
Towards Attribute-Based Authorisation for Bidirectional
Programming

Lionel Montrieux
lionel@nii.ac.jp

Zhenjiang Hu
hu@nii.ac.jp

National Institute of Informatics
Tokyo, Japan

ABSTRACT
Bidirectional programming allows developers to write pro-
grams that will produce transformations that extract data
from a source document into a view. The same transfor-
mations can then be used to update the source in order to
propagate the changes made to the view, provided that the
transformations satisfy two essential properties.

Bidirectional transformations can provide a form of au-
thorisation mechanism. From a source containing sensitive
data, a view can be extracted that only contains the in-
formation to be shared with a subject. The subject can
modify the view, and the source can be updated accord-
ingly, without risk of release of the sensitive information to
the subject. However, the authorisation model afforded by
bidirectional transformations is limited. Implementing an
attribute-based access control (ABAC) mechanism directly
in bidirectional transformations would violate the essential
properties of well-behaved transformations; it would contra-
dict the principle of separation of concerns; and it would
require users to write and maintain a different transforma-
tion for every subject they would like to share a view with.

In this paper, we explore a solution to enforce ABAC on
bidirectional transformations, using a policy language from
which filters are generated to enforce the policy rules.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access Controls; H.2.7
[Database Administration]: Security, integrity, and pro-
tection

General Terms
Security

Keywords
authorization, access control, bidirectional transformation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SACMAT’15, June1–3, 2015, Vienna, Austria.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3556-0/15/06 ...$15.00.
http://dx.doi.org/10.1145/2752952.2752963.

1. INTRODUCTION
A bidirectional transformation is a pair of functions, get

and put that maintain consistency between a source and a
view [10]. The source and view are typically graphs, or struc-
tured documents such as XML documents. The get function
takes a source document, and produces a view document.
On the contrary, the put (or putback) function takes both
the source and an updated view, and produces an updated
source, where the changes made to the view have been prop-
agated. The transformation from source to view is called a
forward transformation, while the transformation from view
to source is called a backward transformation.

Bidirectional transformations have recently received a lot
of attention, both from the programming languages com-
munity [2, 4, 11, 17, 20, 36, 27] and from the software engi-
neering community, where they have been used in contexts
as varied as model-driven engineering [19, 35], consistent
website updating [25], parallel programming [24], and many
others [6]. Since 2012, a workshop dedicated to bidirectional
transformations is organised every year [16].

A particularly interesting class of bidirectional transfor-
mations is the class of well-behaved transformations, which
must obey two laws: the GetPut law, and the PutGet law.
Intuitively, a well-behaved transformation will return identi-
cal views before and after a backward transformation using
an unmodified view (GetPut law), and will return the same
view after a backward transformation using a modified view
(PutGet law). A lot of the work in bidirectional transfor-
mations focuses on well-behaved transformations.

Bidirectional transformations, and especially well-behaved
ones, are notoriously difficult to write and maintain. Bidi-
rectional programming attempts to solve that issue by pro-
viding programming languages that allow developers to de-
fine transformations in a way that is easier to write and
maintain, often at the cost of a loss of expressive power [20].

Security views have been used to restrict access to data [29,
9]. Subjects may access views that will extract the data they
are allowed to read from a source that also contains data
that they should not have access to. These views are often
not editable (except for Foster et al.’s updatable security
views [11]), but they highlight the fact that views can be
used as an authorisation mechanism.

We show in this paper that bidirectional programs can
also be used as a form of authorisation mechanism. We show
that implementing Attribute-Based Access Control (ABAC)
directly using a put-based bidirectional programming lan-
guage causes three types of problems:

• The laws of well-behaved transformations make it dif-
ficult to use runtime attribute values to implement
ABAC using only bidirectional transformations.

• Including access control into a bidirectional program
goes against the idea of separation of concerns.

• Including access control into bidirectional programs
prevents the reuse of the same program with subjects
with different access policies.

We then propose an architecture that combines put-based
bidirectional programs with ABAC policies. View-centric
authorisation policies are used to generate filters that sani-
tise views after forward transformations and before back-
ward transformations are applied, therefore enforcing ABAC
rules on the views and their corresponding sources. Those
policies are written in a policy language that focuses on the
specificities of bidirectional transformations over XML doc-
uments. We demonstrate our solution using a calendar shar-
ing example.

The rest of this paper is organised as follows: in Section 2,
we formally introduce bidirectional transformations, as well
as the laws that govern “well-behaved” transformations. We
also discuss and compare the different types of bidirectional
transformation engines available. In Section 3, we use an
example to illustrate the relationship between bidirectional
transformations and authorisation, and highlight how put-
based bidirectional programs are limited in their ability to
express authorisation constraints. Section 4 is an overview of
our approach to express and enforce ABAC on bidirectional
programs. We present our policy language in Section 5, and
authorisation filters in Section 6. In Section 7, we discuss
our implementation of the approach, as well as our proof of
concept to demonstrate the approach’s feasability. Section 8
presents related work. We conclude this paper in Section 9,
where we also discuss future work.

2. BACKGROUND
In this section, we formally introduce well-behaved bidi-

rectional transformations, as well as different types of bidi-
rectional programming languages.

