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ABSTRACT
Model transformation plays an important role in model-driven soft-
ware development that aims to introduce significant efficiencies and
rigor to the theory and practice of software development. Although
models may have different notations and representations, they are
basically graphs, and model transformations are thus nothing but
graph transformations. Despite a large amount of theoretical work
and a lot of experience with research prototypes on graph-based
model transformations, it remains an open issue how to compose
model transformations. In this paper, we report our first attempt at
a compositional framework for graph-based model transformations
using the graph querying language UnQL. The main idea of UnQL
is that graph queries are fully captured by structural recursion that is
suitable for efficient composition. We show that the idea can be ap-
plied to graph-based model transformations. We have implemented
a prototype of the framework and tested it with several nontrivial
examples. Our new framework supports systematic development
of model transformation “in the large” with the advantage that it
can automatically remove inefficiencies arising from their compo-
sition.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—software process
models; D.3.2 [Programming Languages]: Language Classifica-
tions—applicative (functional) languages; E.1 [Data Structures]:
Graphs and Networks

General Terms
Management, Design, Languages
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1. INTRODUCTION
Model transformation plays an important role in model-driven

software development [11] that aims to introduce significant effi-
ciencies and rigor to the theory and practice of software develop-
ment. The specification, implementation, and execution of model
transformation are the critical parts in model transformation [8]. A
model transformation is considered just as a graph transformation
since models are basically graphs, even though each model may
have different notations and representations. This has led to the
so-called graph-based approach [10, 14] to model transformations
that is largely based on theoretical work in graph transformations
[1, 7, 21].

Although the graph-based approach is powerful, being based on
a large amount of theoretical work and experience with research
prototypes, it remains a challenge to use it to develop model trans-
formation in the large, which requires a composition mechanism
with high modularity [8]. A recent survey paper [10] stated:

Open issues for all graph transformation approaches
are elaborated concepts to compose transformations...

It is true, from a practical point of view, that model composition
would be necessary if one wants to chain and combine model trans-
formations to produce new and more powerful transformations. To
bridge large abstraction gaps between two models, it is often much
easier to generate intermediate models rather than go straight to the
target model. This would make model transformation more mod-
ular and maintainable. However, the graph-based approach lacks
a good support for synthesizing an efficient model transformation
from multiple transformations. Straightforward implementation of
their sequential composition is generally inefficient because it con-
structs superfluous intermediate models.

In this paper, we report our first attempt to establish a compo-
sitional framework for graph-based model transformations, which
supports concise specification of model transformation with the ad-
vantage that it can simplify and improve the efficiency of model
transformation implementation and execution. This work was greatly
inspired by the compositional graph querying language UnQL [6],
which has been intensively studied in the database community. The
key idea of UnQL is that all graph queries are fully captured by
structural recursion that is suitable for efficient composition. We
show that this idea can also be adapted to structure graph transfor-



mations to gain efficient composition. Our main contributions are
twofold.

First, we propose a compositional framework for graph-based
model transformations using the UnQL graph querying language.
We designed a graph transformation language, UnQL+, which ex-
tends UnQL with three simple graph editing constructs to achieve
efficiency and expressiveness. All model transformation described
in UnQL+ can be mapped to structural recursions that are suitable
for efficient composition.

Second, we implemented a prototype of the new framework and
tested it with several nontrivial examples. Our new framework sup-
ports systematic development of model transformation in the large
with the advantage that it can automatically remove inefficiencies
arising from this composition. We demonstrate, using the nontrivial
model transformation from classes to a relational database manage-
ment system, that a large model transformation can be systemati-
cally developed by gluing simpler model transformations together.
Since all model transformations are represented by structural re-
cursions or their composition, our system automatically eliminates
inefficiencies arising from composition by using fusion optimiza-
tion. The experimental results show promising speedups. Addi-
tionally, our system can validate input and output models against
given metamodels with an efficient algorithm.

The organization of this paper is as follows. In Section 2, we
review the graph query language UnQL and its model of graphs.
Section 3 describes how UnQL and its extension is useful for sys-
tematic development of model transformations in a compositional
manner using a typical but nontrivial model transformation, Class2-
RDBMS. In Section 4, we explain the architecture of our composi-
tional framework and its implementation. We discuss related work
in Section 5 and conclude the paper in Section 6.

