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Abstract

Parallel programs on lists have been intensively studied. It is
well known that associativity provides a good characterization for
divide-and-conquer parallel programs. In particular, the third ho-
momorphism theorem is not only useful for systematic development
of parallel programs on lists, but it is also suitable for automatic
parallelization. The theorem states that if two sequential programs
iterate the same list leftward and rightward, respectively, and com-
pute the same value, then there exists a divide-and-conquer parallel
program that computes the same value as the sequential programs.

While there have been many studies on lists, few have been
done for characterizing and developing of parallel programs on
trees. Naive divide-and-conquer programs, which divide a tree at
the root and compute independent subtrees in parallel, take time
that is proportional to the height of the input tree and have poor
scalability with respect to the number of processors when the input
tree is ill-balanced.

In this paper, we develop a method for systematically con-
structing scalable divide-and-conquer parallel programs on trees,
in which two sequential programs lead to a scalable divide-and-
conquer parallel program. We focus on paths instead of trees so as
to utilize rich results on lists and demonstrate that associativity pro-
vides good characterization for scalable divide-and-conquer paral-
lel programs on trees. Moreover, we generalize the third homomor-
phism theorem from lists to trees. We demonstrate the effectiveness
of our method with various examples. Our results, being general-
izations of known results for lists, are generic in the sense that they
work well for all polynomial data structures.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; 1.2.2 [Automatic Program-
ming]: Program transformation; D.1.1 [Applicative (Functional)
Programming]

General Terms  Algorithm, Theory

Keywords Divide-and-conquer, Huet’s zippers, Polynomial data
structures, The third homomorphism theorem
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1. Introduction

What are little boys made of?

Snips and snails, and puppy-dogs’ tails
That’s what little boys are made of!
What are little girls made of?

Sugar and spice and all things nice
That’s what little girls are made of!
(an old nursery rhyme)

What are parallel programs on lists made of? Consider summing
up the elements in a list [a1, a2, a3, a4, as, as, a7, as] as an exam-
ple. It is easy to derive sequential algorithms; both the rightward
summation

((((((ar + a2) + a3) + as) + as) + as) + a7) + as
and the leftward summation

a1 + (a2 + (az + (a4 + (as + (as + (a7 + az))))))

are sequential algorithms. Can we derive a parallel algorithm for
summation? Yes, the divide-and-conquer summation

((a1 + a2) + (as + a4)) + ((as + as) + (a7 + as))

is a parallel algorithm, which divides the list at its center and
computes each part in parallel. What is the key to such divide-and-
conquer parallel algorithms? Compare the sequential algorithms
with the divide-and-conquer algorithm. The only difference is the
structure of the parentheses, and the associative law of 4, namely
a+ (b4 c¢) = (a+b) + ¢, enables us to rearrange the parentheses.

This observation, i.e., an associative operator provides a divide-
and-conquer parallel computation, is formalized as the notion of /ist
homomorphisms (Bird 1987). Function A is a list homomorphism
if there exists associative operator ® such that

hz+Hy) = hzOhy

holds, where operator H- denotes the concatenation of two lists.
What is nice about list homomorphisms is the scalability': given
a list of length n, list homomorphisms yield linear speedup up
to O(n/logn) processors. Scalability is one of the most impor-
tant properties in parallel programming. If a parallel program has
good scalability, it shows great speedup that other optimization
techniques can barely achieve. If scalability is poor, parallelization
is nothing but anti-optimization, because parallelization requires
overheads such as communication and synchronization.

Then, what are list homomorphisms made of? It may be sur-
prising that parallel programming on lists is made of writing two

UIn this paper, we consider scalability with respect to numbers of proces-
sors (?).



Figure 1. Aggressively dividing binary tree

sequential programs, which proved as the third homomorphism the-
orem (Gibbons 1996). The theorem states that if two sequential pro-
grams iterate the same list leftward and rightward, respectively, and
compute the same value, then there exists a list homomorphism
that computes the same value as these sequential programs. In
other words, two sequential programs lead to a scalable divide-and-
conquer parallel program. The third homomorphism theorem is
useful for developing parallel programs, and automatic paralleliza-
tion methods have been proposed based on the theorem (Geser and
Gorlatch 1999; Morita et al. 2007).

In summary, scalable parallel programs on lists are made of
“sugar and spice and all things nice”: associative operators and
list homomorphisms, which are obtained from two sequential pro-
grams.

Then, what are parallel programs on trees made of? For exam-
ple, let us consider summing up all values in a tree. Someone may
think of a divide-and-conquer parallel algorithm raised by subtree
structures, i.e., computing independent subtrees in parallel. How-
ever, such a naive parallel algorithm is generally not scalable. Its
speedup is limited by the height of the input tree, and thus, it has
miserable scalability if the input tree is ill-balanced. To obtain bet-
ter scalability, we need to introduce more aggressive divisions, as
outlined in Figure 1. In this case, aggressive divisions yield a scal-
able parallel algorithm, which computes the summation in logarith-
mic time on the size of the tree with a sufficient number of proces-
sors.

Although we have successfully constructed a scalable divide-
and-conquer parallel summation algorithm based on aggressive di-
visions, it is nontrivial to generalize the algorithm. What algebraic
properties will enable us to compute each part in parallel? How can
we obtain a parallel program from sequential ones? The nonlinear
structure of trees makes it hard to develop parallel programs. There-
fore, it has been considered that scalable parallel programs on trees
were made of “snips and snails, and puppy-dogs’ tails”.