2.1 Bidirectional transformations
A bidirectional transformation is a pair of functions that

can transform a source into a target, and update the source
to reflect changes made to the target [6], as illustrated on
Figure 1. The get function produces a target from a source,
in what is called a forward transformation. The put func-
tion updates the source according to changes made to the
target, in what is called a backward transformation. The tar-
get is also often called a view, especially in transformations
concerned with the view-update problem.

Formally [11], a bidirectional transformation is a mapping
between a set of sources S and a set of views V , where we
can define the get function as:

get : s→ v (1)

and the put function as:

put : s→ v → s (2)

Figure 1: Get and put functions

2.2 Laws of well-formed transformations
A transformation is said to be well-formed when it satisfies

two important laws, GetPut and PutGet [11, 20].
The GetPut law is the identity law. It mandates that, if

a view is left unchanged since its extraction from the source
(using get), then a backward transformation (put) will not
alter the source. Formally, we can describe GetPut as:

put s (get s) = s (3)

The PutGet law mandates that all changes made to the
view are reflected fully to the source (during put), such that
a subsequent get will preserve all the changes. Formally, we
can describe PutGet as:

get (put s v) = v (4)

2.3 Bidirectional programming languages
Bidirectional programming languages can be classified in

two families: get-based languages and put-based languages.

2.3.1 Get-based languages
Several programming languages have been proposed that

allow developers to write programs that produce bidirec-
tional transformations. The majority of these languages are
get-based languages, where the developer writes a get func-
tion, and the language’s tools can derive a put function that,
when combined with the get function, form a well-behaved
bidirectional transformation. Examples of such languages
include GRoundTram [17], Boomerang [4], and others.

However, for a given get function, there may be many
put functions that would form a well-behaved bidirectional
transformation. Get-based programming tools that auto-
matically generate a put function given a get function will
therefore not necessarily generate a put function that suits
the developer’s needs. A simple example illustrates the is-
sue. We consider a rectangle, represented by its height h
and width w, as the source. The get function returns the
rectangle’s height only, which is the view:

get(w, h) = h (5)

Many put functions exist that would produce a well-behaved
transformation. For example, the rectangle’s original width
could be used:

put1 (w, h) h′ = (w, h′) (6)

Source View

Trans.

BiFluX

(a) Forward transformation

View Sourceupd

Trans.

BiFluX

Source

(b) Backward transformation

Figure 2: Bidirectional transformations in BiFluX

But many alternative put functions would also be accept-
able, e.g.:

put2 (w, h) h′ = (w ∗ h/h′, h′) (7)

Both these put functions, and infinitely more, will pro-
duce a well-behaved bidirectional transformation, but not
all of them will be acceptable for the developer. This is a
limitation of get-based languages.

To mitigate this issue, several extensions of get functions
have been proposed, such as quotient lenses [12], matching
lenses [2], or Edit lenses [18].

2.3.2 Put-based languages
More recently, put-based languages (sometimes also called

putback languages) have been proposed, such as BiFluX [27,
36]. Put-based languages ask the developer to provide a put
function, and derive the get function automatically. Since
it can be shown that, for a given put function, there is only
one get function that produces a well-behaved bidirectional
transformation [27, 36], developers have better control over
the behaviour of their transformations.

BiFluX is a putback language for bidirectional transfor-
mations over XML files. Figure 2 shows how transforma-
tions work with BiFluX, with Figure 2a representing a for-
ward transformation, and Figure 2b representing a backward
transformation. Developers can write a program in BiFluX’s
language, and the compiler, implemented in Haskell [3], pro-
duces both a forward and a backward transformation, also
in Haskell, that are guaranteed to form a well-behaved bidi-
rectional transformation.

3. BIDIRECTIONAL PROGRAMMING
AND ABAC

In this section, we use a calendar example to implement
authorisation using bidirectional programming. We high-
light and discuss the limitations of well-behaved bidirec-
tional transformations as a way of implementing an ABAC
authentication mechanism. Our example is a modified ver-
sion of Foster’s calendar sharing problem [11]. Appendix A
shows the example in more detail. This example is a simple
projection of the source into a view, chosen for its simplic-
ity. However, bidirectional programming languages such as
BiFluX can handle much more than projections, as they are

able to change the structure of the data between the source
and the view.

Alice maintains an online calendar, in which she records
both her personal and work appointments (events). For each
event, she records a start and end date and time, a location,
a description, and a note. She would like to share her calen-
dar with her colleague Bob. In order to balance her desire
for privacy with Bob’s need to access her calendar, she elicits
the following requirements:

• Bob should be given access to Alice’s work events, but
not to her private events (Req. 1);

• Bob should only be given access to the following fields
of Alice’s work events: start time, end time, name, and
location (Req. 2).