2. GRAPH QUERYING LANGUAGE UNQL
In this section, we briefly review the graph querying language,

UnQL [6]. Our compositional framework for model transforma-
tions is based on UnQL. This language has a convenient select-
where style surface syntax, which is translated into a core graph
algebra called UnCAL that consists of a small number of basic con-
structors and operators. Its expressive power is FO(TC) (first order
with transitive closure), and its complexity in answering an UnQL
query is PTIME. We present the basic concepts of UnQL starting
with graph representation and bisimulation in UnQL.

2.1 Graph Representation
Graphs in UnQL are edge-labelled; that is, all information is

stored as labels on edges rather than on nodes (the labels on nodes
have no particular meaning). They are rooted and directed cyclic
graphs whose orders between outgoing edges of a node are insignif-
icant. Every node may be marked with an input or output marker,
which is called an input or output node, respectively. Input markers
are used to select entry points of the graph, whereas output markers
are used to glue output nodes with input nodes of a graph.

Figure 1 shows an example of a graph that represents a class
model, which will be shown in Figure 2. The numbers in circled
nodes of the graph are just identifiers that are added for explana-
tion. All information in the class model including object names,
attribute names, and attribute values, appears as labels of edges of
the graph. A shared object of the class model (e.g., the class ob-
ject named “Address”) is represented by a shared node in the graph
(e.g., node 34). Some edges may be labelled with ϵ, which works
like an ϵ transition in automata theory in that it identifies its source
with its destination. They are used in establishing connections be-
tween nodes.

Graph bisimulation defines value equalities between graph in-
stances. Intuitively, when graphs G1 and G2 are bisimilar, then
every node x1 in G1 has a counterpart x2 in G2, and if there is an
edge from x1 to y1, then there is a corresponding edge from x2 to
y2. The UnQL data model extends graph bisimulation by (1) re-
quiring equalities between labels, (2) allowing insertion of one or
more consecutive ϵ edges between a normal edge and target node
(y1 or y2 above), (3) requiring correspondence between input nodes
in G1 and G2, and (4) requiring correspondence between output
markers of corresponding nodes (output markers may be associ-
ated with a node other than corresponding nodes, provided that the
marker is associated with nodes that can be reached by traversing ϵ
edges).

The notion of extended bisimulation is useful because it allows
variation in representing semantically equivalent graphs. It is sur-
prising that a graph transformation defined in UnQL preserves bisim-
ilarity [6] even though evaluation orders and strategies generally in-
troduce divergence in results. If two graphs G1 and G2 are bisim-
ilar, f(G1) and f(G2) are bisimilar for any transformation f in
UnQL.

2.2 UnQL
UnQL, like other query languages, has a convenient select-where

structure for extracting information from a graph. We omit the for-
mal definition of the language syntax, which can be found in [6,
15]. We simply give some examples in this paper.

select-where construct. The following query Q1 extracts all
primitive data types from the database (denoted $db in the query)
in Figure 1.

(* Q1 *)
select $T where
{association:{dest:

{class:{attrs:
{attribute:{type:
{primitiveDataType.name:$T}}}}}}} in $db

In where-clause, we can describe pattern matching as a condi-
tion which has the form of pattern in variable , where pattern is
tree-structured as {label:pattern ′} with label and pattern ′ which
match an edge from its root and a graph following the edge, re-
spectively. Unlike the original UnQL [6], variables are represented
by $-prefixed symbols. We can use also regular path expressions
for pattern matching at the left-hand side of the colon in the where
clause.

Structural recursion in UnQL. Structural recursion plays a
very important role in UnQL. Not only can it be used to describe
many useful queries, but also any queries in UnQL can be described
in terms of structural recursion.

Structural recursive function f in UnQL is a simple mutually
recursive computation scheme, which satisfies the following two
equations, f {} = {} and f (t1 ∪ t2) = f(t1) ∪ f(t2) for any
graphs t1 and t2, where {} stands for a graph consisting of an
empty node. Additionally, it guarantees that any return value of
functions should not be fed to another function. This simplicity
allows manipulability of structural recursion, which is a combina-
tor that is similar to the higher-order function map in functional
programming languages. Whereas a map (on lists) is applied re-
cursively to tail lists, structural recursion is applied (vertically) to
nodes, as well as (horizontally) to edges.

