
Parallel Processing Letters, Vol. 15, No. 3 (2005) 321–336fc World Scientific Publishing Company

SYSTEMATIC DERIVATION OF TREE CONTRACTION

ALGORITHMS∗

KIMINORI MATSUZAKI, ZHENJIANG HU,
KAZUHIKO KAKEHI, and MASATO TAKEICHI

Graduate School of Information Science and Technology,

University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656, Tokyo, JAPAN

{Kiminori Matsuzaki,hu,kaz,takeichi}@mist.i.u-tokyo.ac.jp

Received 16 September 2004
Revised 31 October 2004

Communicated by Sergei Gorlatch

ABSTRACT
While tree contraction algorithms play an important role in efficient tree computation

in parallel, it is difficult to develop such algorithms due to the strict conditions imposed
on contracting operators. In this paper, we propose a systematic method of deriving
efficient tree contraction algorithms from recursive functions on trees. We identify a
general recursive form that can be parallelized into efficient tree contraction algorithms,
and present a derivation strategy for transforming general recursive functions to the
parallelizable form. We illustrate our approach by deriving a novel parallel algorithm
for the maximum connected-set sum problem on arbitrary trees, the tree-version of the
well-known maximum segment sum problem.

Keywords: Tree Contraction, Parallelization, Skeletal Parallelism, Rose Tree, Maximum
Segment Sum Problem.

1. Introduction

Skeletal parallel programming [1,2] is an elegant model for developing efficient

and correct parallel programs. Although many researchers have devoted themselves

to the algorithmic skeletons on lists [3,4,5,6], not very many studies have been

addressed to other datatypes such as trees and graphs.

Trees are important datatypes, widely used in representing hierarchical struc-

tures such as XML. There are two approaches to the parallel computation on trees;

the first is the divide and conquer approach [7], and the second is the tree contrac-

tion approach [8,9,10,11]. The divide and conquer approach simply computes on

each child tree independently, and its parallel cost is O(h+w), where h denotes the

height of a tree and w denotes the nodes’ maximum number of children. Therefore,

it may be very inefficient if the tree is ill-balanced or a node has too many children.

By contrast, the tree contraction approach provides efficient parallel algorithms

even for ill-balanced trees. The well-known algorithm, the shunt contraction, can

run on binary trees in logarithmic time to their size. However, it requires the tree

∗This work was partly supported by a PRESTO project of Japan Science and Technology Agency.

322 K. Matsuzaki et al.

contracting operators that have to meet the closure property to be intelligently de-

signed, which is known to be hard, and thus discourages programmers from using

it.

Some attempts have been made on the formal specification for parallel tree al-

gorithms. Gibbons et al. [12] and Skillicorn [13,14] defined five skeletons on binary

trees and gave an efficient implementation of them based on the tree contraction

algorithm. Skillicorn also showed the usefulness of these skeletons with several ex-

amples of the manipulation of structured documents [13,15,16]. Deldari et al. [17]

designed a skeleton for the constructive solid geometry. Matsuzaki et al. [18] pro-

posed a systematic method of composing efficient parallel programs in terms of

the skeletons on binary trees. However, there have really been very few studies on

formal derivation of parallel algorithms on general trees.

In this paper, we consider parallelization of a general tree recursive function,

called (tree) reduction, which can concisely specify the computation of calculating

a value through a bottom-up traversal of the tree. Informally, function f is a

reduction, if it is defined in the following recursive form:

f (RLeaf a) = k1 a

f (RNode b [t1, t2, . . . , tn]) = k2 b [f t1, f t2, . . . , f tn] ,

where k1 and k2 are two functions. As discussed by Skillicorn [14,16], certain

conditions on k2 are necessary for the existence of efficient parallel algorithms.

One sufficient condition proposed so far [14,16,19] is to define k2 using associative

operator ⊕ as follows.

reduce (⊕) (RLeaf a) = k′1 a

reduce (⊕) (RNode b [t1, t2, . . . , tn])
= k′2 b⊕ reduce (⊕) t1 ⊕ reduce (⊕) t2 ⊕ · · · ⊕ reduce (⊕) tn

This definition is easy to understand but lacks expressiveness. Consider the problem

of XML serialization, which accepts an XML tree and returns its tagged-formatted

string. We may solve it with the following recursive definition:

x2s (RLeaf a) = a

x2s (RNode b [t1, t2, . . . , tn]) = tags b⊕ (x2s t1++x2s t2++ · · ·++x2s tn)
where tags b = (“<”++b++“>”, “</”++b++“>”)

(s, e) ⊕ t = s++t++e ,

where ++ is an infix-operator to concatenate two strings. It is not obvious, however,

how to define x2s in terms of reduce, because we need to merge the two different

binary operators, namely ⊕ and ++, into a single associative operator.

In this paper, we aim at a systematic method of parallelizing a class of useful

reductions to ones that can be efficiently implemented by the tree contraction. Our

method can deal with recursive definitions in which k2 is defined using two binary

operators. The contributions this paper makes can be summarized as follows:

• We give a new formalization of the condition for the shunt contraction (The-

orem 1), which is more constructive in the sense that the tree contracting

Systematic Derivation of Tree Contraction Algorithms 323

operators can be derived from it. In addition, to eliminate the limitation

where the shunt contraction is only applied to binary trees, we show a rep-

resentation of rose trees (trees whose nodes can have an arbitrary number of

children) by binary trees so that the shunt contraction can be applied.