1 UPDATE $event IN $source/event BY
2 MATCH ->
3 REPLACE $event/starttime WITH

$starttime;
4 REPLACE $event/endtime WITH

$endtime;
5 REPLACE $event/location WITH

$location
6 | UNMATCHV -> CREATE VALUE
7 <event >
8 <starttime/>
9 <endtime/>

10 <name/>
11 <note >nothing </note >
12 <location/>
13 <private >False </private >
14 </event >
15 | UNMATCHS -> DELETE .
16 FOR VIEW event[$starttime AS v:

starttime ,
17 $endtime AS v:endtime , $name AS v:

name ,
18 $location AS v:location] IN $view /*
19 MATCHING SOURCE BY $event/name VIEW BY

$name
20 WHERE private/text() = ’False ’

Listing 1: BiFluX transformation for the calendar example

Alice’s calendar is an XML document. She wants to write
a bidirectional program to share her calendar with Bob, and
use BiFluX to generate a bidirectional transformation from
it. She writes a bidirectional program that satisfies Reqs.
1 and 2 (Listing 1). The program features well-separated
CRUD operations: the UNMATCHV definition, on lines
6-14, defines the Create permissions; the view definition,
on lines 16-20, defines the Read permissions; the MATCH
definition, on lines 2-5, defines the Update permissions; and
finally, the UNMATCHS definition, on line 15, defines the
Delete permissions.

The program satisfies Alice’s requirements. Line 20 re-
stricts the view to Alice’s work events only, ensuring that
Bob cannot read her personal events. Since only work events
are available in the view, the UNMATCHS directive can
only apply to work events, and therefore Bob will not be
able to delete any of Alice’s private events. Similarly, the
MATCH directive guarantees that Bob will not be able to
update any of Alice’s private events. And finally, the UN-
MATCHV directive prescribes, on line 13, that any event

created by Bob will be added to Alice’s calendar as a work
event. Hence, Bob is not able to create new private events
on Alice’s calendar. This satisfied Req. 1. The view defini-
tion, on lines 16-20, stipulates which fields of Alice’s events
Bob can access, which satisfies Req. 2.

1 <?xml version ="1.0"? >
2 <calendar >
3 <event >
4 <starttime >2014 -11 -20 _14:00</

starttime >
5 <endtime >2014 -11 -20 _15:00</endtime >
6 <name >Group meeting </name >
7 <note >Prepare some slides </note >
8 <location >Room 1611</ location >
9 <private >False </private >

10 </event >
11 <event >
12 <starttime >2014 -11 -21 _20:00</

starttime >
13 <endtime >2014 -11 -20 _22:00</endtime >
14 <name >Dinner </name >
15 <note >Meet with Mr. Creosote </note >
16 <location >Restaurant </location >
17 <private >True </private >
18 </event >
19 </calendar >

Listing 2: Alice’s calendar

Listing 2 shows an example of Alice’s calendar (the source
of the transformation, which conforms to the source DTD in
Appendix A.1). There are two events in the calendar, and
only one of those is a work event. The forward transforma-
tion produces the view on Listing 3, which only contains the
work event. The note field, which Bob is not authorised to
see, does not appear on the view.

1 <?xml version ="1.0"? >
2 <calview >
3 <event >
4 <starttime >2014 -11 -20 _14:00</

starttime >
5 <endtime >2014 -11 -20 _15:00</endtime >
6 <name >Group meeting </name >
7 <location >Room 1611</ location >
8 </event >
9 </calview >

Listing 3: Bob’s view of Alice’s calendar (XML)

Bob can update or delete events in his view, and he can
create new events, as long as his changes produce an up-
dated view that still conforms to the view DTD (see Ap-
pendix A.2). Bob’s changes can be reflected to Alice’s source
with a backward transformation. Listings 4 and 5 show an
example. Listing 4 contains a new event that Bob added
to his view. Listing 5 is the event as it is added to Alice’s
source as a result of the backward transformation. The fields
created by Bob are added to Alice’s source, as well as the
default value for the note field. The private field is set to
false, which indicates a work event. BiFluX has verified that
the bidirectional transformation is well-behaved.

1 [...]
2 <event >
3 <starttime >now </starttime >
4 <endtime >later </endtime >
5 <name >New Meeting </name >
6 <location >The Office </location >
7 </event >
8 [...]

Listing 4: Addition to Bob’s view

1 [...]
2 <event >
3 <starttime >now </starttime >
4 <endtime >later </endtime >
5 <name >New Meeting </name >
6 <location >The Office </location >
7 <note >Nothing </note >
8 <private >False </private >
9 </event >

10 [...]

Listing 5: Propagated event in Alice’s source

Alice, however, is not satisfied with her program. She
thinks that Bob’s access to her calendar is too broad, and
that her data may be at risk. To mitigate the risk she decides
to incorporate a form of ABAC to her transformation. She
elicits the following additional requirements:

• Bob should be able to create new or update existing
events, but only during working hours1 (Req. 3);

• Bob should be able to delete existing events from Al-
ice’s calendar, but only if he is at work, as determined
by his IP address (Req. 4).

Alice wants to update her program to satisfy these require-
ments. In ABAC terminology, the time of the day is an envi-
ronment attribute, and Bob’s location is a subject attribute.
For simplicity, Alice wants the value of these attributes to be
evaluated when transformations are performed, as opposed
to when Bob is actually making the changes. In BiFluX,
Alice could simply pass the values of these two attributes
to the main procedure, and use conditional statements to
implement authorisation. Listing 6 shows an excerpt of the
calendar program, where Req. 3 is implemented. Alice has
added, on line 2, an if statement, that will create a new
event in the source only if the variable $workingHours eval-
uates to true when the transformation is run. Req. 4 can
be implemented in a similar way.