As a simple use of structural recursion, the following query Q2
replaces all labels name under primitiveDataType in Figure 1
with typeName. Due to the two equations above, definitions for
horizontal recursion are always omitted.



Figure 1: Class model represented by an edge-labelled graph

(* Q2 *)
select
letrec sfun f1 ({primitiveDataType:$T})

= {primitiveDataType:g1($T)}
| f1 ({$L:$T}) = {$L:f1($T)}

and sfun g1 ({name:$T}) = {typeName:g1($T)}
| g1 ({$L:$T}) = {$L:g1($T)}

in f1($db)

The function f1 takes the input graph $db and matches all edges
from its root with either {primitiveDataType:$T} or {$L:$T}.
According to the definition of f1, it processes deeper subgraphs
recursively. Since the subgraphs do not include the matched label,
the recursion always terminates.

2.3 UnCAL: A Graph Algebra
While UnQL is an interface language for users to write queries,

UnCAL is its core language for internal implementation. UnCAL
has a set of constructors and operators, by which arbitrary graphs
can be represented. In addition to tree constructors, graph concate-
nation and cycle operator, together with input and output markers,
form cycles and confluences by gluing nodes marked with identical
markers together. Complete syntax and brief semantics of UnCAL
expressions are depicted in [15].

Contrary to the appearance of tree constructor {}
and ∪, its semantics of unification is different from
those of sets. In UnCAL, although value equality is
explicitly defined, duplicate eliminations do not take
place. The graph shown in the right figure is repre-
sented by the following UnCAL expression

&z2@cycle((&z2 := {a:&z1},
&z1 := {c:&z1,b:&z0},
&z0 := {}))

where &z0, &z1, and &z2 correspond to the three nodes, 0, 1, and
2, respectively, and a, b, and c correspond to the three edges.

3. MODEL TRANSFORMATION IN UnQL+

This section explains one of our most important contributions.
We show how to extend the graph querying language UnQL [6] to

UnQL+ with three useful editing operations, and demonstrate how
it can be used for systematic development of model transformations
with the example of the transformation from a class model to a
relational database management system model.

3.1 UnQL+

UnQL is suitable for graph querying but not for graph transfor-
mation. For example, an UnQL query

select $Class where
{_*.class: $Class} in $db,
{is_persistent: true} in $Class

only extracts all of the persistent classes in Figure 1. In graph trans-
formation, we often want to delete a subgraph, extend a subgraph
with some new information, or replace a subgraph with a new one.
It is onerous to describe these kinds of graph transformations in
UnQL because we need to preserve the context by copying some
structures in the input. UnQL+ is an extension of UnQL with
three editing constructs that can support direct specification of these
graph transformations (model transformations).

The deletion construct, delete ... where ..., is introduced
to describe deletion of part of the graph. Consider the class graph
in Figure 1, and suppose we want to eliminate all the names of
association. This can be described by

delete $AssocName
where {association.name: $AssocName} in $db

where the subgraph matched with $AssocNamewill be deleted from
its original graph. In contrast, the following transformation extracts
the association names as a result.

select {result: $AssocName}
where {association.name: $AssocName} in $db

Therefore, we may consider the delete as the dual of the select.
The extension construct, extend ... where ..., is introduced

to extend a graph with another graph. For example, we write the
following transformation to add date information to each association.

extend $AG with {date:"2008/8/4"}
where {association: $AG} in $db



Figure 2: Class model

The replacement construct, replace ... where ..., is intro-
duced to replace a subgraph with a new subgraph. For example,
the transformation of replacing the edge label dest by tgt can be
specified as follows.

replace $G by {tgt:$G1}
where {association: $G} in $db,

{dest: $G1} in $G

It is worth noting that as will be seen in Section 4.2, these new
editing constructs can be mapped to structural recursions, and thus,
all the advantages of UnQL, including the compositional property,
are preserved.

3.2 Example: Class2RDBMS
As a nontrivial example, we consider the model transformation,

Class2RDBMS, a simplified version of the well known ”Class to
RDBMS” transformation. It was proposed as a common exam-
ple to all the participants of the International Workshop on Model
Transformations in Practice 2005 [3], whose purpose was to com-
pare and contrast various approaches to model transformation. We
explain two models, Class and RDBMS, and the requirement for a
model transformation from Class to RDBMS, before showing how
it can be systematically developed in UnQL+.