• We not only recognize the importance of distributivity in the derivation of the

tree contraction algorithms, but also give an extension of distributivity that

is suited to systematic derivation with generalization and context-preserving

transformation. We identify a general recursive form that can be parallelized

(Theorem 2), and highlight a derivation strategy for transforming general

recursive functions to the parallelizable form.

• We demonstrate the effectiveness of our approach by deriving an efficient par-

allel program for the tree version of the maximum segment sum problem [20].

Several studies have been done on the parallelization of the problem: on

lists [3,21], on 2-dimensional arrays [22], and on binary trees [18]. To the best

of our knowledge, this is the first derivation of the parallel program for rose

trees, the most complex data structure ever.

This paper is organized as follows. After reviewing notational conventions and

datatypes, we show how an arbitrary tree is arranged in the form of a binary tree

in Section 2. We formalize the conditions for the tree contraction in a more con-

structive way in Section 3, and give a property that is an extension of distributivity

in Section 4. In Section 5, we define parallelizable reductions on rose trees, and

show how these reductions are parallelized. We propose a strategy for systematic

parallelization and demonstrate the effectiveness of our approach with a non-trivial

example in Section 6, and conclude in Section 7.

2. Preliminaries

2.1. Functions and Operators

Function application is denoted by a space and the argument may be written

without brackets. Thus f a means f(a). Functions are curried, and the function

application associates to the left. Thus f a bmeans (f a) b. The function application

binds stronger than any other operator, so f a⊕b means (f a)⊕b, but not f (a⊕b).

Infix binary operators will be denoted by ⊕, ⊗, and their units are written as ι⊕,

ι⊗, respectively.

2.2. Datatypes

The cons list is constructed with an empty list or by adding an element to a

list. The datatype for lists where every element has type α is defined as follows.

data List α = Nil | Cons α (List α)

We may use abbreviations, i.e., [α] for datatype List α, [] for Nil , and (a : as) for

Cons a as .

324 K. Matsuzaki et al.

B
B
B
B�

�
�
� B

B
B
B�

�
�
� B

B
B
B�

�
�
�

#
#

c
c

c

��
��

a

b c d

@
�

B
B
B
B�

�
�
�

b
B
B
B
B�

�
�
�

c B
B
B
B�

�
�
�

d

#
##

#
#

#

#
#

#

aa
aaa

aaa

��
��

a eDummy

eDummy

OrgNil

Fig. 1. Local rearrangement from a rose tree into a binary tree.

A binary tree is a tree whose internal nodes have exactly two children. The

datatype for binary trees where every leaf has type α and every internal node has

type β is defined as follows.

data BTree α β = Leaf α | Node β (BTree α β) (BTree α β)

A rose tree is a tree whose internal nodes have an arbitrary number of children.

The datatype for rose trees where every leaf has type α and every internal node has

type β is defined using a list as follows.

data RTree α β = RLeaf α | RNode β [RTree α β]

2.3. Representation of Rose Trees

Since the shunt contraction algorithm only accepts binary trees, rose trees ought

to be held in the shape of binary trees. In this paper, we will use the arrangement

(representation) in Fig. 1. This arrangement turns each leaf and internal node of a

rose tree into a leaf and the root node of the corresponding subtree in the binary

tree, respectively. Some dummy nodes are inserted into this binary tree to unroll the

children and to represent the children’s end. This is almost the same arrangement

as in [14], and there have been some discussions about the implementation of the

tree contraction algorithm on these arranged binary trees.

To formally define the arrangement, we first define two new types.

data R2BLeaf α = OrgLeaf α | OrgNil

data R2BNode β = OrgNode β | Dummy

R2BLeaf represents the types of leaves in the binary tree, and is constructed with

the leaf in the rose tree (OrgLeaf) or the sentinel for the end of the children (OrgNil).

R2BNode represents the types of internal nodes in the binary tree, and is con-

structed with the internal node in the rose tree (OrgNode) or the dummy node

inserted to expand the children (Dummy). The function r2b which performs this

arrangement can be formally defined using auxiliary function r2b′ as follows.

r2b :: RTree α β → BTree (R2BLeaf α) (R2BNode β)

Systematic Derivation of Tree Contraction Algorithms 325

r2b (RLeaf a) = Leaf (OrgLeaf a)
r2b (RNode b (x : xs)) = Node (OrgNode b) (r2b x) (r2b ′ xs)
r2b ′ [] = Leaf OrgNil

r2b ′ (x : xs) = Node Dummy (r2b x) (r2b ′ xs)

We briefly analyze the number of resulting nodes in the binary trees after the

above transformation. Let nl be the number of leaves, and nin be the number of

internal nodes in an input rose tree. The binary tree transformed from the rose tree

has 2nl + 2nin − 1 nodes. Consequently, the number of nodes in transformed trees

is no more than twice of that in original trees, and this guarantees the logarithmic

parallel cost for logarithmic algorithms on these transformed trees.

3. Tree Contraction Algorithm and its Derivation

The tree contraction algorithms are efficient parallel algorithms to trees. Of the

tree contraction algorithms, the shunt contraction [8] is widely known as a simple

and efficient algorithm on EREW PRAM. The shunt contraction algorithm accepts

binary trees, and reduces them with simultaneous applications of two symmetric

operations, namely ContractL and ContractR. A ContractL/ContractR operation

removes a left/right leaf and its parent from a binary tree.

In the following, we assume reductions on binary trees are defined as follows.

f (Leaf a) = k1 a

f (Node b t1 t2) = k2 b (f t1) (f t2)

The shunt contraction algorithm imposes certain conditions on the functions. A

sufficient condition is the existence of an indexed set of functions G satisfying the

following conditions.