1We assume working hours to be Mon-Fri, 09:00am -
07:00pm

1 [...]
2 | UNMATCHV -> IF ($workingHours == true

) THEN {
3 CREATE VALUE
4 <event >
5 <starttime/>
6 <endtime/>
7 <name/>
8 <note >nothing </note >
9 <location/>

10 <private >False </private >
11 </event >
12 } ELSE {}
13 [...]

Listing 6: Updated transformation (portion)

Unfortunately, the transformation produced from Alice’s
modified program does not satisfy PutGet for some combi-
nation of the attributes’ values. For example, if Bob cre-
ates a new event (Listing 4) during his working hours, the
source will be updated just like in Alice’s initial program
(Listing 5). Any new forward transformation will produce a
source with the added event, which will be identical to Bob’s
updated view. This is PutGet. However, if the backward
transformation happens outside of Bob’s working hours, then
the new event will not be added to Alice’s source, and any
subsequent forward transformation will not include the event,
and will therefore be different from Bob’s view, which vio-
lates PutGet. GetPut, however, is still satisfied since it in-
volves no changes in the view, but the introduction of rules
based on the values of attributes to govern what Bob can
read will cause the same issue.

The issue is more easily highlighted by considering a very
simple bidirectional transformation in Haskell, that could
have been produced by a simple BiFluX program. The fol-
lowing get function takes a list as its source, and returns the
first element of the list as the view. The put function re-
places the first element of the source with its single element:

1 get :: Source -> View
2 get (x:xs) = x
3

4 put :: Source -> View -> Source
5 put y (x:xs) = y:xs

It is obvious that both GetPut and PutGet hold. We then
refine the two functions, so that the get function will only
return the first element of the source list if an attribute a
evaluates to true, and an empty list otherwise. Similarly,
the put function will only update the source with its view
element if a evaluates to true, and leave the source otherwise
unchanged:

1 get :: Bool -> Source -> View
2 get a (x:xs) = if a then x
3 else []
4

5 put :: Bool -> Source -> View -> Source
6 put a y (x:xs) = if a then y:xs
7 else x:xs

In this case, GetPut and PutGet only hold if the value of
a does not change between operations. This is a significant
issue for our example, as it would force Bob to get a new
view right before updating Alice’s calendar every time he
wants to update it. Another issue arises if we modify the

functions a bit more. Now, get is unchanged, but put takes
b instead of a as an argument. The functions become:

1 get :: Bool -> Source -> View
2 get a (x:xs) = if a then x
3 else []
4

5 put :: Bool -> Source -> View -> Source
6 put b y (x:xs) = if b then y:xs
7 else x:xs

If the values of a and b are independent, then it is not
possible to guarantee that GetPut and PutGet hold any-
more, even if their respective values are fixed. GetPut is
then expressed as:

put b s (get a s) = s

PutGet is then expressed as:

get a (put b s v) = v

Let us consider a to be true and b false. Given the list
[1,2] as a source, and considering that we update the view,
when appropriate, with the value 4, Table 1 shows whether
GetPut and PutGet hold for each value of a and b.

The second line, where a is true and b is false, can be de-
tailed as follows. For GetPut, we first run get true [1,2],
which returns 1. We then run put false [1,2] 1, which
returns [1,2]. GetPut holds. For PutGet, we first run
put false [1,2] 4, which returns [1,2]. We then run get

true [1,2], which returns 1. PutGet does not hold. The
other combinations of values of a and b can be developed in
the same way.

This example highlights the limitation to the expressivity
of authorisation rules implemented as part of a bidirectional
transformation. If a transformation uses attributes whose
value may vary, then the transformation will not be well-
behaved for some combinations of the attributes’ values.

Another issue with this solution is that the authorisation
code (what can be done, under which conditions) is mixed
with the implementation (how it can be done), which vio-
lates the principle of separation of concerns [7].

Finally, a third issue has to do with reuse and maintain-
ability. It is possible that Alice may want to share the same
data with more people than just Bob, but with slightly dif-
ferent requirements. For example, she may want to give
read-only access to her work-related events to some of her
subordinates, or give write access to somebody else, but only
for events related to a particular project. If Alice integrates
the authorisation constraints directly into the program, she
will have to write a program for each of those people that
she wants to share a view with. If the structure of Alice’s
calendar, or of the views, must change, then she will have
to edit many transformations.

In the next section, we propose an approach that solves
these three issues. A separation of the authorisation rules
from the program achieves separation of concerns, and also
allows one to define well-behaved transformations that Bi-
FluX can run.

4. OVERVIEW OF THE APPROACH
To address the issues discussed above, we propose an ap-

proach that separates the expression and enforcement of the

Table 1: Status of GetPut and PutGet for values of a and b

a b GetPut Holds? PutGet Holds?

T T put true [1,2] (get true [1,2]) = [1,2] Y get true (put true [1,2] 4) = 4 Y
T F put false [1,2] (get true [1,2]) = [1,2] Y get true (put false [1,2] 4) = 1 N
F T put true [1,2] (get false [1,2]) = [[],2] N get false (put true [1,2] 4) = [] N
F F put false [1,2] (get false [1,2]) = [1,2] Y get false (put false [1,2] 4) = [] N

Source

View

Trans.