In this paper, we explain that scalable parallel programs on
trees are in fact made of “sugar and spice and all things nice”—
even though they are a bit spicier than those on lists. We focus on
the similarity between lists and paths, formalize scalable parallel
programs on trees as path-based computations, and demonstrate
that associative computations on paths lead to scalable parallel
programs. Moreover, we prove that the following proposition holds,
which is a tree version of “the third homomorphism theorem” that
enables us to derive a scalable parallel program on trees from two
sequential programs.

If two sequential programs iterate the same tree downward
and upward, respectively, and compute the same value, then
there exists a scalable divide-and-conquer parallel program
that computes the same value as these sequential programs.

This paper makes three main contributions:

® Formalization of path-based computations on trees: We intro-
duce path-based computations, which include downward and
upward computations. To express path-based computations,
we borrow the notion of Huet’s zippers (Huet 1997; McBride
2001). Spotlighting paths is the key to developing parallel pro-
grams, because it makes theories on lists applicable to trees.

Characterization of scalable parallel computations on trees:
We propose an algebraic characterization of scalable parallel
programs on trees. The main idea is to consider divide-and-
conquer algorithms on one-hole contexts instead of those on
trees. We can evaluate programs that belong to our charac-
terization efficiently in parallel: given a tree of n nodes, they
finish in O(n/p + logp) steps of primitive operations on an
exclusive-read/exclusive-write parallel random access machine
with p processors. It is worth noting that this computational
complexity implies they have good scalability in the sense that
they show linear speedup up to O(n/logn) processors.

“The third homomorphism theorem” on trees: We prove “the
third homomorphism theorem” on trees. It states that if a func-
tion is both downward and upward, then it can be evaluated
efficiently in parallel. The theorem is useful for systematically
developing parallel programs. We will demonstrate its effec-
tiveness with various examples.

Our results are generic in the sense that they work well for all
polynomial data structures, which can capture a large class of
algebraic data structures on functional languages; besides, they are
generalizations of known results on lists.

The rest of this paper is organized as follows. After the prelimi-
naries in Section 2, we explain our ideas and results on node-valued
binary trees in Sections 3 and 4. We develop our theory in Sec-
tion 3 and present examples in Section 4. After that, we generalize
our results to generic trees, namely polynomial data structures, in
Section 6. We discuss related and future works in Section 7.

2. The Third Homomorphism Theorem
2.1 Basic definitions

In this paper, we basically borrow notations of functional program-
ming language Haskell (Peyton Jones 2003). The parentheses for
function applications may be omitted. Note that applications for
functions have higher priority than those for operators, thus f x®y
means (f x) @ y. Operator o denotes a function composition, and
its definition is (f o ¢g)(z) = f(g(z)). Underscore _ is used to
express “don’t care” pattern. « :: X means the type of x is X.

A list is denoted by brackets split by commas. The list concate-
nation operator is denoted by H-. Note that 4 is associative. [A]
denotes the type of lists whose elements are in A.

The disjoint sum of two sets A and B is denoted by Fither A B.

data FEither a b= Left a | Right b

We will write L and R instead of Left and Right for shorthand.
We will use several standard functions in Haskell, and their
definitions are given in Figure 2.

2.2 Right Inverses

Right inverses, which are generalizations of inverse functions, are
useful for developing divide-and-conquer parallel programs (Gib-
bons 1996; Morita et al. 2007).

Definition 2.1 (right inverse). For function f :: A — B, a right
inverse of f, denoted by f°, is a function satisfying the following
equation.

fofoof=7f O



ider = =«

fst (a,b) = a

map | =

map [ ([a] 4 2) = [fa] 4 map [z
foldr (@) e ] = e

foldr (®) e ([a] Hz) = a® (foldr (®) ex)
foldl (®) e ] = e

foldl (@) e (x4 [a]) = (foldl(®)ez)®a

Figure 2. Definitions of standard functions

Two things are worth noting. First, as a right inverse exists for
any function, it is unnecessary to worry about its existence. Second,
aright inverse of a function is generally not unique, and f° denotes
one of the right inverses of f.

2.3 List Homomorphisms and The Third Homomorphism
Theorem

List homomorphisms are an expressive computation pattern for
scalable divide-and-conquer parallel programs on lists.

Definition 2.2 (list homomorphism (Bird 1987)). Function h ::
[A] — B is said to be a list homomorphism if there exists function
¢:: A — B and associative operator (®) :: B — B — B such that

h ] = o
h [a] = ¢a
hz+Hy) = hzOhy
hold, where ¢ is the unit of ®. Here, we write h = hom (®) ¢_2

O

It is worth noting that associative operator ® characterizes a list
homomorphism. The associativity of ® guarantees that the result
of computation is not affected by where to divide the list. List
homomorphisms are useful for developing parallel programs on
lists (Bird 1987; Cole 1994, 1995; Gibbons 1996; Hu et al. 1997a).

The third homomorphism theorem demonstrates a necessary
and sufficient condition of existence of a list homomorphism.

Theorem 2.3 (the third homomorphism theorem (Gibbons 1996)).
Function h is a list homomorphism if and only if there exist two
operators ¢ and ® such that the following equations hold.

h(la)] #z) = ad®hx
h(z41[a]) = hz®a O

The third homomorphism theorem states that if we can com-
pute a function in both leftward and rightward manners, then there
exists a divide-and-conquer parallel algorithm to evaluate the func-
tion. What the theorem indicates is not only the existence of parallel
programs but also a way of systematically developing parallel pro-
grams. The following lemma plays a central role in parallelization.