• For every internal node Node b t1 t2, function λxy.k2 b x y is drawn from G.

• For any functions gi, gj in G, and values l and r, two functions λxy.gi l (gj x y)

and λxy.gi (gj x y) r are in G.

If all the functions in G can be applied in a constant time, and the indices of

the composed functions are computed in a constant time, we can guarantee the

overall logarithmic parallel cost of the shunt contraction algorithm. This condition

is, however, too abstract for the programmers to utilize the tree contraction, since

how to find such a set of functions G with suitable indices is not shown.

To enable systematic derivation, we introduce the idea of parametrized func-

tions. We use notation G[a] for the function embodied from the set of parametrized

functions G with parameter a. For example, if the set of parametrized functions

is given as G[a] = λxy. a + x + y, then functions G[1] = λxy. 1 + x + y and

G[2] = λxy. 2 + x+ y are the embodiments with 1 and 2, respectively.

Let us now restrict the indexed set of functions to be the set of parametrized

functions. Although some algorithms, in which different functions are applied to

internal nodes, may be unacceptable under this restriction, numerous tree reduc-

tion algorithms can be dealt with. With the notation of parametrized functions, a

sufficient condition for the shunt contraction is given by the following theorem.

326 K. Matsuzaki et al.

(i) Number the leaves left to right beginning at 0.
(ii) Initialize every leaf and internal node by applying ψ1 and ψ2, respectively.
(iii) Iterate until a node remains.

(a) For every left leaf whose index is even, perform ContractL. If the other
child is a leaf apply a function embodied from G with parent’s value
n, or otherwise apply φL.

(b) For every right leaf whose index is even and not involved in the pre-
vious step, perform ContractR. If the other child is a leaf apply G[n],
or otherwise apply φR.

(c) Renumber the leaves by dividing their indices by two and rounding
down.

Fig. 2. Shunt contraction algorithm based on parametrized functions

Theorem 1 If there are a set of parametrized functions G, and three functions ψ2,

φL and φR such that the following conditions are satisfied, then we can implement

the algorithm with the shunt contraction algorithm.

• For every internal node Node b t1 t2, function λxy.k2 b x y is semantically

equivalent to function G[ψ2 b].

• For any a1, a2, l and r, the following equations hold.

λxy.G[a1] l (G[a2] x y) = λxy.G[φL a1 l a2] x y
λxy.G[a1] (G[a2] x y) r = λxy.G[φR a1 r a2] x y

Proof. We can prove the parametrized functions set G satisfies the conditions

of the shunt contraction by regarding the parameter of G as the index. If a tree

algorithm meets these conditions, we can utilize the shunt contraction algorithm as

shown in Fig. 2, where function ψ1 is equal to k1.

Therefore, we only have to derive the set of parametrized functions G and func-

tions ψ2, φL and φR from the definition of k2. To demonstrate how Theorem 1

works, let us illustrate it with a very simple program.

Example 1 A recursive program that computes the sum of values for all nodes is

given as follows.

sumtree (Leaf a) = a

sumtree (Node b t1 t2) = b+ sumtree t1 + sumtree t2

An adequate definition of the set of parametrized functions G is given with param-

eter a as G[a] = λxy.a+ x+ y. From the definition above, the initializing functions

are ψ1 = id and ψ2 = id , where id is the identity function. The contracting oper-

ations φL and φR become φL a1 l a2 = a1 + l + a2 and φR a1 r a2 = a1 + r + a2.

With Theorem 1, we can parallelize sumtree with the tree contraction algorithm as

shown in Fig. 2 using these functions.

Systematic Derivation of Tree Contraction Algorithms 327

4. Extension of Distributive Law

Before discussing the parallelization of reductions, let us now discuss a general-

ization of the distributive law. It is well known that associativity and distributivity

play important roles in parallelizing programs. For example, the associativity and

the distributivity of × and + enable us to simplify the expression 1+2× (3+4×x)

into 7+8×x. Borrowing the idea of contexts or normal forms from [23], we define the

characteristic of simplification over two operators as an extension of distributivity.

Definition 1 Let operator ⊗ be associative. The function defined with two oper-

ators, ⊗ and ⊕, is said to be in normal form, if it is written as λx.a⊕ (b⊗ x⊗ c),

where a, b, and c are constants.

Definition 2 Operator ⊗ is said to be extended-distributive over ⊕, if the normal

form is preserved under function composition. In other words, there are appropriate

functions p1, p2, and p3, and for any a1, b1, c1, a2, b2, and c2, the following equation

holds.

(λx.a1 ⊕ (b1 ⊗ x⊗ c1)) ◦ (λx.a2 ⊕ (b2 ⊗ x⊗ c2)) = λx.A ⊕ (B ⊗ x⊗ C)
where A = p1 (a1, b1, c1, a2, b2, c2)

B = p2 (a1, b1, c1, a2, b2, c2)
C = p3 (a1, b1, c1, a2, b2, c2)

Functions p1, p2, and p3 are called characteristic functions.

Although the definition of extended-distributivity is a little complicated, it has

an advantage of many applications. We can make uniform use of this property for

the associative operator, the distributive operators, or other operators, as demon-

strated in the following examples. In Example 4, we also demonstrate how to derive

characteristic functions from the definition of operators.