Class Model. A class model consists of classes and directed as-
sociations. A class is indicated as persistent or non-persistent. It
consists of one or more attributes, at least one of which must be
marked as constituting the classes’ primary key. An attribute type
is of a primitive data type (e.g. String, Integer). Associations are
used to associate two classes. Figure 2 shows a class model, which
consists of three classes and two directed associations. This class
model is represented by the graph in Figure 1, where all informa-
tion is stored on edges instead of nodes.

RDBMS Model. An RDBMS model consists of one or more
tables. A table consists of one or more columns. One or more of
these columns will be included in the pkey slot of a table, denoting
that the column forms part of the table’s primary key slot. A table
may also contain zero or more foreign keys. Each foreign key refers
to the particular table it identifies, and denotes one or more columns
in the table as being part of the foreign key. Figure 3 shows an
RDBMS model that has two tables.

Specification of Class Models to RDBMS Models. We
recap the informal specification [3] of Class2RDBMS, the model
transformation from class models to RDBMS models. A persis-

Figure 3: RDBMS model

tent class is mapped to a table and all its attributes or associations
to columns in this table. If the type of attribute is primary, a pri-
mary key from the table to the column is established. If the type
of attribute or association is another persistent class, a foreign key
to the corresponding table is established. If class hierarchies are
transformed, only the topmost classes are mapped to tables. Addi-
tional attributes and associations of subclasses result in additional
columns of the top-most classes. Non-persistent classes are not
mapped to tables; however, one of the main requirements for the
transformation being considered is to preserve all the information
in the class diagram. That means attributes and associations of non-
persistent classes are distributed over those tables stemming from
persistent classes that access non-persistent classes. This model
transformation is not trivial. We show below how to systematically
develop it in our compositional framework.

Class2RDBMS in UnQL+. The compositional framework of
UnQL+ allows us to develop bigger model transformations by glu-
ing together smaller transformations via intermediate models, with-
out worrying about inefficiency due to the intermediate models.
This is because unnecessary intermediate models will be removed
automatically by our system. The entire transformation of Class2-
RDBMS in UnQL+ is given in [15]. Let us explain how it is sys-
tematically developed.

Recall the specification of Class2RDBMS, where we want to
create tables (independent tables or tables pointed by foreign keys)
from a class diagram, where each table should have a name and
a sequence of columns, some of which are pointed by primary or
foreign keys. This leads to the following top-level transformation.

select {table: {name: {$Name: {}}} U
$MakePKeyCol U
$MakeGenCol U
$MakeFKeyCol,

table: $MakeFKeyTable}
where ...

For the input class model $db, as a preprocessing step, we re-
place all primitive data types in $db with their names and get $db’
(because only the type names are used in the tables.)

$db’ in
(replace $PrimDT by $Name
where {_*.type: $PrimDT} in $db,

{primitiveDataType.name: $Name} in $PrimDT

Now, to create columns of a table, we need to gather all the infor-
mation on classes that are directly or indirectly associated with the
source persistent class. This means we need to create an interme-
diate model $ChainDB, in which indirectly associated classes are
directly associated.

$ChainDB in
(select
...
where {association:
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Figure 4: Overview of our system

{name: $N1, src: $C11, dest: $C12}} in $db’,
{association:

{name: $N2, src: $C21, dest: $C22}} in $db’,
{name: {$Name12: $Any}} in $C12,
{name: {$Name21: $Any}} in $C21,
$Name12 = $Name21)

We look for two associations in which one’s destination is the other’s
source, and then add a link edge from the source to the indirect des-
tination Note that we do not need to worry about the relationship
between the new and the old models, and this new model is just for
intermediate use.

With $ChainDB, it is easy to “query” the graph to extract infor-
mation from each top (source) class that is persistent for creating a
table later.

{group: {src: {name: {$Name: $Any},
is_persistent: true,
attrs: $As},

chains: $Chains}} in $ChainDB

From the information obtained, we can create a primary key for
the table by querying the data from the graphs and add two new
edges pkey and cols.