Lemma 2.4 (Gibbons (1996); Morita et al. (2007)). Assume that
the following equations hold for function h.

h(fa] Hz) = a®hzx
h(z+a)) = hz®a
Then, h = hom (©®) ¢ holds, where ® and ¢ are defined as follows.
pa=hld
a®b="h(h®aH h°b) O

Lemma 2.4 states that we can derive a parallel program from
two sequential programs through a right inverse of h.

2We usually neglect ¢ because parallel computations on empty lists is
useless. If ¢ is necessary, we can prepare it by introducing a special value
that behaves as the unit.
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Figure 3. A zipper structure, which expresses a path from the root
to the black leaf

3. “The Third Homomorphism Theorem’ on
Binary Trees
Here, let us consider node-valued binary trees.

data Tree = Node Int Tree Tree
| Leaf

The goal is to formalize and prove “the third homomorphism the-
orem” on node-valued binary trees, which consists of the three
notions of downward computations, upward computations, and
scalable divide-and-conquer computations on trees. To formalize
these notions, we will focus on paths. Given a path, the downward
and upward computations are computations that are accomplished
while walking the path in downward and upward manners, re-
spectively. Scalable divide-and-conquer computations on trees are
computations that split a path in the middle and compute each sub-
structure in parallel. To specify a path on a tree, we will borrow
Huet’s zippers (Huet 1997).

3.1 Zippers on Binary Trees

A zipper is a list whose elements are contexts that are left after
a walk. Based on walking downward from the root of a tree, we
construct a zipper as follows: when we go down-right from a node,
we add its left child to the zipper; when we go down-left, we
add the right child to the zipper. For example, Figure 3 shows the
correspondence between a zipper and a walk from the root to the
black leaf.

The zipper structures for node-valued binary trees can be spec-
ified in the following type, where components of the Fither type
correspond to the left and the right child.

type Zipper = [FEither (Int, Tree) (Int, Tree)]

In this paper, a walk usually ends at a leaf. Then, a zipper stores the
whole tree. Function z2¢ below restores a tree from a zipper.

22t (] = Leaf
22t ([L (n, )] #7) = Nodenl (22tr)
22t (R (n,7)] #1) = Noden (22t1)r

When a walk ends at a leaf, a zipper corresponds to a tree. When
a walk ends at an internal node, a zipper corresponds not to a tree
but to a one-hole context of a tree. Look at Figure 3 again. On one
hand, the zipper represents the tree with its path from the root to
the black leaf. On the other hand, the zipper also represents the
one-hole context in which the black circle represents the hole. We
will formalize scalable divide-and-conquer parallel programs on
trees based on the second viewpoint, viewing a zipper as a one-
hole context. However, we usually regard a zipper as a tree and call
the hole the terminal leaf because a walk usually ends at a leaf.

We would like to summarize the correspondences among a zip-
per, a tree (or a one-hole context), and a path. A zipper corresponds
to a tree with a terminal leaf (a one-hole context) or a path from the
root to the terminal leaf. An initial segment of a zipper corresponds
to a one-hole context containing the root or a path from the root to



anode. A tail segment of a zipper corresponds to a subtree contain-
ing the terminal leaf (a one-hole context whose hole is the same as
the hole of the original one) or a path from a node to the terminal
leaf.

3.2 Downward and Upward Computations on Binary Trees

Next, let us formalize downward and upward computations.
Consider function sum Tree below as an example, which sums
up all values in a tree.

sumTree Leaf = 0
sumTree (Nodenlr) = n+ sumTreel+ sumTreer

First, we would like to give its downward version. Since an
initial segment of a zipper corresponds to a path from the root to an
internal node, function sum Tree| below performs its computation
downward from the root to the terminal leaf.

sumTree; [| =0
sumTree; (x H [L (n,1)]) = sumTree; x + n + sumTree
sumTree; (x # [R (n,7)]) = sumTree; x +n+ sumTreer

Note that for computing summations for trees in the zipper, we use
the function sumTree.

Similarly, we can give its upward version. Since a tail segment
of a zipper corresponds to a path from an internal node to the
terminal leaf, function sumTree; below traverses a tree from its
terminal leaf to its root.

sumTreer [| =0
sumTreer ([L (n,0)] #7) = n+ sumTree l + sumTree; v
sumTreer ([R (n,7)] #1) = n+ sumTreer | + sumTree r

Here, sumTree; and sumTree| are equivalent to sumTree in
the sense that sumTree; = sumTree; = sumTree o z2¢ holds.
However, computations on a path may require more information
than those on trees. To formalize the correspondence between com-
putations on paths and those on trees, we introduce a notion of path-
based computations.

Definition 3.1 (path-based computation on binary trees). Function
B’ :: Zipper — B is said to be a path-based computation of
h :: Tree — A if there exists function ¢ :: B — A such that
the following equation holds.

Woh' =ho 22t O

This equation means that h’ simulates the computation of h and
the result is extracted by 1. Note that 22t is a path-based compu-
tation of any function; however, this is useless in practice because
no significant computations are managed on paths. In other words,
it is important to specify an appropriate path-based computation.

Now, let us introduce downward and upward computations.