BiFluX

Policy

Fwd Filter

Viewsan

Attr. Values XQuery

Code Gen

Figure 3: Forward transformation, with authorisation filter

authorisation policy from the program. In our approach, the
program is written without consideration for authorisation
attributes: all changes to the view (creation, update and
deletion of elements) are authorised, and the view contains
all the information that could ever be read. The part of the
program that defines the view acts as a “best scenario” read
policy, while the MATCH, UNMATCHS and UNMATCHV
parts of the program define how the update, delete and cre-
ate operations are carried on, respectively, if they were to be
authorised. The program must produce a well-behaved bidi-
rectional transformation. An authorisation policy is writ-
ten separately, to specify the conditions under which create,
read, update and delete operations can be reflected to the
source. The policy is then used to produce two filters, one
for forward transformations, and one for backward trans-
formations. Figures 3 and 4 show how the filters are used
in conjunction with BiFluX for the generation of the view
(forward transformation), and the propagation to the source
(backward transformation), respectively.

The policy (Policy) is first compiled into a forward filter
(Fwd Filter in Figure 3) and a backward filter (Bwd Filter
in Figure 4).

To get the view from the source (Figure 3), the forward
transformation is run first. It uses the source (Source) and
produces a view (V iew). Then, the view is passed through
the forward filter (Fwd Filter) using the current values of
the attributes involved (Attr. V alues), which produces a
sanitised view (V iewsan), which can be shared with the re-
cipient (e.g., Bob).

To reflect the changes made to the view back into the
source (Figure 4), the view originally produced (V ieworig),
the view shared with the recipient after the forward fil-
ter (V iewsan) and the view as updated by the recipient
(V iewupd) are passed through the backward filter (Bwd
Filter), together with the current values of the attributes
involved (Attr. V alues). Any change that is not allowed at
that moment will be reverted by the backward filter. Alter-
natively, one could reject the update entirely if some unau-
thorised changes are detected. The resulting view

Sourceupd

Vieworig

Trans.

BiFluX

Policy

Viewupd-sanXQuery

Code Gen

Viewsan

Bwd Filter

Attr. Values

Source

Viewupd

Figure 4: Backward transformation, with authorisation filter

(V iewupd−san) is then passed, together with the original
source (Source), to BiFluX to run the backward transfor-
mation. The result is an updated source (Sourceupd), that
has only been updated with the authorised changes.

This approach separates the authorisation rules from the
program. It allows for a clearer expression of the authorisa-
tion policy, as well as a clearer expression of the program.
The separation also allows one to define complex, attribute-
based authorisation policies that would otherwise result in
transformations that are not well-behaved.

Because the policy is defined over a view, the same pro-
gram can be reused to share views with multiple subjects,
by defining a different policy for each of them, or each group
of them that can be governed by the same policy.

Our approach applies to simple projections of a source
onto a view (Alice’s calendar sharing requirements define an
example of a simple projection), where bidirectional trans-
formations are a way of addressing the view-update problem.
But it also applies to more complex transformations where
the structures of the source and view are different. For ex-
ample, a source for an online store may contain a set of
products, each of then containing stock information and the
details of all orders of the product; while the view would be
a set of orders from customers, each order containing details
about the products ordered. In both cases, the authorisa-
tion policy will determine which parts of the view can be
created, read, updated or deleted.

5. A POLICY LANGUAGE FOR BIDIREC-
TIONAL TRANSFORMATIONS

BXauthZ is a simple policy language to express attribute-
based rules on XML views. BXauthZ allows one to define
rules for CRUD operations. The resources on which rules
apply are defined as XPath expressions [34]. The language

〈Policy〉 ::= ‘policy’ 〈id〉 ‘{’ 〈subject〉
〈transformation〉 〈rule〉 ‘}’

〈Subject〉 ::= ‘subject’ 〈id〉

〈Transformation〉 ::= ‘transformation’ 〈id〉

〈Rules〉 ::= 〈Rule〉 〈Rules〉
| 〈Rule〉

〈Rule〉 ::= ‘rule’ 〈id〉 ‘{’ 〈Actions〉 〈Resources〉
〈Conditions〉 ‘}’

| ‘rule’ 〈id〉 ‘{’ 〈Actions〉 〈Resources〉
‘}’

〈Actions〉 ::= 〈Action〉 〈Actions〉
| 〈Action〉

〈Resources〉 ::= 〈Resource〉 〈Resources〉
| 〈Resource〉

〈Conditions〉 ::= 〈Condition〉 〈Conditions〉
| 〈Condition〉

〈Action〉 ::= ‘action’ ‘create’
| ‘action’ ‘read’
| ‘action’ ‘update’
| ‘action’ ‘delete’

〈Resource〉 ::= ‘resource’ 〈XPathExpression〉
| ‘resource’ 〈XPathExpression〉

‘matching-by’ 〈Name〉

〈Condition〉 ::= ‘condition’ 〈BooleanExpression〉

Figure 5: Grammar of BXauthZ (abbreviated)

is loosely based on Axiomatics’ ALFA syntax2, which is a
concise DSL to write policies that can be compiled into
eXtensible Access Control Markup Language (XACML) [26]
(note that BXauthZ does not compile to XACML).