Example 2 Extended-distributivity can replace associativity. Let operator ⊕ be

the same as associative operator ⊗. Then, ⊗ is extended-distributive over ⊕ (= ⊗)

and the characteristic functions are as follows.

p1 (a1, b1, c1, a2, b2, c2) = a1 ⊗ b1 ⊗ a2 ⊗ b2
p2 (a1, b1, c1, a2, b2, c2) = ι⊗
p3 (a1, b1, c1, a2, b2, c2) = c2 ⊗ c1

Example 3 Extended-distributivity is a generalization of the distributive law. Let

two operators ⊗ and ⊕ constitute a ring, that is, let ⊕ be associative and ⊗ be not

only associative but also distributive over ⊕. Then ⊗ is extended-distributive over

⊕ and the characteristic functions are as follows.

p1 (a1, b1, c1, a2, b2, c2) = a1 ⊕ (b1 ⊗ a2 ⊗ c1)
p2 (a1, b1, c1, a2, b2, c2) = b1 ⊗ b2
p3 (a1, b1, c1, a2, b2, c2) = c2 ⊗ c1

To validate the extended-distributivity and derive the characteristic functions,

we calculate two expressions E1 and E2 defined as

λx. E1 = (λx.a1 ⊕ (b1 ⊗ x⊗ c1)) ◦ (λx.a2 ⊕ (b2 ⊗ x⊗ c2))
= λx. a1 ⊕ (b1 ⊗ (a2 ⊕ (b2 ⊗ x⊗ c2)) ⊗ c1)

λx. E2 = λx. A⊕ (B ⊗ x⊗ C)

328 K. Matsuzaki et al.

and verify that they are the same by substituting proper expressions for the capital

parameters in E2. To demonstrate the derivation of characteristic functions, we

show that the operators ++ and ⊕ in the definition of x2s in the introduction satisfy

extended-distributivity and derive the characteristic functions.

Example 4 Let operator ⊕ be defined with the associative operator ++ as (s, e)⊕

t = s++t++e. The operator ++ is not distributive over ⊕, since ((s, e) ⊕ (s′, e′))++t

raises a type error. The operator ⊕ is not distributive over ++ either, i.e. (s, e) ⊕

(x++y) 6= ((s, e) ⊕ x)++((s, e) ⊕ y), which is easily seen with the simple calculation

below.
(s, e) ⊕ (x++y) = s++x++y++e
((s, e) ⊕ x)++((s, e) ⊕ y) = s++x++e++s++y++e

To validate extended-distributivity, we first expand the two expressions E1 and E2.

E1 = (s1, e1) ⊕ (t1++((s2, e2) ⊕ (t2++x++t
′
2))++t

′
1)

= (s1, e1) ⊕ (t1++s2++t2++x++t
′
2++e2++t

′
1)

= s1++t1++s2++t2++x++t
′
2++e2++t

′
1++e1

E2 = (S,E) ⊕ (T++x++T ′)
= S++T++x++T ′++E

From the calculation above, the correspondences of capital variables are,

S++T = s1++t1++s2++t2 , and
T ′++E = t′2++e2++t

′
1++e1 .

There are many solutions to the equations above, and one of those is as follows,

which can also be considered as a set of characteristic functions.

p1 ((s1, e1), t1, t
′
1, (s2, e2), t2, t

′
2) = (S,E) = (s1++t1++s2++t2, t

′
2++e2++t

′
1++e1)

p2 ((s1, e1), t1, t
′
1, (s2, e2), t2, t

′
2) = T = []

p3 ((s1, e1), t1, t
′
1, (s2, e2), t2, t

′
2) = T ′ = []

We can show extended-distributivity and derive the characteristic functions for

general cases where ⊕ is defined similarly with associative operator ⊗.

If operator ⊗ is also commutative, then we can simplify the definitions of the

normal form and extended-distributivity. The normal form λxy.a ⊕ (b ⊗ x ⊗ c)

can be simplified to λxy.a ⊕ (b′ ⊗ x) by swapping x and c, and substituting b′ for

b⊗ c. Extended-distributivity can be defined in terms of this form, and we say ⊗ is

extended-distributive over ⊕ if there are appropriate functions p1 and p2 such that

for any a1, b1, a2, and b2 the following equation holds. The characteristic functions

are minimized into two functions p1 and p2 in this case.

(λx.a1 ⊕ (b1 ⊗ x)) ◦ (λx.a2 ⊕ (b2 ⊗ x)) = λx.A⊕ (B ⊗ x)
where A = p1 (a1, b1, a2, b2)

B = p2 (a1, b1, a2, b2)

Systematic Derivation of Tree Contraction Algorithms 329

5. Parallelizable Reduction

In this section, we present a class of reductions that can be systematically paral-

lelized based on the tree contraction algorithm. Reductions are a class of recursive

computations that collapse a rose tree into a single value in a bottom-up manner,

and the general definition of them is as follows.

f (RLeaf a) = k1 a

f (RNode b [t1, t2, . . . , tn]) = k2 b [f t1, f t2, . . . , f tn]

Definition 3 Let ⊗ be an associative operator. A function is said to be a paral-

lelizable reduction, if the function is defined in the following form.

f (RLeaf a) = k1 a

f (RNode b [t1, t2, . . . , tn]) = k2 b ⊕ (f t1 ⊗ f t2 ⊗ · · · ⊗ f tn)

We can rephrase this using auxiliary function f ′ more formally.

f (RLeaf a) = k1 a

f (RNode b ts) = k2 b⊕ f ′ ts

f ′ [] = ι⊗
f ′ (t : ts) = f t⊗ f ′ ts

A parallelizable reduction is defined in two steps for each node. First, the

siblings are collapsed with associative operator ⊗, which is the same operation as

the reduction on lists. Then, another operator ⊕ merges the result of children and

the parent value. We can write many reductions in this form, for example, the

XML serialization in the introduction, the sum of values for all nodes, and several

algorithms for structured documents [16].