Definition 3.2 (downward computations on binary trees). Function
h':: Zipper — B, which is a path-based computation of h:: Tree —
A, is said to be downward if there exists operator (®) :: B —
FEither (Int, A) (Int, A) — B such that the following equations
hold.

R (x+[L (n,t)])
R (x+ R (n,t)])

Definition 3.3 (upward computations on binary trees). Function
h' i Zipper — B, which is a path-based computation of h ::
Tree — A, is said to be upward if there exists operator () ::
FEither (Int,A) (Int,A) — B — B such that the following
equations hold.

R (L (n,t)] #H2z) = L(nh
R (R (n,t)] 4+ ) = R(n,h

Wzl (nht)
W z@R(n,ht) O

tyoh'z
tyoh'z O
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Figure 4. Recursive division on one-hole context: at each step, the
one-hole context is divided at the node represented by a concentric
circle.

3.3 Parallel Computations on Binary Trees

Next, let us consider scalable divide-and-conquer parallel compu-
tations on trees. For scalable divide-and-conquer computations, we
would like to divide a tree at an arbitrary place and compute each
part in parallel. However, as seen in Figure 1, splitting a tree does
not yield two trees of the original type: one is a tree of the original
type, but the other is a one-hole context. Therefore, it is difficult to
formalize recursive division on trees.

Our idea is to consider recursive division on one-hole contexts,
instead of that on trees. We divide a path from the root to the hole,
as Figure 4. At each step, we select a node on a path from the root to
the hole, divide the one-hole context into three one-hole contexts,
i.e., the upper part, the lower part, and a complete subtree with
the node. Apparently, we can divide the upper part and the lower
part once again; we can divide the complete subtree by taking off
an arbitrary leaf and obtaining a one-hole context. Then, we can
accomplish recursive division on a one-hole context.

Now, let us characterize scalable divide-and-conquer parallel
computations on node-valued binary trees. For parallel computa-
tion on trees, we require three operations: an operation (say ©) that
merges the results of two one-hole contexts, an operation (say ¢)
that takes the result of a complete tree and yields the result of the
complete tree with its parent, and an operation (say ) that com-
putes a result of a complete tree from the result of a one-hole con-
text. Since a one-hole context corresponds to a zipper, computation
on a one-hole context can be specified by path-based computations.

Definition 3.4 (decomposition on binary trees). A decomposition
of function h :: Tree — A is triple (¢, ®,) that consists of
associative operator ® :: B — B — B and two functions ¢ ::
Either (Int, A) (Int, A) — B and ¢ :: B — A such that

Yoh' =hozit
W] = lo
PL(n,t)] = ¢(L(n,ht))
P [R(nt)] = ¢(R(nht))
W x+Hy) = hHzohy
hold, where ¢ is the unit of ®. In this case, h is said to be
decomposable. O

It is worth noting that the associativity of ® is necessary to
guarantee that the result of computation is not affected by where
to divide the tree. It is also worth noting that a decomposition can
be seen as a list homomorphism on zippers: Define function ¢’ as
¢ (L(n,t) = ¢ (L(n,ht))and ¢' (R (n,t)) = ¢ (R (n,ht)):
then, b’ = hom (®) ¢’ holds.

Actually decomposable functions can be efficiently evaluated
in parallel, which is a consequence of theories of parallel tree con-
traction (Miller and Reif 1985; Cole and Vishkin 1988; Gibbons
and Rytter 1989; Abrahamson et al. 1989; Reif 1993).



Theorem 3.5. If (¢, ®, ) is a decomposition of function h and
all of ¢, ®, and ¢ are constant-time computations, then h can
be evaluated for a tree of n nodes in O(n/p + logp) time on
an exclusive-read/exclusive-write parallel random access machine
with p processors.

Proof. Tt is not difficult to confirm that h satisfies the premise of
Theorem 3.1 in (Abrahamson et al. 1989). O

Complexity implies good scalability of decomposable func-
tions, because we can obtain linear speedup up to O(n/logn) pro-
CEessors.

The function sum Tree is decomposable as the following equa-
tions show.

sumPara = sumTree o z2t

sumPara || =0

sumPara [L (n,l)] = n+ sumTreel

sumPara [R (n,r)] = n+ sumTree r

sumPara (x Hy) = sumPara x + sumParay

In other words, sumTree has a decomposition (¢, +, ¢d), where ¢
is defined by ¢ (L (n,v)) =n+vand ¢ (R (n,v)) =n+ov. It
is not difficult to derive a parallel program for sum Tree because of
the associativity of +. However, it is generally difficult to derive an
associative operator that provides a decomposition.

3.4 “The Third Homomorphism Theorem” on Binary Trees

Finally, let us introduce “the third homomorphism theorem” on
node-valued binary trees, which demonstrates a necessary and suf-
ficient condition of existence of a decomposition.

Theorem 3.6 (“the third homomorphism theorem” on binary trees).
Function h is decomposable if and only if there exists a path-based
computation of h that is both downward and upward.

Proof. We will prove a stronger theorem later (Theorem 6.7). [

The statement of Theorem 3.6 is similar to the third homomor-
phism theorem on lists. The observation underlying the theorem
is that associative operators provide parallel programs not only on
lists but also on trees. In addition, the following lemma is useful for
developing parallel programs.

Lemma 3.7. Assume that function h’, which is a path-based com-
putation of h so that » o b’ = h o 22t, is both downward and
upward; then, there exists a decomposition (¢, ®, 1)) of h such that
the following equations hold.