5.1 Grammar
Figure 5 shows an abbreviated version of BXauthZ’s gram-

mar. A policy in BXauthZ describes authorisation permis-
sions for one or several subjects to perform CRUD opera-
tions over XML data in a view. A policy has a unique name,
and includes the subjects and the transformation that pro-
duces the view on which the policy applies (both manda-
tory), as well as a set of rules (optional, though an empty
set of rules would not produce a very useful policy). Any ac-
tion on any resource is forbidden, unless explicitly permitted
by a rule.

Each rule has a unique name, and is made of three parts:
a set of actions (mandatory), a set of resources (manda-
tory), and a set of conditions (optional). Each rule’s effect
is Permit, as long as all the conditions are satisfied. The
actions can be create, read, update or delete. The resources
are expressed as XPath expressions [34]. If the resource is
an XML node, then the permission applies to the node as

2http://www.axiomatics.com/alfa-plugin-for-
eclipse.html, accessed January 2015

well as all its contents, including descendant nodes. Condi-
tions are boolean expression. Resources for create, update,
and delete actions also have a matching-by statement which
denotes the child element or attribute that is used to match
elements, in order to tell the difference between an update
and a creation or deletion of an element.

There is no rule combination algorithm in BXauthZ, un-
like policy languages such as XACML. Since all the rules
define Permit effects, and since anything that is not explic-
itly permitted is denied, there can not be any conflicting
answers, and therefore the order in which the rules are eval-
uated does not matter. If several rules use the same XPath
expression, then the satisfaction of any of the rules will allow
for the action defined by that rule.

5.2 Example
Listing 7 shows a sample policy written by Alice, to reg-

ulate Bob’s access to the view generated by the program
Alice created on Listing 1. The policy conforms to the 4
requirements elicited by Alice in Section 3.

1 policy BobCalendar {
2 subjects {Bob}
3 transformation calendar
4 rule CalRead {
5 action read
6 resource /calview /*
7 }
8 rule CalCreate {
9 action create

10 action update
11 resource /calview /*

matching -by name/
text()

12 condition $workingHours
13 }
14 rule CalUpdateDelete {
15 action delete
16 resource /calview /*

matching -by name/
text()

17 condition $atOffice
18 }
19 }

Listing 7: Policy for Bob’s access to Alice’s calendar

The policy’s only subject is Bob (line 2), and the policy
applies to views produced by the program on Listing 1 (line
3). There are four rules in the policy. The first one (lines
4-7) defines the read actions (line 5). Bob is allowed to read
everything, at all times (line 6). Therefore, the forward filter
generated by this policy will leave the generated view intact.
Because the view definition in the program already excludes
private events from the view, and because it already restricts
the elements of each events that can be accessed, Reqs. 1
and 2 are satisfied.

The second rule (lines 8-13) has two actions, create (line
9) and update (line 10). The resources are all the events in
the view (line 11). This rule has a condition (line 12), which
states that the rule only applies if $workingHours evaluates
to true, which will only be the case during working hours,
as defined by Alice. This rule satisfies Req. 3.

The third rule (lines 14-18) has only one action, delete
(line 15). The resources are all the events in the view (line
16), like the other two rules. The rule has one condition (line

17), which states that the rule only applies if $atOffice

evaluates to true, which will only be the case if Bob’s IP
address shows that he is located on the company premises.
The rule satisfies Req. 4.

5.3 Remark
Nodes that are not covered by any rule, and who do not

have at least one ancestor covered by a rule, will not always
be removed from the view. If such a node has at least one
descendant covered by a rule, then the node will be con-
served in the filtered view, but without its content, except
for the descendants that must be conserved as well. Let us
consider this simple view as an example:

1 <a>
2
3 <c>
4 <d/>
5 </c>
6

There could be a policy that applies to that view, and
defines only one rule, with /a/c/d as a resource. While
the a and c elements are not covered by the rule, they are
ancestors of d, which is captured by the rule. b, however,
is not an ancestor of d. Therefore, the sanitised view that
would result from the application of the policy would be:

1 <a>
2 <c>
3 <d/>
4 </c>
5

6. AUTHORISATION FILTERS
The BXauthZ compiler produces, for each policy, a pair

of XQuery filters. The forward filter, which is run after the
forward transformation, sanitises the view according to the
read actions in the policy, so it can be shared with its recip-
ient. The backward filter, which is run before the backward
transformation, sanitises the view according to the create,
update and delete actions in the policy, to guarantee that no
unauthorised changes are propagated to the source. Both
filters will use the values of the attributes defined in the
rules’ conditions. Those values should be obtained securely,
for example through a Policy Information Point (PIP). De-
termining which values can be collected from the client (e.g.
Bob) without verification is out of the scope of this paper.

6.1 The forward filter
The forward filter takes two inputs: the view generated by

the forward transformation, and the values of the attributes
involved in the filter. The filter outputs a sanitised view.
We call the view generated by the forward transformation,
vieworig, and the sanitised view produced by the forward
filter, viewsanV . Using the XPath expressions defined in
the policy, the filter removes from the view the elements to
which access is not granted at the time the filter is run.

6.2 The backward filter
The backward filter takes three inputs. The first one is

the view updated by the user, which we call viewupd. The
second one is the original view, vieworig. The third one
is the view produced by the forward filter, viewsanV . The

filter outputs a sanitised view that we call viewsanS . The
filter also takes as an input the values of all the attributes
involved in create, update, and delete decisions.