In the following, we will demonstrate that parallelizable reductions can be effi-

ciently computed with the tree contraction algorithm on arranged binary trees. Let

the set of parametrized functions G be defined as: G[(a, b, c)] = λxy.a⊕(b⊗x⊗y⊗c).

Using embodiments of this set of parametrized functions G, we can describe new

function h on the arranged binary trees as follows.

h (Leaf (OrgLeaf a)) = k1 a

h (Leaf OrgNil) = ι⊗
h (Node (OrgNode b) t1 t2) = G[(k2 b, ι⊗, ι⊗)] (h t1) (h t2)
h (Node Dummy t1 t2) = G[(ι⊕, ι⊗, ι⊗)] (h t1) (h t2)

Let us first prove the equivalence of h on the arranged binary trees.

Lemma 1 Function h defined above satisfies h ◦ r2b = f , h ◦ r2b ′ = f ′.

Proof. We can prove this lemma by induction over the rose tree: base cases for

RLeaf a and [], and inductive cases for RNode b (t : ts) and (t : ts), respectively.

Next, let us prove that the set of parametrized functions G satisfies the condi-

tions for the tree contraction algorithm.

330 K. Matsuzaki et al.

Lemma 2 Let ⊗ be an associative operator and be distributive over ⊕ with char-

acteristic functions p1, p2, and p3. Then, for any parameters a1, b1, c1, a2, b2, c2,

and values l and r, the following two equations

λxy.G[(a1, b1, c1)] l (G[(a2, b2, c2)] x y) = λxy.G[φL (a1, b1, c1) l (a2, b2, c2)] x y
λxy.G[(a1, b1, c1)] (G[(a2, b2, c2)] x y) r = λxy.G[φR (a1, b1, c1) r (a2, b2, c2)] x y

hold for appropriate functions φL and φR.

Proof. We define the two functions using ⊗, p1, p2, and p3 as follows.

φL (a1, b1, c1) l (a2, b2, c2) = (p1 tupL, p2 tupL, p3 tupL)
where tupL = (a1, b1 ⊗ l, c1, a2, b2, c2) ,

φR (a1, b1, c1) r (a2, b2, c2) = (p1 tupR, p2 tupR, p3 tupR)
where tupR = (a1, b1, r ⊗ c1, a2, b2, c2) .

We can verify these two equations with simple calculations.

Theorem 2 Function f defined in Definition 3 can be parallelized with the tree

contraction algorithm on binary trees as arranged in Section 2, if operator ⊗ is

associative and extended-distributive over ⊕.

Proof. Let the characteristic functions of extended-distributivity be p1, p2, and

p3. We can construct the initialize functions ψ1 and ψ2, the contracting operations

φL and φR, and the set of functions G in the following way. In the rest of this

paper, due to space limitations, we will place the definitions of ψ1 and ψ2 side by

side.

ψ1 (OrgLeaf a) = k1 a ψ2 (OrgNode b) = (k2 b, ι⊗, ι⊗)
ψ1 OrgNil = ι⊗ ψ2 Dummy = (ι⊕, ι⊗, ι⊗)
φL (a1, b1, c1) l (a2, b2, c2) = (p1 tupL, p2 tupL, p3 tupL)

where tupL = (a1, b1 ⊗ l, c1, a2, b2, c2)
φR (a1, b1, c1) r (a2, b2, c2) = (p1 tupR, p2 tupR, p3 tupR)

where tupR = (a1, b1, r ⊗ c1, a2, b2, c2)
G[(a, b, c)] = λxy.a⊕ (b⊗ x⊗ y ⊗ c)

It follows from Lemmas 1 and 2 that the theorem holds.

To illustrate an application of this theorem, let us derive a parallel algorithm

from the definition of x2s in the introduction.

Example 5 Function x2s can be computed in parallel because operator ++ is asso-

ciative and extended-distributive over ⊕ as mentioned in Example 4. We can derive

a parallel program according to Theorem 2 by utilizing the result of Example 4,

and the derived program is as follows.

ψ1 (OrgLeaf a) = a ψ2 (OrgNode b) = (tags b, [], [])
ψ1 OrgNil = [] ψ2 Dummy = (([], []), [], [])
φL ((s1, e1), t1, t

′
1) l ((s2, e2), t2, t

′
2)

= ((s1++t1++l++s2++t2, t
′
2++e2++t

′
1++e1), [], [])

φR ((s1, e1), t1, t
′
1) r ((s2, e2), t2, t

′
2)

= ((s1++t1++s2++t2, t
′
2++e2++r++t

′
1++e1), [], [])

G[((s, e), t, t′)] = λxy.s++t++x++y++t′++e

Systematic Derivation of Tree Contraction Algorithms 331

If operator ⊗ is not only associative but also commutative, then we can derive

a simpler parallel program as the following corollary shows.

Corollary 1 Let operator ⊗ in a parallelizable reduction be both associative and

commutative. If operator ⊗ is also extended-distributive over ⊕ with characteristic

functions p1 and p2, we can parallelize the reduction with the tree contraction

algorithm with the following functions. The two contracting operations, φL and

φR, have the same definition, namely φ.

ψ1 (OrgLeaf a) = k1 a ψ2 (OrgNode b) = (k2 b, ι⊗)
ψ1 OrgNil = ι⊗ ψ2 Dummy = (ι⊕, ι⊗)
φ (a1, b1) x (a2, b2) = (p1 (a1, b1 ⊗ x, a2, b2), p2 (a1, b1 ⊗ x, a2, b2))
G[(a, b)] = λxy.a⊕ (b⊗ x⊗ y)

6. Parallelization Strategy

Although we have extended-distributivity and parallelizable reductions in hand,

users’ programs may not be exactly compatible with them. Even so, we can still

derive parallel programs systematically with the following strategy.