¢ (L(v,ht)) = h'[L(v,2)]
¢ (R (v,ht)) W R (v, )]
a®b = K (W°at+h°b)

Proof. We will prove a stronger lemma later (Lemma 6.6). O

Combining Theorem 3.6 and Lemma 3.7, we can derive decom-
positions of functions. Recall sum Tree. A path-based computation
of sumTree (say st) is both downward and upward, because of
st = sumTree; = sumTree;. Therefore, Theorem 3.6 proves
that there is a decomposition of sumTree. Lemma 3.7 shows a
way of obtaining a decomposition (¢, ®, ). Here, ¥ = id, be-
cause sumTree o z2t = id o st holds. Obtaining function ¢ is easy
as the following calculation shows, where C' is either L or R.

¢ (C (n,sumTreet)) = {Lemma3.7}

st [C (n,t)]

{ definition of st }
n + sumTree t

Thus ¢ (C (n,r)) = n + r. The last is associative operator ©.
Lemma 3.7 states that a right inverse of st enables us to derive the
operator. It is not difficult to find a right inverse.

st® s = [L (s, Leaf)]

Function st° above is certainly a right inverse of st, because

st (st® s) = st [L (s, Leaf)] = s holds. Now we can obtain a
definition of ® as follows.
a®b = {Lemma3.7}

st (st® a H st° b)

{ definition of st° }

st [L (a, Leaf), L (b, Leaf)]
{ definition of st }

a+b

We have obtained a decomposition of sumTree, which is exactly
the same as the one we previously showed.

4. Examples

In this section, we demonstrate how to develop scalable divide-and-
conquer parallel programs. Our development consists of two steps.
First, we seek an appropriate path-based computation that is both
downward and upward. After that, we obtain a decomposition that
brings scalable parallelism.

4.1 Maximum Path Weight

Let us consider a small optimization problem as an initial example
to compute the maximum weight of paths from the root to a leaf.
For simplicity, we will assume that the value of each node is non-
negative. The following sequential program solves the problem.

maxPath Leaf =0
mazPath (Node nlr) = n+ max (maxPath 1) (maxPath 1)

Our objective here is to develop a parallel program to solve the
problem. First, we try to obtain a downward definition and think of
the following program.

mazPath) []
=0

mazPath| (z 4 [L (n,1)])

= maz (mazPath| x) (pathWeight x + n + mazPath 1)
mazPath| (z 4 [R (n,7)])

= maz (mazPath| x) (pathWeight x + n + mazPath r)

pathWeight || =0
pathWeight (z + [L (n,1)]) = pathWeight x +n
pathWeight (x + [R (n,7)]) = pathWeight x +n

Note that mazPath; is not downward, because it uses aux-
iliary function pathWeight that computes the weight of the
path from the root to the terminal leaf. The tupling transforma-
tion (Fokkinga 1989; Chin 1993; Hu et al. 1997b) is helpful in
dealing with such situations. Consider function maxzPath/, which
computes the weight of the path to the terminal leaf together with
the maximum path weight of the tree, namely mazPath| x =
(mazPath| x, pathWeight x). Apparently mazPath/ is a path-
based computation of maxPath; in addition, it is downward.

mazPath’ [| = (0,0)
mazPath| (z + [L (n,1)])
= let (m,w) = mazPath! ©
in (maz m (w + n + mazPath 1), w + n)
mazPath’ (z + [R (n,7)])
= let (m,w) = mazPath' ©
in (maz m (w + n + mazPath r), w + n)

Therefore, maa:Path’l seems an appropriate path-based computa-
tion for mazPath, and we would like to derive its upward defini-



mp° (m,w) =

Figure 5. Outline of mp°: closed circle represents terminal leaf.

tion. Function mazPath’; below is the upward one.

mazPath’ [] = (0,0)
mazPath’} ([L (n,1)] H# )
= let (m,w) = mazPath} x
in (n + maz m (mazPath 1), n + w)
mazPath’ (R (n,r)] H# )
= let (m,w) = mazPath} x
in (n + maz m (mazPath r),n + w)

Now that we have confirmed that mazPath| = mazPath’ (say
mp) is both downward and upward, Theorem 3.6 proves the exis-
tence of its parallel program. We derive this based on Lemma 3.7.

Obtaining ¢ is straightforward: ¢ (C' (n,m)) = (n + m,n),
where C' is either L or R. To obtain associative operator ©®, we
would like to find a right inverse of mp. This is not difficult, and
function mp° below is a right inverse of mp, which is outlined in
Figure 5.

mp° (m,w) = [L (w, Node (m — w) Leaf Leaf)]

Note that mp t = (m, w) implies m > w. Therefore, mp® is cer-
tainly a right inverse of mp, because given tree [L (w, Node (m —
w) Leaf Leaf )], where there exists tree ¢ such that mp ¢t = (m, w),
the maximum path weight of the tree is m and the path weight to
the terminal leaf is w. Then, © is derived as follows.