This backward filter is more complex than the forward
filter. Indeed, it needs to merge the changes made by the
user, as well as the elements that have been hidden from the
user by the forward filter. First, the filter uses viewsanV ,
viewsanS , and the attributes’ values to revert the changes
made to the view that are not permitted by the policy. Then,
the filter uses this product together with vieworig to add the
elements that had been remove by the forward filter. The
resulting view can them be used by the backward transfor-
mation to reflect the user’s changes back to the source.

7. IMPLEMENTATION AND PROOF OF
CONCEPT

Our implementation of the approach described in this pa-
per, as well as the calendar example, are available online.

7.1 Policy language and filter generation
BXauthZ3 has been implemented as a Domain-Specific

Language (DSL) using Xtext4, an Eclipse-based framework
for developing DSLs and programming languages. BXauthZ
offers a complete IDE based on eclipse, as well as code gen-
eration capabilities that generate both the forward and the
backward filters for any policy.

7.2 Filter evaluation
The filters are generated by BXauthZ in XQuery 3.0 [33].

Any product that complies with the XQuery 3.0 recommen-
dation should be able to execute the filters. To conduct our
tests, we used Zorba 3.05, an open source, multi-platform
XQuery and JSON query processor.

7.3 Proof of concept
To evaluate our approach, we have developed a proof of

concept based around the calendar example used throughout
this paper. Bob’s policy, as well as a few alternatives, were
created using BXauthZ, and the corresponding filters were
generated using BXauthZ’s code generator6.

8. RELATED WORK
Secure XML views [29] have been studied in detail as a

means to provide access to confidential information. Fan et
al. have proposed an approach to support XPath queries
over security views [9]. Kuper et al. generalised the no-
tion of security views where authorisation policies are spec-
ified over DTDs [23]. Rota et al. integrate XACML with
OWL [31] ontologies to provide semantic authorisation for
XML documents [28].

As far as we are aware, the only work that addresses the
view-update problem in security views is Foster’s updatable
security views [11, 10], for which there is no implementa-
tion. Foster introduces secure lenses as an extension of his
previous work on lenses [13], with a type system to ensure
integrity and confidentiality of the data in the source [11].
While the calendar example in this paper is inspired by Fos-
ter’s, secure lenses are very different from the solution we
3https://github.com/lmontrieux/bxauthz
4http://www.xtext.org
5http://www.zorba.io
6https://github.com/lmontrieux/biflux-filters-poc

propose, in the sense that he uses annotations on the source
to enforce the confidentiality and integrity of some of the
source data, while we devise policies on the view to ensure
confidentiality and integrity, and implement them around a
bidirectional transformation engine, rather than extending
its semantics to support it, which Foster does (although with
Boomerang [4] instead of BiFluX).

Access control for XML documents is also a field that has
been widely researched. For example, Kudo and Hada pro-
posed XML Access Control Language (XACL), a language
that provides authorisation for XML documents, based on a
provisional authorisation model, and using XPath expres-
sions [21, 22]. Gabillon and Bruno transform authorisa-
tion policies into XSLT sheets [32], that are used to ex-
tract a secure view from XML documents [14]. Auntariya
et al. propose a rule-based access control model that pro-
vides declarative policy rules on XML documents, as well
as conflict resolution and default authorisation [1]. Gowadia
and Farkas use RDF statements with authorisation proper-
ties to represent XML access control rules [15]. Zhang et
al. use XML Schemas to represent Role-Based Access Con-
trol (RBAC) models for XML data [37]. Byun and Park
introduce a two phase filtering approach to modify queries
on XML databases in order to ensure that the results will not
violate access control policies [5]. Duong and Zhang describe
an access control model for XML that supports both read
and write authorisation, allowing authorised users to change
the structure of the XML documents [8]. Finally, Thimma
et al. introduce Hybrid XML Access Control (HyXAC), a
hybrid access control approach that provides secure queries
on XML documents while improving its performance over
other solutions [30].

9. CONCLUSION
In this paper, we highlighted the strong connection be-

tween authorisation and bidirectional transformations, as
transformations themselves can provide a simple form of ac-
cess control. We provided a solution that allows for the en-
forcement of attribute-based authorisation on bidirectional
programs, without compromising on the laws of well-behaved
bidirectional transformations. Our approach uses a custom
policy language that is used to generate filters that sani-
tise views after a forward transformation and before a back-
ward transformation. The former guarantees that no unau-
thorised data is leaked to the recipient of the view, while
the latter guarantees the integrity of the source. Our ap-
proach enforces a clear separation of concerns between the
programs and the authorisation policies, therefore allowing
one to reuse the same transformation to share information
with several subjects, simply by creating a different policy
for each subject or group of subjects.

A first direction for future work would be to derive the en-
tire program from the policy alone, which would allow users
such as Alice to share data in what we hope would be a much
easier way, while still conserving the advantages of bidirec-
tional transformations. Our experience shows that writing
non-trivial, well-behaved programs can be very challenging.
However, such a solution would reduce the user’s ability to
control the update, and in particular may restrict the view
to a projection of the source.

