplify.

• maintaining the global environment for storing all annotated
expressions during our fusion transformation as 4-ary rela-
tion of (e, o, c, d) where,

– e denotes an XQuery expression,

– since annotations for the extended Deweys’ are associ-
ated with nodes of abstract syntax trees, the node-ido
needs to be maintained,

– c denotes a context of an expressione. For example,
whene occurs in areturn expression of afor expres-
sion, we need to keep this context as Deweys’ prefix.

– d denotes a Dewey code ofe.

The fusion functionpeval adds information for annotated
XQuery to this relation. The functiongetExpGlobal(r) is
implemented by using this relation.

• applying auxiliary transformation rules such as monad laws[16]
on “for” expressions. These transformation help to fuse the
location step expressions.

Currently it works stand-alone reading XQuery expression from
standard input and produces rewritten XQuery to standard output.

For input expression(Q12) , our system generates the follow-
ing outputexpr=elem a {()} with the global environment as
4-ary relation. Note thatelem a {()} is the internal represen-
tation of⟨a⟩ () ⟨/a⟩ in our system. The pair (Vtx ,Edg) represents
abstract syntax trees of XQuery expressions by set of nodes (Vtx )
and set of directed labeled edges (Edg) between nodes (for exam-
ple,e(9,8) denotes an edge labelede from node 9 to 8, meaning
that an element construction expression is located at node 9 and has
content represented by node 8).

#############
RESULT peval
ture
th=
Rel=

oidDS=25, cxtDS=Nil, ds=[1], esDS=(elem a {()})
oidDS=16, cxtDS=Nil, ds=[1], esDS=(elem a {()})
oidDS=1, cxtDS=Nil, ds=[], esDS=()
oidDS=8, cxtDS=Nil, ds=[], esDS=()
oidD=9, cxtD=Nil, d=1, eD=elem a {()}
oidDS=11, cxtDS=Nil, ds=[], esDS=()
oidDS=12, cxtDS=Nil, ds=[1], esDS=(elem a {()})
oidDS=13, cxtDS=Nil, ds=[1,1], esDS=(elem a {()},elem a {()})
oidDS=18, cxtDS=Nil, ds=[], esDS=()
oidDS=19, cxtDS=Nil, ds=[1], esDS=(elem a {()})
oidDS=20, cxtDS=Nil, ds=[1,1], esDS=(elem a {()},elem a {()})
oidDS=21, cxtDS=Nil, ds=[], esDS=()
oidDS=22, cxtDS=Nil, ds=[1], esDS=(elem a {()})
oidDS=23, cxtDS=Nil, ds=[1,1], esDS=(elem a {()},elem a {()})
oidDS=24, cxtDS=Nil, ds=[1], esDS=(elem a {()})

Vtx=[25,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24]
Edg={h(25,9),t(25,1),h(16,9),t(16,11),e(2,1),h(5,3),t(5,4),s(6,5),b(7,2),

r(7,6),e(9,8),h(10,9),t(10,9),h(12,9),t(12,11), h(13,9),t(13,12),
s(14,13),h(15,9),t(15,11),h(17,9),t(17,9), h(19,9),t(19,18),h(20,9),
t(20,19),h(22,9),t(22,21),h(23,9),t(23,22),h(24,9),t(24,1)}

RootD=[1]
expr=elem a {()}
oid=9
- : unit = ()

As a demonstration of the recovery from the failure of the partial
evaluation described above, consider the following(Q14) and its
partial evaluation sequence:

(Q14): let $v := ⟨a⟩()⟨/a⟩ return
($v, ⟨b⟩$v⟨/b⟩/ child :: a)/ self :: a

peval (Q14) Θ
= {(PELET); (PEEC); (PESSTP)}

self fusion (((⟨a⟩()⟨/a⟩)r1 , (⟨a⟩()⟨/a⟩)r2.1)[r1,r2.1]) a

In this case, dc sort(((⟨a⟩()⟨/a⟩)r1 , (⟨a⟩()⟨/a⟩)r2.1)[r1,r2.1])
fails becauser1 and r2.1 are incomparable. Our system recov-
ers the input expression with the following global environment.