(m1,w1) © (M2, w2)
= {Lemma3.7}
mp (mp° (ma, w1) + mp® (m2, w2))
= { Definition of mp° }
mp [L (w1, Node (m1 — w1) Leaf Leaf),
L (w2, Node (m2 — w2) Leaf Leaf)]
= { Definition of mp }
(maz m1 (w1 + m2), w1 + w2)

Lemma 3.7 guarantees the associativity of operator ®. In summary,
we obtain the following parallel program.

mazPath o 22t = fst o mp
mp || = (0,0)

mp [L (n,t)] = (n+ mazPatht,n)
mp [R (n,t)] = (n+ mazPatht,n)
mp (z1 H 22) = let (m1,w1) = mp z1

(ma2,w2) = mp 22
in (maz my (w1 + ma), w1 + wa)

The parallel program we obtained above computes two values,
while the sequential program only computes one value; thus, the
parallel program is about two times slower than the sequential one
on single-processor machines. Since the parallel program is scal-
able, it will run faster than the sequential one if several processors
are available; besides, we can reduce the overhead by using the se-
quential program, as reported in (Matsuzaki and Hu 2006).

4.2 Leftmost Odd Number

The next example is a small query to find the leftmost odd number
in a tree. In fact, this problem can be solved by flattening the tree
into a list and considering a divide-and-conquer algorithm on the
list. Here we will derive a parallel program without such clever
observation.

Function left Odd below returns the the leftmost odd number in
the input tree if one exists; otherwise, it returns special value * that
stands for emptiness.

leftOdd Leaf = x
leftOdd (Node nlr) = case leftOdd | of
* — if odd n thenn
else leftOdd r

v—v

In the downward computation of leftOdd, we need to determine
whether a nearly-leaf odd number is leftmost or not. For this pur-
pose, we add additional information to the result: L v and R v cor-
respond to an odd number v at the left and the right of the terminal
leaf.

leftOdd | [] = *
leftOdd,| (z +-[L (n,[)])
= case leftOdd | = of
Lv—Lw
a — case leftOdd | of
*x — if odd n then L n else a
v—Lv
leftOdd| (x + [R (n,7)])
= case leftOdd | x of
Lv—Lwv
a — if odd n then Rn
else case leftOdd r of x — a
v— Rwv

Function leftOdd | is a path-based computation of leftOdd: define
¥ by ¥ x = x and ¢ (C' v) = v where C is either L or R; then
poleftOdd| = leftOdd o 22t holds. Next, we would like to derive
its upward definition.

leftOdd; [| = *
leftOdd; ([L (n,1)] # x)
= case leftOdd [ of
* — if odd n then L n else leftOdd, =
v— Lo
leftOdd; (IR (n,r)] Hx)
= case leftOdd,; = of
* — if odd n then Rn
else case leftOdd r of * — *
v— Rwv
a—a

Now that leftOdd, = leftOdd, (say lo) is both downward and
upward, Theorem 3.6 proves that it is decomposable.

Let us derive a parallel program. It is easy to find a right inverse
of lo, and function lo° below is a right inverse.

lo° * =
lo° (Lv) = |[L (v, Leaf)]
lo° (Rv) = [R (v, Leaf)]

Then Lemma 3.7 gives a decomposition of leftOdd after a small
amount of calculation. We have omitted the calculation, because
it is slightly boring though straightforward. The parallel program
is shown in Figure 6. The key is distinguishing two kinds of odd
number: those that are to the left of the terminal leaf and those that
are to the right. Writing downward/upward programs is helpful for
noticing such case analyses necessary for parallel computations.

4.3 Height

The final example is computing the height of a tree.

height Leaf 1
height (Node _ 1 1) 1+ maz (height 1) (height r)



leftOdd o 22t = 1 o lo

P * = %
Y (Lv) = v
¥ (Rv) = v
lo ] = %
lo[L (n,t)] = caseleftOdd t of
* — if odd n then L n else *
v—Lwv
lo[R(n,t)] = if odd nthen Rn
else case leftOdd t of x — x
v— Rwv
lo (z1 H z2) = case (lo 21, lo z2) of
(Lv,_)—Luw
(Rv,*x) - Rwv
(o) —r

Figure 6. Divide-and-conquer parallel program for leftOdd

This problem is similar to the maximum-path-weight problem, and
we can specify downward and upward definitions in a similar way.

height | ] (1,1)
height| (z +[L _1]) = let (h,d) = height| x

in (maz h (d + height 1), d + 1)
r]) = let (h,d) = height| =

in (maz h (d + height r),d + 1)
height; [] = (1,1)

height| (z + [R _

height; (L _ 1] # z) = let (h,d) = height; =
in (1 + maz h (height 1),d + 1)
height; (R _r] + ) = let (h,d) = height; =

in (1 + maz h (height r),d + 1)

Function height, = height, (say ht) computes the height of a
tree in its first result, and its second result retains the depth of the
terminal leaf. Function ht is a path-based computation of height,
because fst o ht = height o 22t holds.

Let us parallelize it. The only nontrivial part is that to obtain
an associative operator from its right inverse. In this case, differ-
ent from the previous examples, we should define right inverse ht°
in a recursive manner because ht® (h,d) yields a tree of height
h. Therefore, it first seems difficult to simplify the definition of ®,
even though the naive definition a®b = ht (ht° a+ht® b) is ineffi-
cient. Actually, that simplification is not too difficult. Let us look at
Figure 7, which outlines the tree ht° (h1,d1) H ht® (he,d2). The
left and right trees correspond to ht® (hi,d1) and ht° (hs2,d2),
and the curved arrow corresponds to the concatenation operation
on zippers. Now it is easy to see that the height of this tree is
maz hi (di1 + h2) and the depth of the terminal leaf is di + d2. In
short, the following gives a definition of ®.