$MakePKeyCol in
(select {pkey: $Col, cols: $Col}
where {attribute: ...} in $As,

$Primary = true,
$Col in {column: ...})

Note that $Col is another shared intermediate model (graph), which
appears twice in the select part. We omit an explanation of defi-
nitions for creating other columns and foreign keys, which are very
similar.

As seen from this example, UnQL+ enables us to productively
develop model transformations in a compositional manner (we can
glue results with unison operator U or sequentially apply simpler
model transformations with some intermediate models). This good
result is not surprising, because the usefulness of composition has
been widely known in the development of program transformation.

The execution of this model transformation on the class graph in
Figure 1 yields a graph corresponding the table diagram in Figure 3.

4. COMPOSITIONAL MODEL TRANSFOR-
MATION SYSTEM

This section describes our system implemented in Objective Caml.
Figure 4 shows an overview of our model transformation system.
An input model represented by a graph is validated against a given
input metamodel described in Kernel MetaMetaModel (KM3) [2].
The validated graph is transformed by a given program described in
UnQL+. The transformation is performed by translating the pro-
gram into an UnCAL expression, which is a structural recursion

package Class {
datatype String;
datatype Boolean;
abstract class NamedElt {
attribute name : String;

}
class Association extends NamedElt {
reference src : Class;
reference dest : Class;

}
class Class extends NamedElt {
attribute is_persistent : Boolean;
reference attrs [1-*] : Attribute;

}
class Attribute extends NamedElt {
attribute is_primary : Boolean;
reference type : PrimitiveDataType;

}
class PrimitiveDataType extends NamedElt {}

}

Figure 5: KM3 metamodel for classes

over an input graph, in a way similar to the original UnQL imple-
mentation [6]. The output graph of the transformation is validated
against a given output metamodel in KM3. We also show how our
model compositions work efficiently. The interest readers can find
and execute some transformation examples in our demonstration
Web pages at http://research.nii.ac.jp/~hidaka/big/.

4.1 Metamodel and Validation
Our system validates both input and output models represented

by graphs against given metamodels of them. We employ Ker-
nel MetaMetaModel (KM3) to describe metamodels because it has
been used as a metametamodel in actual software development and
is more formally defined than other metametamodels. A KM3
metamodel prescribes which sets of nodes must be referred to by a
node by a regular expression. See [2] for details on the specification
of KM3.

Figure 5 shows an example of a KM3 metamodel for classes,
each of which is an input for the model transformation introduced
in Section 3.2. The metamodel consists of four classes, Association,
Class, Attribute, and PrimitiveDataType. A class has some
features, either reference or attribute. Every feature has a type, ei-
ther class or data type. Since all of them inherit their super class
NamedElt, they have an attribute name, which is String. For ex-
ample, the Association class has two references src and dest

which are Class.
We validate a graph by associating each edge in them with the

name of a class or a feature in a given KM3 metamodel. The vali-
dation of a graph starts with its root node. Every edge from the root
node is associated with a class name. For example, an edge to node
33 in Figure 1 is associated with a class Association. Next we
associate edges that follow it with feature names of the class. For
example, an edge to node 32 is associated with the reference dest.
We visit all edges repeatedly in this way and record matching in-
formation. This process is completed in linear time with regard to
the size of the graph.

4.2 Mapping to the Core Language
UnQL+ provides a friendly interface for users to describe model

transformations. For efficient implementation, UnQL+ can be trans-
formed to the core language UnCAL, where structural recursion
plays an important role in supporting efficient composition of model
transformations. UnQL+ is mapped to UnCAL in a similar way to



that found in [6] except for the editing constructs. We show how
to eliminate editing constructs in UnQL+ to enable mapping from
UnQL+ to UnCAL.

First, deletion or extension of a subgraph can be expressed by
the replace construct based on the following two rules.

delete $G where ...
=> replace $G by {} where ...

extend $G with $G1 where ...
=> replace $G by $G U $G1 where ...