(i) Write specification: In the first step, we write the specification as a recursive

function in the form of parallelizable reductions. In this step, the operators

used in the function do not need to be associative or extended-distributive.

We derive the program in the form of parallelizable reductions by applying

calculational techniques such as tupling or normalization of conditions.

(ii) Derive associative operator : In the second step, we derive an associative op-

erator for ⊗, by applying the parallelization techniques that have been pro-

posed for lists, for example, the fusion and tupling technique proposed by Hu

et al. [21] or the context preservation technique proposed by Chin et al. [23].

(iii) Derive extended-distributive operator : In the third step, we derive operator ⊕

such that the operator ⊗ is extended-distributive over ⊕. We derive such an

operator by iterative generalization and verification. To avoid inconsistency

over the ⊗, we only generalize the definition of ⊕ for the left argument.

(iv) Derive parallel program: In the final step, we derive the contracting operations

based on Theorem 2, and do some optimizations if possible.

In the following, we illustrate the capability of our parallelization strategy, by

demonstrating the derivation of an efficient parallel program for the maximum

connected-set sum problem on trees with arbitrary shapes, which is the tree ver-

sion of the maximum segment sum problem [20]. This problem involves finding the

maximum sum of all connected sets. A connected-set of a tree is a set of nodes

where every two nodes are connected or connected through the nodes in the set.

6.1. Write specification

We first write a recursive function for the problem. For the maximum connected-

set sum problem, we can write a program using the dynamic programming tech-

nique, where the following two values are computed for each subtree.

332 K. Matsuzaki et al.

• r: The maximum sum of all connected sets that include the root of the subtree.

We can compute this value by adding the value of the root node to the sum

of all positive r values of the root’s immediate subtrees.

• s: The maximum sum of all connected sets that do not include the root of

the subtree. We can compute this value by selecting the maximum r and s

values of the root’s immediate subtrees.

With this idea, we can define the following function, where binary operator ↑ returns
the larger value.

mcs t = let (r, s) = mcs ′ t in r ↑ s

mcs ′ (RLeaf a) = (a, 0)
mcs ′ (RNode b [t1, t2, . . . , tn]) = b⊕ (g (mcs ′ t1) ⊗ g (mcs ′ t2) ⊗ · · · ⊗ g (mcs ′ tn))

where b⊕ (r, s) = (b+ r, s)
g (r, s) = (r ↑ 0, r ↑ s)
(r, s) ⊗ (r′, s′) = (r + r′, s ↑ s′)

The function above is not a parallelizable reduction, since there are extra calls

of g for each subtree. To obtain a parallelizable reduction, we fuse functions g and

mcs ′ and introduce function mcs2 ′ defined as mcs2 ′ t = g (mcs ′ t) and operator

⊕′ defined as b ⊕′ t = g (b ⊕ t), that is, b ⊕′ (r, s) = ((b + r) ↑ 0, (b+ r) ↑ s). For

the top-level call of mcs2 ′, we select the second value with function snd . We then

obtain the following definition, which is a parallelizable reduction.

mcs2 t = snd (mcs2 ′ t)
mcs2 ′ (RLeaf a) = (a ↑ 0, a ↑ 0)
mcs2 ′ (RNode b [t1, t2, . . . , tn]) = b⊕′ (mcs2 ′ t1 ⊗ mcs2 ′ t2 ⊗ · · · ⊗ mcs2 ′ tn)

6.2. Derive associative operator

The operator ⊗ is fortunately associative and commutative, by reason of the

associativity and commutativity of ↑ and +. The unit of ⊗ is ι⊗ = (0,−∞).

6.3. Derive extended-distributive operator

To validate whether operator ⊗ is extended-distributive over operator ⊕′, we
match the following expression E1 to E2. In the following, we may denote a tuple
as a column vector for readability.

E1 = a⊕′

((

r

s

)

⊗

(

a′ ⊕′

((

r′

s′

)

⊗

(

xr

xs

))))

E2 = A⊕′

((

R

S

)

⊗

(

xr

xs

))

Due to space limitations, we only provide the results of the calculation.

E1 =

(

((a+ r + a′ + r′) + xr) ↑ ((a+ r) ↑ 0)
(((a+ r + a′ + r′) ↑ (a′ + r′)) + xr) ↑ ((a+ r) ↑ s ↑ s′) ↑ xs

)

E2 =

(

(A+R+ xr) ↑ 0
(A+R+ xr) ↑ S ↑ xs

)

Systematic Derivation of Tree Contraction Algorithms 333

Operator ⊗ is not extended-distributive since there are two conflicts in the
calculation results above. The first is that E2 includes two (A + R)’s but the
corresponding parts in E1 have difference definitions. The other is that E2 includes
constant value 0 but the corresponding part in E1 is not a constant. To resolve these
conflicts, we generalize the definition of ⊕′ by assigning two variables a and b to the
two occurrences of a respectively, and variable c for constant 0. The definitions for
the generalized operator ⊕′′, its unit ι⊕′′ , and the function which converts the left
argument of ⊕′ to that of ⊕′′ are given as follows.