#############
RESULT peval
false
th=
Rel=

oidD=9, cxtD=Nil, d=Undef,
eD=let $u := elem a {()} return ($u,elem b {$u}/child::a)/self::a

Vtx=[1,2,3,4,5,6,7,8,9]
Edg={e(2,1),e(5,4),s(6,5),h(7,3),t(7,6),s(8,7),b(9,2),r(9,8)}
RootD=[]
expr=let $u := elem a {()} return ($u,elem b {$u}/child::a)/self::a
oid=9
- : unit = ()

5. RELATED WORK
Studies on rewriting XQuery are summarized as two categories:

one is rewriting it into XQuery[10, 18, 13, 19], another is rewriting
it into SQL[9, 14, 4, 7, 1] or other languages[12, 8, 3]. For XQuery-
to-XQuery transformations, the most related is [10] in a sense of
eliminating redundant expressions. In [10], the authors have pro-
posed a rewriting optimization that replace the expressions, which
return empty sequences, with () by the emptiness detection based
on static analysis. Compared with this, our rewriting is to eliminate
redundant element constructors as well as to detect emptiness.

Koch[13] and Page et al.[18] introduced some classes for com-
posite XQuery and proposed XQuery-to-XQuery transformations
over the classes of XQuery they defined. In [13], Koch defined
composition-free expressions (CFE), in which all variables only
range over nodes in the input trees and never over nodes from in-
termediate query results. Page et al.[18] also defined the following
class of XQuery.

• Node-Conservative Expressions (NCE)
Expressions whose results do not contain newly constructed
nodes.

• Deterministic Expressions (DE)
Expressions which do not have element constructors as their
subexpressions.

• Non-Deterministic Expressions (NDE)
Expressions which have element constructors as their subex-
pressions.

They have proposed a rewriting method for node-conservative and
deterministic expressions.

In real world, however, practical expressions such as schema
mapping always returns newly constructed elements and such
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Figure 11: Partially deterministic expressions (PDE)

queries are not in CFE nor NCE. Our target expressions defined in
Figure 5 subsume NCE and CFE. Figure 11 shows a classification
of XQuery expressions from our point of view. In Figure 11, sur-
rounded by square denotes XQuery expressions defined in Figure
5, which are our target. For both DE and NDE, our fusion re-
turns the input expressions intact. We definepartially deterministic
expressions (PDE), for which our fusion does work to eliminate
redundant expressions that include element constructors while pre-
serving equivalence of expressions. This equivalence comes from
“data exchange equivalence”[5]. The partiality comes from the
property in which expressions that have subexpressions in PDE
could be DE or NDE.

Tatarinov and Halevy proposed an efficient query reformulation
in data integration systems, in which XML and XQuery are used for
data model and schema mapping, respectively [19]. In this system,
composition of element construction is typical because the schema
mapping that maps some element to other element involves ele-
ment construction. They treat actual reformulation algorithm as a
black box. Our work attempts to open the box and exploit some
properties in this box.

6. CONCLUSION
In this paper, we proposed a new rewriting technique for XQuery

fusion to eliminate unnecessary element construction in the ex-
pressions while guaranteeing preservation of document order. The
prominent feature of our framework is in its static emulation of
XML store and assignment of extended Deweys’ to the expressions,
which leads to easy construction of correct fusion transformation.
The prototype system indicates that our framework is not only use-
ful for real life applications including data integration system using
XQuery such as schema mapping, but also important for defining
novel class of XQuery in expressiveness, namely, partially deter-
ministic expressions (PDE).

This work is still ongoing. In the future, we wish to prove
soundness of our method by using algebraic structure shown in
Appendix.
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APPENDIX

A. PROPERTIES ON EXTENDED DEWEY
ORDER

This appendix describes an algebraic structure of sorting and duplicate
elimination in the extended Dewey Order.

We wrote in Section 4 that sorting bydc sort and duplicate elimination
by remove duplicate take place at the same time. This is achieved on a
sequence of Dewey codes[d1, d2, . . . , dn] by

[] ∼D⊎⊕D
≺D

[d1, d2, . . . dn]

where binary operator∼D⊎⊕D
≺D

is defined below. Compatibility test be-
tween the members of a sequence of Dewey codes — failure of the test
causes a failure of the partial evaluation (which is recovered at the caller of
this operation by restoring the original expression) — and the unification of
two Dewey codes (possibly leads to unification of twofor expressions into
one) are implemented usingorderable and⊕D , respectively.

DEFINITION A.1 (distinctly ordered sequences).For a given sequenceS =
⟨y1, y2, · · · , yn⟩, S is distinctly ordered under- when the following con-
ditions hold.

• All elements ofS are in a total order under-, i.e.,
∀y, z, w ∈ S,

y - z ∧ z - y ⇒ y ∼ z (1)

y - z ∧ z - w ⇒ y - w (2)

y - z ∨ z - y (3)

and

• S is strictly monotonic, i.e.,

1. [] is a strictly monotonic
2. for a strictly monotonic sequence ys,y:ys is also strictly mono-

tonic iff.
∀y′ ∈ ys(y ≺ y′).