Second, the replace construct can be eliminated using the select
construct and structural recursions. After simplification of the where
clause, the where clause becomes a sequence of boolean condi-
tions bc of relation expressions r such as $A=5, simple pattern-in
boolean expressions pi such as {pat:$G} in template with a pat-
tern pat and variable $G, or simple binding expressions bd such as
$G in template with a variable $G. Thus, the general form of an
expression using replace is

replace $G1 by $G2

where bc1, . . . , bck−1, {pat:$G1} in $D, bck+1, . . . , bcn

where bc1, . . . , bck−1 are either relation expressions or pattern-in
boolean expressions. Among others, two important rules are as
follows to reduce the number of boolean conditions in the where
clause. In the following rules, like [6], we use rest for a syntactic
meta-variable which stands for the remaining clauses in the where
component. Note that the first element in rest is restricted to pi or
bd unless rest is empty. The first rule is to deal with the case where
the first pattern-in boolean expression (in the where clause) does
not match the graph to be replaced, i.e., $G1 != $G3.

replace $G1 by $G2 where {l:$G3} in $D,r1,...,rm, rest
=>
let sfun h1({$L:$G3}) =

if $L=l and r1 and ... and rm then
{$L:(replace $G1 by $G2 where rest)}

else {$L:$G3}
in h1($D)

The second rule, on the other hand, is to deal with the case where
the first boolean condition matches the graph to be replaced.

replace $G1 by $G2 where {l:$G1} in $D, r1,...,rm, rest
=>
let sfun h1({$L:$G1}) =

if $L=l and r1 and ... and rm then
letval $G1’ = select {l:{}} where rest in
letval $G2’ = select $G2 where rest in
if isEmpty($G1’) then {L:$G1} else {L:$G2’}

else {L:$G1}
in h1($D)

To see how these rules work, consider the following expression
with replace, which is to replace the association name "phone"

with "assoc_phone".

replace $Name by $Name’
where {association:$Assoc} in $db,

{name:$Name} in $Assoc,
{string:$Na} in $Name,
{$N:{}} in $Na,
$N = "phone",
$Name’ in {string:{"assoc_"^$N:{}}}

With the two rules, we can successfully desugar it to the following,
where replace is removed.

let sfun h1({$L:$Assoc}) =
if $L=association then

let sfun h2({$L:$Name}) =

if $L=name then
letval
$G1’ = (select {name:{}}

where
{string:$Na} in $Name,
{$N:{}} in $Na,
$N = "phone",
$Name’ in {string:{"assoc_"^$N:{}}})

in
letval
$G2’ = (select $G2

where
{string:$Na} in $Name,
{$N:{}} in $Na,
$N = "phone",
$Name’ in {string:{"assoc"^$N:{}}})

in
if isEmpty($G1’) then {$L:$Name} else {$L:$G2’}

else {$L:$Name}
in h2($Assoc)

else {$L:$Assoc}
in h1($db)

4.3 Interpretation of the Core Language
Buneman et al.’s UnQL paper [6] provides two evaluation strate-

gies that are proved to be equivalent: bulk semantics and recur-
sive semantics. The latter is intuitive in that applications of body
expression (e1 in rec(e1)(e2)) take place in a top-down fashion.
Revisiting of nodes caused by cycles can be correctly handled by
memoization. The former deals with possible cycles by applying
e1 once for every edge in an input graph and connecting them to-
gether using Skolem functions on markers and nodes. Our system
implemented in Objective Caml uses an algebraic data type for the
Skolem function and a tree-structured set library for the first-order
formula on nodes and edges. It is fairly straightforward and effi-
cient in both recursive semantics and bulk semantics.

4.4 Model Composition
We identify two forms of model composition. The first one is a

pair of consecutive transformations, T1 and T2, where the output
model of T1 is the input model of T2: M′ = (T2 ◦ T1)(M) =
T2(T1(M)). The second one is a pair of transformations, T1 and
T2, that share an identical input model: (M1,M2) = (T1 △

T2)(M)
def
= (T1(M), T2(M)). In the first composition, an in-

termediate result can be eliminated by the fusion technique, while
in the second composition, a duplicate traversal of the input model
can be unified by the tupling technique. Our system provides auto-
matic fusion for the first composition.

In our framework, consecutive model transformations are trans-
lated into a composition of structural recursions in UnCAL. Hence,
we can directly apply fusion transformation for the UnCAL pro-
posed in [6]. As a very simple case, consider the following scenario
(borrowed from [6]): first apply Q2 (in Section 2) to the model in
Figure 1, and then retrieve all names by the following query Q3.