(h1,d1) © (h2,d2) = (max h1 (di + h2),d1 + d2)
Then, we obtain the following parallel program for height.

height o 22t = fst o ht
ht | = (L)
ht [L (n,t)] = (14 heightt,2)
ht [R(n,t)] = (14 heightt,2)
ht (Zl +H- 252) = let (hl,d1) = ht zZ1

(h2,d2) = ht 22
in (maz hy (di + h2),d1 + da2)

We have considered how to merge the results of substructures
with the abstraction in Figure 7. The most significant thing is that
Theorem 3.6 guarantees the correctness of the merging operation
obtained from the abstraction. Theorem 3.6 proves that the results
of ht, namely the height of the tree and the depth of the terminal

Figure 7. Outline of ht® (h1,d1) H ht° (he, d2): curved arrowed
line denotes plugging operation, which corresponds to concatena-
tion of two zippers.

leaf, are sufficient for merging the results of two parts; thus, we can
derive correct merging operation no matter what shape the trees are
we image for ht°.

5. “The Third Homomorphism Theorem’ on
Polynomial Data Structures

This section discusses our generalization of the method so that it
can deal with all polynomial data structures, which can capture a
large class of algebraic data structures on functional languages.

5.1 Polynomial Functors

To describe our results, we use a few notions from category theory.
A category consists of a set of objects and a set of morphisms. A
functor (say F) is a morphism of categories, and it respects both
identity and composition.

Fid id

F(fog) FfoFyg

We will consider the category Set, where an object is a set and
morphisms from object A to object B are all total functions from A
to B. A functor gives a mapping between functions together with
sets.

A functor is said to be polynomial if it is made up from identity
functor |, constant functors such as !A where A is an object, and
bifunctors + and x. Let two operators for morphisms x and + be
(f xg)(@,y) = (fz,9y), (f +9)(L,z) = (1, f z),and (f +
9)(2,y) = (2,9 y). Then, the definitions of polynomial functors
are given as follows, where F and G are polynomial functors, A and
B are objects, and f is a morphism.

(l4)B=A
(1A)f =i
A=A
If = f
(FxG)A=FA
(FxG)f=FfxGf
(F+GA= ({1} x FA)U
(F+G)f=Ff+Gf

The least fixed point of functor F, denoted by uF, is the smallest
set that satisfies F(uF) = pF. The least fixed point exists for
each polynomial functor. It is well known that the least fixed points
of polynomial functors provide a good characterization of a large
class of algebraic data structures (Backhouse et al. 1998), and these
are called polynomial data structures. For example, lists having
elements of type A can be recognized as the least fixed point of
functor L below, where 1 denotes a singleton set.

L=1+!Ax]I

x GA

({2} x GA)

Node-valued trees having values of type A can also be recognized
as the least fixed point of functor T below.

=N+1AxIxI



5.2 Zippers for Polynomial Data Structures

Next, let us define zippers for polynomial data structures. We will
follow McBride (2001) who showed a systematic derivation of zip-
pers based on derivatives of functors. The derivative of polynomial
functor F, denoted by OF, is a polynomial functor defined as fol-
lows, where e denotes a distinguishable element.

9(1A) = 19

a(l) = e}

OFxG) = Fx90G+0FxG
OF+G) = OF+09G

Functor OF corresponds to a one-hole context structure of F. The
zipper structure of pF, denoted by Z, is recognized as Zr =
[OF (uF).

To convert zippers to trees, we use an operator (<f) :: Zp —
uF — pF, which is defined by

z<rt = foldr (<f)t z

where (<f) :: OF(uF) — wF — uF is the plugging-in opera-
tor (McBride 2001) defined as follows.

a<<iat = a

et = t

(1, (a,0) <rxct = (asb<ci)
(27 (a7b)) <Fxgl = (CL <F t7b)
(l,a) <F+Gt = (1,a<F t)
(2,1)) <fpgt = (2,b<G t)

We will omit the subscript of <¢ when it is apparent from its
context.

Note that operator < takes an additional tree to convert a zipper
to a tree, because a zipper corresponds to a one-hole context. As
we want to minimize the differences between zippers and trees, we
will force the difference between zippers and trees to be leaves. A
set of leaves of uF, denoted by leaves,F, is formalized as follows.

leavesMF - [[F]] leaves

H'A]] leaves = A

[[I]]leaves - @

HF X G]]lcaves = HFﬂleach X HG]]leavcs

[[F + G]]lea'ues = ({1} X IIF]]leaves) U ({2} X IIG]]lea’Ues)

5.3 Sequential and Parallel Computations on Zippers

Now that the notion of zippers has been clarified, it is not difficult
to provide definitions for downward and upward computations.

Definition 5.1 (path-based computation). Function b’ :: Zr — B
is said to be a path-based computation of function h :: uF — A if
there exists operator © :: B — pF — A such that the following
equation holds for all ¢ € leaves,F.

h(z<t) = hzot O

Definition 5.2 (downward computation). Function b’ :: Zg — B,
which is a path-based computation of function h:: uF — A, is said
to be downward if there exist operator (®) :: B — OFA — B and
value e :: B such that the following equation holds.

Kz = foldl (®)e (map (OFh) z) O
Definition 5.3 (upward computation). Function b’ :: Zg — B,
which is a path-based computation of function h:: uF — A, is said

to be upward if there exist operator (¢) :: OFA — B — B and
value e :: B such that the following equations holds.