(

a

b

c

)

⊕
′′

(

r

s

)

=

(

(a+ r) ↑ c
(b+ r) ↑ s

)

, ι⊕′′ =

(

0
−∞

−∞

)

, conv a =

(

a

a

0

)

With operator ⊕′′ and function conv , we can rewrite mcs2 ′ as follows.

mcs2 ′ (RNode b [t1, t2, . . . , tn]) = conv b⊕′′ (mcs2 ′
t1 ⊗ mcs2 ′

t2 ⊗ · · · ⊗ mcs2 ′
tn)

We again validate whether ⊗ is extended-distributive over the newly defined ⊕′′

by simplifying the two expressions and finding the matches between them.

E1 =

(

a1

b1
c1

)

⊕′′

(

(

r1
s1

)

⊗

((

a2

b2
c2

)

⊕′′

((

r2
s2

)

⊗

(

xr

xs

))

))

E2 =

(

A

B

C

)

⊕′′

((

R

S

)

⊗

(

xr

xs

))

Now again, we only show the results of the calculation.

E1 =

(

((a1 + r1 + a2 + r2) + xr) ↑ ((a1 + r1 + c2) ↑ c1)
(((b1 + r1 + a2 + r2) ↑ (b2 + r2)) + xr) ↑ ((b1 + r1 + c2) ↑ s1 ↑ s2) ↑ xs

)

E2 =

(

(A+R+ xr) ↑ C
(B +R+ xr) ↑ S ↑ xs

)

From these results, we obtain the following correspondences.

A+R = a1 + r1 + a2 + r2
B +R = (b1 + r1 + a2 + r2) ↑ (b2 + r2)
C = (a1 + r1 + c2) ↑ c1
S = (b1 + r1 + c2) ↑ s1 ↑ s2

We can obtain a solution for the correspondences above, e.g. by fixing R as 0.
We then derive the following characteristic functions from the correspondences.

p1

((

a1

b1
c1

)

,

(

r1
s1

)

,

(

a2

b2
c2

)

,

(

r2
s2

)

)

=

(

a1 + r1 + a2 + r2
(b1 + r1 + a2 + r2) ↑ (b2 + r2)

(a1 + r1 + c2) ↑ c1

)

p2

((

a1

b1
c1

)

,

(

r1
s1

)

,

(

a2

b2
c2

)

,

(

r2
s2

)

)

=

(

0
(b1 + r1 + c2) ↑ s1 ↑ s2

)

334 K. Matsuzaki et al.

6.4. Derive parallel program

Since we have proved the extended-distributivity of ⊗ over ⊕′′ and derived the

characteristic functions p1 and p2 in the previous step, we are ready to derive

a parallel algorithm based on Corollary 1. Simply applying the operators and

functions for Corollary 1, we obtain the following parallel algorithm. The two

contracting operations, φL and φR, have the same definition, namely φ.

ψ1 (OrgLeaf a) =

(

a ↑ 0
a ↑ 0

)

ψ2 (OrgNode b) =

((

b

b

0

)

,

(

0
−∞

)

)

ψ1 OrgNil =

(

0
−∞

)

ψ2 Dummy =

((

0
−∞

−∞

)

,

(

0
−∞

)

)

φ

((

a1

b1
c1

)

,

(

r1
s1

)

)

(

xr

xs

)

((

a2

b2
c2

)

,

(

r2
s2

)

)

=

((

a1 + r1 + xr + a2 + r2
(b1 + r1 + xr + a2 + r2) ↑ (b2 + r2)

(a1 + r1 + xr + c2) ↑ c1

)

,

(

0
(b1 + r1 + xr + c2) ↑ s1 ↑ xs ↑ s2

)

)

G

[((

a

b

c

)

,

(

r

s

)

)]

= λ

(

xr

xs

)(

yr

ys

)

.

(

a

b

c

)

⊕′′

((

r

s

)

⊗

(

xr

xs

)

⊗

(

yr

ys

))

Observing the definitions of ψ2 and φ above, we can find that the first value of

the second tuple, i.e. r, is always 0. It follows that we can remove variable r from

the definition after substituting 0 for every occurrence of r, r1, and r2. With this

optimization, we successfully derive an efficient parallel program as shown in Fig. 3.

It is known that we need four values in the parallel program for the maximum

segment sum problem on lists [3,21]. The derived parallel program is reasonably

efficient, since it also uses four values despite its applicability to general trees.

7. Conclusion

We developed a new methodology for systematically deriving efficient parallel

programs on trees with arbitrary shapes. Our methodology consists of three key

ideas: a new formalization of conditions for the shunt contraction (Theorem 1),

the extended-distributive property which generalizes associativity and distributiv-

ity, and the parallelization of a class of reductions on rose trees (Theorem 2). The

formalization of conditions for the shunt contraction enables us to build a parallel

program based on the tree contraction approach in a more constructive way. The

extended-distributive property is so powerful that we can uniformly deal with asso-

ciative operators, distributive operators, and other operators. Furthermore, we can

find an extended-distributive operator systematically by generalizing the definition

and examining matching. The definition of parallelizable reduction captures many

Systematic Derivation of Tree Contraction Algorithms 335

ψ1 (OrgLeaf a) =

(

a ↑ 0
a ↑ 0

)

ψ2 (OrgNode b) =

((

b

b

0

)

,−∞

)

ψ1 OrgNil =

(

0
−∞

)

ψ2 Dummy =

((

0
−∞

−∞

)

,−∞

)

φ

((

a1

b1
c1

)

, s1

)

(

xr

xs

)

((

a2

b2
c2

)

, s2

)

=

((

a1 + xr + a2

(b1 + xr + a2) ↑ b2
(a1 + xr + c2) ↑ c1

)

, (b1 + xr + c2) ↑ s1 ↑ xs ↑ s2

)

G

[((

a

b

c

)

, s

)]

= λ

(

xr

xs

)(

yr

ys

)

.