(* Q3 *)
select
letrec sfun f2 ({name:$T}) = {name:g2($T)}

| f2 ({$L:$T}) = f2($T)
and sfun g2 ({$L:$T}) = {$L:g2($T)}

in f2($db)

This compositional query would look like the following query
Q4, by which our desugaring module produces an UnCAL query
Q5. Our UnCAL rewriter translates it into Q6 (with simple rewriting
by hand for readability), where two recs in Q5 are fused into one.

(* Q4 *)



select
letrec sfun f2 ({name:$T}) = {name:g2($T)}

| f2 ({$L:$T}) = f2($T)
and sfun g2 ({$L:$T}) = {$L:g2($T)}
in
letrec sfun f1 ({primitiveDataType:$T})

= {primitiveDataType:g1($T)}
| f1 ({$L:$T}) = {$L:f1($T)}

and sfun g1 ({name:$T}) = {typeName:g1($T)}
| g1 ({$L:$T}) = {$L:g1($T)}

in f2(f1($db))

(* Q5 *)
&z1@rec(\ ($L,$T).

if $L = "name"
then (&z1 := {"name": &z2},

&z2 := {"name": &z2})
else (&z1 := &z1, &z2 := {$L: &z2}))
(&z1@rec(\ ($L,$T).

if $L = "name"
then (&z1 := {"name": &z1},

&z2 := {"typeName": &z2})
else if $L = "primitiveDataType"

then (&z1 := {"primitiveDataType": &z2},
&z2 := {"primitiveDataType": &z2})

else (&z1 := {$L: &z1}, &z2 := {$L: &z2}))
($db))

(* Q6 *)
&z1@(&z2 := &z1&z2, &z1 := &z1&z1)@
rec(\ ($Sa1,$T).
if $Sa1="name"
then (&z1&z1 := {"name": &z1&z2},

&z1&z2 := {"name": &z1&z2},
&z2&z1 := &z2&z1,
&z2&z2 := {"typeName": &z2&z2})

else if $Sa1 = "primitiveDataType"
then (&z1&z1 := &z2&z1,

&z1&z2 := {"primitiveDataType": &z2&z2},
&z2&z1 := &z2&z1,
&z2&z2 := {"primitiveDataType": &z2&z2}

else (&z1 := llet $L = $Sa1 in
if $L = "name"
then (&z1 := {"name": &z1&z2},

&z2 := {"name": &z1&z2})
else (&z1 := &z1&z1,

&z2 := {$L: &z1&z2}),
&z2 := llet $L = $Sa1 in

if $L = "name"
then (&z1 := {"name": &z2&z2},

&z2 := {"name": &z2&z2})
else (&z1 := &z2&z1,

&z2 := {$L: &z2&z2})
))($db)

The table below shows the efficiency gained from the above fu-
sion. The experiment was conducted on a 1.5 GHz quad Xeon SMP
machine running Linux kernel 2.4.20. An approximate three- to
five-fold speed-up was confirmed.

evaluation strategy of rec before fusion after fusion speed-up
ratio

bulk 1.31 sec 0.25 sec 5.32
recursive 2.08 sec 0.73 sec 2.86

Our system employs the optimization rules presented in [6] to
reduce the size of arguments of rec. In addition, we introduce the
following simplification rules for other constructs to optimize graph
transformation.

&x := (&z := e) ↓ &x.&z := e

&x := (e1 ⊕ e2) ↓ (&x := e1) ⊕ (&x := e2)

e ∪ {} ↓ e {} ∪ e ↓ e

e ⊕ () ↓ e () ⊕ e ↓ e () @ e ↓ ()

cycle(e) ↓ e if input and output markers are disjoint in e.

where we follow the notation of graph constructs in [6]. The op-
erator ⊕ constructs disjoint union of two graphs while () denotes
an empty graph, thus, the expressions like {&z1 := g1, &z2 :=
g2, . . . , &zn := gn}, which we have already seen in this paper are
the syntactic shorthands for (&z1 := g1) ⊕ (&z2 := g2) ⊕ . . . ⊕
(&zn := gn). The last rule requires that the sets of input and out-
put markers be inferred for a given UnCAL expression. Our system
is capable of doing this estimation at compile time in a way similar
to that in [5]. There may be other rules applicable. Exploring these
rules will be part of our future work.

5. RELATED WORK
Our work is very closely related to research on model transfor-

mation based on graph transformation in the software engineering
community, as well as to research on graph querying in the database
community.