PROPERTYA.2. For a given distinctly ordered sequencey:ys, the following
properties hold byDEFINITION A.1.

(i) x:ys is a distinctly ordered wherex ∼ y.

(ii) x:y:ys is a distinctly ordered wherex ≺ y.

DEFINITION A.3 (Preservation of order).Binary operator⊕ defined over
a total order set under- preserves the order if for any elementsy1, y2 in
the total order set,

y1 ∼ y2

(y1 ⊕ y2) ∼ y1
(PRESO)

holds.

Ordered insertion (one to many)(∼¢
⊕
≺)

DEFINITION A.4 (Ordered insertion∼¢
⊕
≺). Binary operator∼¢

⊕
≺ re-

turns, for a list on the left operand, a new list in whichy on the right
operand is inserted by the following inference rules.

|y| → y′

([] ∼¢
⊕
≺ y) → [y′]

z ∼ y (z ⊕ y) → v

((z:zs) ∼¢
⊕
≺ y) → v:zs

y ≺ z

(z:zs) ∼¢
⊕
≺ y) → (y:z:zs)

z ≺ y (zs∼¢
⊕
≺ y) → zs’

((z:zs) ∼¢
⊕
≺ y) → z:zs’

THEOREM A.5 (Ordered insertion).For any distinctly ordered sequence
S under-, S∼¢

⊕
≺ y is also distinctly ordered under- where⊕ satisfies

(PRESO).

PROOF. Induction on the sequenceS is used.

Ordered union (many to many)(∼⊎⊕
≺)

DEFINITION A.6 (Ordered union (many to many)).For sequences in which
all elements are in a total order under- where⊕ satisfies(PRESO), binary
operator∼⊎⊕

≺ is defined as the following inference rules.

(zs ∼⊎⊕
≺ []) → zs

(zs ∼¢
⊕
≺ y) → zs′ zs′∼⊎⊕

≺ ys → vs

zs ∼⊎⊕
≺ (y:ys) → vs

THEOREM A.7 (Ordered union).For any distinctly ordered sequenceS1

under-, (S1 ∼⊎⊕
≺ S2) is also distinctly ordered under- where⊕ satisfies

(PRESO).
PROOF. Induction on the sequenceS2 is used.

DEFINITION A.8 (Strict Partial Order onD(≺)).
r1 = r2 x1 ≺x x2

r1 x1 ≺D r2 x2

(x ̸= ϵ) ∨ (x ̸= .? x1)

ϵ ≺X x

b1 ≺B b2

.b1 ≺X .b2
(n1 < n2) ∨ (n1 = n2 ∧ x1 ≺X x2)

n1x1 ≺B n2x2

unifiable(∼)
r1 = r2 x1 ∼X x2

r1 x1 ∼D r2 x2

n1 = n2 x1 ∼X x2

n1x1 ∼B n2x2

ϵ ∼X ϵ

b1 ∼B b2

.b1 ∼X .b2

orderablebs bs1 ++bs2

#bs1 ∼X #bs2

unify(⊕)
r1x1 ∼D r2x2 (x1 ⊕X x2) → x

(r1x1 ⊕D r2x2) → r1 x

n1x1 ∼B n2x2 (x1 ⊕X x2) → x

(n1x1 ⊕B n2x2) → n1x

(ϵ ⊕X ϵ) → ϵ

.b1 ∼X .b2 (b1 ⊕B b2) → b

(.b1 ⊕X .b2) → .b

#bs1 ∼X #bs2 [] ∼B⊎⊕B
≺B

(bs1 ++bs2) → bs

(#bs1 ⊕X #bs2) → #bs

distinctable(dst )
dstX x1

dstD r1x1

dstXϵ

dstB b1

dstX .b1

orderable bs1

dstX #bs1

dstx1

dstB n1x1

distinct(||)
|x1|X → x

|r1x1|D → r1x

|ϵ|X → ϵ

|b1|B → b

|.b1|X → .b

[] ∼B⊎⊕B
≺B

bs1 → bs

|#bs1|X → #bs

|x1|X → x

|n1x1|B → n1x

orderable
allord ds

orderable ds
where

allord []

dst d

allord d:[]

∀d′ ∈ ds, ord d d′

allord d:ds

((d1 ≺ d2) ∨ (d2 ≺ d1) ∨ (d1 ∼ d2))

ord d1 d2