(

a

b

c

)

⊕′′

((

0
s

)

⊗

(

xr

xs

)

⊗

(

yr

ys

))

Fig. 3. A parallel algorithm for the maximum connected-set sum problem

tree reductions such as manipulations of structured documents discussed in [16].

The power of our method was demonstrated in the derivation of a parallel pro-

gram for the maximum connected-sum problem. It is this problem that first moti-

vated us to develop the methodology, since we could not derive a parallel program

for the problem using the techniques that have been proposed so far: operators ⊕

and ⊗ do not satisfy the distributive law although + and ↑ do, and the definition

is not simple enough to enable us to parallelize it instinctively. In Section 6, we

discussed how we systematically derived a parallel program, which is reasonably

efficient. To the best of our knowledge, this is the first derivation of a parallel

program for the maximum connected-sum problem on trees with arbitrary shapes.

We are currently working on generalizing this methodology to deal with recursive

datatypes more efficiently. In addition, we are working on applying the extended-

distributive property to other situations: for example, fusing of sequential calls of

skeletons on lists and deriving general skeletons for nested lists.

References

[1] M. Cole, Algorithmic skeletons : a structured approach to the management of parallel
computation, Research Monographs in Parallel and Distributed Computing (Pitman,
London, 1989).

[2] F. Rabhi and S. Gorlatch, Patterns and Skeletons for Parallel and Distributed Com-
puting (Springer-Verlag New York Inc., 2002).

[3] M. Cole, Parallel programming, list homomorphisms and the maximum segment sum
problems, Report CSR-25-93, Department of Computing Science, The University of
Edinburgh (1993).

[4] S. Gorlatch, Systematic efficient parallelization of scan and other list homomorphisms,
in Proc. Annual European Conference on Parallel Processing (Euro-Par ’96), LNCS

336 K. Matsuzaki et al.

1124 (Springer-Verlag, 1996) 401–408.
[5] Z. Hu, H. Iwasaki, and M. Takeichi, Formal derivation of efficient parallel programs

by construction of list homomorphisms, ACM Trans. on Programming Languages and
Systems, 19(3) (1997) 444–461.

[6] D. B. Skillicorn, The bird-meertens formalism as a parallel model, in Software for
Parallel Computation, eds. J. S. Kowalik and L. Grandinetti, 106 of NATO ASI Series
F (Springer-Verlag, 1993) 120–133.

[7] J. Ahn and T. Han, An analytical method for parallelization of recursive functions,
Parallel Process. Lett., 10(1) (2000) 87–98.

[8] K. Abrahamson, N. Dadoun, D. G. Kirkpatrik, and T. Przytycka, A simple parallel
tree contraction algorithm, J. Algorithms, 10(2) (1989) 287–302.

[9] G. L. Miller and J. H. Reif, Parallel tree contraction and its application, in Proc. 26th
Annual Symposium on Foundations of Computer Science (IEEE Computer Sociery
Press, 1985) 478–489.

[10] G. L. Miller and J. H. Reif, Parallel tree contraction part 2: Further applications, SIAM
J. Comput., 20(6) (1991) 1128–1147.

[11] J. H. Reif and S. R. Tate, Dynamic parallel tree contraction, in Proc. the Symposium
on Parallel Algorithms and Architecture (1994) 114–121.

[12] J. Gibbons, W. Cai, and D. B. Skillicorn, Efficient parallel algorithms for tree accumu-
lations, Sci. Comput. Program., 23(1) (1994) 1–18.

[13] D. B. Skillicorn, Foundations of Parallel Programming (Cambridge University Press,
1994).

[14] D. B. Skillicorn, Parallel implementation of tree skeletons, J. Parallel Distr. Com.,
39(2) (1996) 115–125.

[15] D. B. Skillicorn, A parallel tree difference algorithm, Inform. Process. Lett., 60(5)
(1996) 231–235.

[16] D. B. Skillicorn, Structured parallel computation in structured documents, J. Univers.
Comput. Sci., 3(1) (1997) 42–68.

[17] H. Deldari, J. R. Davy, and P. M. Dew, Parallel CSG, skeletons and performance
modelling, in Proc. the Second Annual CSI Computer Conference (CSICC’96) (1996)
115–122.

[18] K. Matsuzaki, Z. Hu, and M. Takeichi, Parallelization with tree skeletons, in Proc.
Annual European Conference on Parallel Processing (Euro-Par 2003), LNCS 2790
(Springer-Verlag, 2003) 789–798. .

[19] Z. Hu, M. Takeichi, and H. Iwasaki, Towards polytypic parallel programming, Technical
Report METR 98-09, University of Tokyo (1998).

[20] J. Bentley, Column7: Algorithm design techniques, in Programming Pearls (Addison-
Wesley, 1986) 69–80.

[21] Z. Hu, H. Iwasaki, and M. Takeichi, Construction of list homomorphisms by tupling
and fusion, in Proc. 21st International Symposium on Mathematical Foundation of
Computer Science, LNCS 1113 (Springer-Verlag, 1996) 407–418.

[22] Z. Hu, H. Iwasaki, and M. Takeichi, Formal derivation of parallel program for 2-
dimensional maximum segment sum problem, in Proc. Annual European Conference
on Parallel Processing (Euro-Par ’96), LNCS 1123 (Springer-Verlag, 1996) 553–562.

[23] W.N. Chin, A. Takano, and Z. Hu, Parallelization via context preservation, in Proc.
IEEE Computer Society International Conference on Computer Languages (ICCL’98)
(1998) 153–162.