In the software engineering community, graph transformation
has been widely used for expressing model transformations [10,
19, 16].

AGG [23, 9] is a well-known rule-based visual tool that sup-
ports an algebraic approach to graph transformation. AGG supports
typed (attributed) graph transformations including type inheritance
and multiplicities. Rule application can contain a non-deterministic
choice of rules that may be controlled by rule layers. Different from
our approach, AGG does not have a clear separation between the
source and target graphs. It is not straightforward to compose/write
multi-staged transformations in AGG.

Triple Graph Grammars (TGG) [17, 12] were proposed as an
extension of Pratt’s pair grammar approach [20], which aims at
the declarative specification of model-to-model integration rules.
TGGs consist of a schema and a set of graph rewriting rules, and
they explicitly maintain the correspondence of two graphs by means
of correspondence links. These correspondence links play the role
of traceability links that map elements of one graph to elements
of the other graph and vice versa. With TGG, one has to explic-
itly describe correspondence between the source and target models,
which is difficult if the transformation is complex and the interme-
diate models are required during the transformation.

Neither AGG nor TGG has strict control over application of ele-
mentary algebraic graph transformation rules. To increase usability
and efficiency of graph transformation, a variety of control con-
cepts for rule and match selection have been considered in many
graph transformation approaches such as VIATRA [4] and VMTS
[18], where graph transformations are controlled with recursive
graph patterns. Unlike AGG and TGG, graph transformation rules
are guaranteed to be executable, which is the main conceptual dif-
ference. Since their recursive control structures can be very com-
plicated, it remains unclear how to efficiently compose them. Our
approach puts reasonable restrictions on the recursive structure so
that it is not only powerful enough to specify various model trans-
formations but also suitable for efficient composition.

On the other hand, in the database community, a lot of work
has been done on language design and implementation for efficient
graph querying [13, 22, 6]. Different from querying trees, issues
on representation and equivalence of graphs are subtle and impor-
tant to define the correctness of graph querying (as well as graph
transformation), and the use of bisimulation and structural recur-
sion in [6] leads to a very nice framework for both declarative and



efficient graph querying with high modularity and composability.
This has motivated us to see if we can extend the framework from
graph querying to graph transformation.

6. CONCLUSION
In this paper, we have reported our first attempt to design and

implement a compositional framework for model transformations
based on UnQL. Although UnQL is well known in the database
community for its unique solution to the composition problem, no
one, as far as we are aware, has recognized its usefulness in soft-
ware development. We have shown that it is indeed useful and that
the main theory and technique can be applied to solve the compo-
sition problem in model transformations.

We are currently working on extending this framework further to
add “bidirectionality” to the compositional model transformation
so that updates on the target model can be reflected in the source
model. This would connect the interesting idea of bidirectional
computation in both the programming language and software engi-
neering communities.
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transformation in practice workshop announcement. In MTiP
2005, International Workshop on Model Transformations in
Practice (Satellite Event of MoDELS 2005). Springer-Verlag,
2005. http://sosym.dcs.kcl.ac.uk/events/mtip/.

[4] E. Börger, A. Gargantini, and E. Riccobene, editors. Abstract
State Machines, Advances in Theory and Practice, 10th
International Workshop, ASM 2003, Taormina, Italy, March
3-7, 2003, Proceedings, volume 2589 of LNCS. Springer,
2003.

[5] P. Buneman, S. Davidson, M. Fernandez, and D. Suciu.
Adding structure to unstructured data. Technical Report
MS-CIS-96-21, University of Pennsylvania, 1996.

[6] P. Buneman, M. F. Fernandez, and D. Suciu. UnQL: a query
language and algebra for semistructured data based on
structural recursion. VLDB Journal: Very Large Data Bases,
9(1):76–110, 2000.

[7] A. Corradini and F. Gadducci. A 2-categorical presentation
of term graph rewriting. In Category Theory and Computer
Science, pages 87–105, 1997.

[8] K. Czarnecki and S. Helsen. Classification of model
transformation approaches. In Workshop on Generative

Techniques in the Context of Model-Driven Architecture,
2003.

[9] H. Ehrig, K. Ehrig, G. Taentzer, J. de Lara, D. Varró, and
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