R z = foldr (®) e (map (OFh) 2) O

We characterize scalable divide-and-conquer parallel programs
by recursive division on one-hole contexts as the same as the case
of node-valued binary trees.

Definition 5.4 (decomposition). A decomposition of function h ::
uF — Aistuple (¢, ®, ©) that consists of function ¢::9FA — B,
associative operator ® :: B — B — B, and operator © :: B —
uF — A such that the following equation holds for all ¢ €
leaves F.

h(z<t) = hom (®) (po IFh) 2Ot O

One of the most difficult issues is to find a scalable divide-and-
conquer parallel algorithm to evaluate such functions. We (Mori-
hata and Matsuzaki 2008) devised an algorithm by generalizing the
tree contraction algorithm on binary trees given by Abrahamson
et al. (1989). We have not discussed this in detail here, because it is
beyond the scope of this paper.

Theorem 5.5. If (¢, ®,©) is a decomposition of function h and
all of ¢, ®, and © are constant-time computations, then h can
be evaluated for a tree of n nodes in O(n/p + logp) time on
an exclusive-read/exclusive-write parallel random access machine
with p processors.

Proof. 1t is not difficult to confirm that h satisfies the premise of
Theorem 9 in (Morihata and Matsuzaki 2008). O

5.4 “The Third Homomorphism Theorem” on Polynomial
Data Structures

We have shown that list homomorphisms characterize scalable
divide-and-conquer parallel programs on polynomial data struc-
tures. Therefore, we can utilize parallelization methods on lists for
free. For instance, “the third homomorphism theorem” on trees is a
direct consequence of that on lists.

Lemma 5.6. Assume that function h’, which is a path-based com-
putation of h so that h (2 <t) = h' 2 © ¢ holds for all t €
leaves,F, is both downward and upward; then, there exists a de-
composition (¢, ®,S) of h such that ¢ (OFh a) = h' [a] and
a®b="h (h° a+ h'°b)hold. O

Proof. Since b’ is both leftward and rightward, ® is associative
and b’ = hom (®) (¢ o OFh) holds from Lemma 2.4. Therefore,
(¢, ®,©) forms a decomposition of h. O

Theorem 5.7 (“the third homomorphism theorem” on polynomial
data structures). Function h :: uF — A is decomposable if and
only if there exist operators (@) :: 0FA — B — B, (®) :: B —
OFA — B, and (&) :: B — uF — A, such that the following
equations hold for all ¢t € leaves ..

h(z<at) = foldr (®) e (map (OFh) z) Ot
= foldl (®) e (map (OFh) z) S

Proof. The “if” part is a direct consequence of Lemma 6.6, and the
“only if” part is straightforward. O

6. Discussion

We have developed a method for systematically constructing scal-
able divide-and-conquer parallel programs on polynomial data
structures. We have focused on paths and expressed paths by zip-
pers to utilize the known theories on lists. We have proposed a
characterization of scalable divide-and-conquer parallel programs
on polynomial data structures, proved “the third homomorphism
theorem” on polynomial data structures, and demonstrated the ef-
fectiveness of our method with examples.

Our motivation was to derive “the third homomorphism theo-
rem” on trees. The theorem, which was first introduced by Gibbons
(1996), is useful for developing parallel programs, and automatic
parallelization methods have been proposed (Geser and Gorlatch
1999; Morita et al. 2007) based on the theorem. Our theorem is an



exact generalization of the original third homomorphism theorem,
and our results are built on list homomorphisms. Therefore, exist-
ing automatic parallelization methods should be applicable.

One of the aims of this paper is to explain ideas for constructing
scalable parallel programs on trees through the development of our
theory. Parallel tree contraction, which was first proposed by Miller
and Reif (1985), is known to be a useful framework for developing
scalable parallel programs on trees, and many computations have
been implemented on it (Cole and Vishkin 1988; Gibbons and Ryt-
ter 1989; Abrahamson et al. 1989; Skillicorn 1996; Gibbons et al.
1994; ?; Matsuzaki 2007); however, parallel tree contraction is hard
to use, because it requires a set of operations that satisfy a certain
condition. In fact, the requirements for decomposable functions is
equivalent to the sufficient condition for parallel tree contraction
discussed in (?), and “the third homomorphism theorem” on trees
brings sets of operations that satisfy the condition. Moreover, our
results can deal with polynomial structures, even though most of
the existing studies have only considered binary trees.

The third homomorphism theorem requires two sequential pro-
grams, while conventional parallelization methods generate a par-
allel program from a sequential program. Even though this require-
ment may have its shortcomings, it is arguably true. There is gen-
erally little hope of obtaining a parallel program from a sequen-
tial program, because parallel programs are more complicated than
sequential ones. In other words, extra information is necessary to
develop parallel programs from sequential ones. What the third ho-
momorphism theorem provides is a systematic way of revealing
such extra information.

We have developed our methods on polynomial data structures,
which correspond to trees of bounded degree. Regular data struc-
tures are a generalization of polynomial data structures, and include
trees of unbounded degree. Since McBride (2001) demonstrated
a systematic derivation of zipper structures for regular data struc-
tures, there are no problems with formalizing path-based computa-
tions, downward computations, or upward computations on regular
data structures. However, it is difficult to achieve scalability on reg-
ular data structures. We have required the operation to merge the
results of siblings in O(1) time. As this requirement is not realistic
on regular data structures, it is necessary to parallelize this merging
operation. In summary, it would be interesting to investigate “the
third homomorphism theorem” on regular data structures.
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