Another direction for future work is the exploration of
other bidirectional transformation engines, in particular get-
based solutions. Because get-based solutions do not require

the user to explicitly define a put strategy, it is the engine
itself that selects a strategy that, given a forward transfor-
mation, will satisfy both the PutGet and GetPut laws. If
authorisation is considered in the approach, the choice of a
put function should satisfy the authorisation policy.

Yet another direction is the implementation of ABAC con-
structs directly into bidirectional transformation languages,
with the goal of making the transformations more efficient.
This may require us to relax the laws of well-behaved trans-
formations in order to allow for attribute-based authorisa-
tion, while still offering strong guarantees that transforma-
tions behave as expected.

Finally, issues of conflicts and performance should be stud-
ied. Sharing data using multiple views, that are shared to
different subjects, will lead to conflicts that will need to be
resolved. For example, if a view deletes a node whilst an-
other one modifies it, a conflict resolution strategy will be
necessary. Performance should also be considered. Efficient
bidirectional transformation engines will allow for practical
use over large documents.

10. ACKNOWLEDGEMENTS
This work is supported financially by the Nation Basic

Research Program (973 Program) of China (grant
No. 2015CB352201) and by JSPS Grant-in-Aid for Scientific
Research (A) No. 25240009 in Japan.

11. REFERENCES
[1] C. Anutariya, S. Chatvichienchai, M. Iwiahara,

V. Wuwongse, and Y. Kambayashi. A rule-based XML
access control model. In M. Schröder and G. Wagner,
editors, Rules and Rule Markup Languages for the
Semantic Web, number 2876 in Lecture Notes in
Computer Science, pages 35–48. Springer, 2003.

[2] D. M. Barbosa, J. Cretin, N. Foster, M. Greenberg,
and B. C. Pierce. Matching lenses: Alignment and
view update. In Proceedings of the 15th ACM
SIGPLAN International Conference on Functional
Programming, ICFP ’10, pages 193–204, New York,
NY, USA, 2010. ACM.

[3] R. Bird. Introduction to Functional Programming
using Haskell. Prentice Hall, London; New York, 2nd
edition, May 1998.

[4] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz,
and A. Schmitt. Boomerang: Resourceful lenses for
string data. In Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’08, pages 407–419,
New York, NY, USA, 2008. ACM.

[5] C. Byun and S. Park. Two phase filtering for XML
access control. In W. Jonker and M. Petković, editors,
Secure Data Management, number 4165 in Lecture
Notes in Computer Science, pages 115–130. Springer,
Jan. 2006.

[6] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel,
A. Schürr, and J. F. Terwilliger. Bidirectional
transformations: A cross-discipline perspective. In
R. F. Paige, editor, Theory and Practice of Model
Transformations, number 5563 in Lecture Notes in
Computer Science, pages 260–283. Springer, Jan. 2009.

[7] P. D. E. W. Dijkstra. On the role of scientific thought.
In Selected Writings on Computing: A personal
Perspective, Texts and Monographs in Computer
Science, pages 60–66. Springer, 1982.

[8] M. Duong and Y. Zhang. An integrated access control
for securely querying and updating XML data. In
A. Fekete and X. Lin, editors, Nineteenth Australasian

Database Conference (ADC 2008), volume 75 of
CRPIT, pages 75–83, Wollongong, NSW, Australia,
2008. ACS.

[9] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure XML
querying with security views. In Proceedings of the
2004 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’04, pages 587–598,
New York, NY, USA, 2004. ACM.

[10] J. Foster, B. Pierce, and S. Zdancewic. Updatable
security views. In 22nd IEEE Computer Security
Foundations Symposium, 2009. CSF ’09, pages 60–74,
July 2009.

[11] J. N. Foster. Bidirectional Programming Languages.
PhD thesis, University of Pensylvania, Dec. 2009.

[12] J. N. Foster, T. J. Green, and V. Tannen. Annotated
XML: Queries and provenance. In Proceedings of the
Twenty-seventh ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS
’08, pages 271–280, New York, NY, USA, 2008. ACM.

[13] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C.
Pierce, and A. Schmitt. Combinators for bi-directional
tree transformations: A linguistic approach to the
view update problem. In Proceedings of the 32Nd
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’05, pages 233–246,
New York, NY, USA, 2005. ACM.

[14] A. Gabillon and E. Bruno. Regulating access to XML
documents. In M. S. Olivier and D. L. Spooner,
editors, Database and Application Security XV,
number 87 in IFIP — The International Federation for
Information Processing, pages 299–314. Springer, Jan.
2002.

[15] V. Gowadia and C. Farkas. RDF metadata for XML
access control. In Proceedings of the 2003 ACM
Workshop on XML Security, XMLSEC ’03, pages
39–48, New York, NY, USA, 2003. ACM.

[16] F. Hermann and J. Voigtländer. First international
workshop on bidirectional transformations (BX 2012):
Preface. Electronic Communications of the EASST,
49(0), July 2012.

[17] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and
K. Nakano. Bidirectionalizing graph transformations.
In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming,
ICFP ’10, pages 205–216, New York, NY, USA, 2010.
ACM.

[18] M. Hofmann, B. Pierce, and D. Wagner. Edit lenses.
In Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’12, pages 495–508,
New York, NY, USA, 2012. ACM.

[19] B. Hoisl, Z. Hu, and S. Hidaka. Towards co-evolution
in model-driven development via bidirectional
higher-order transformation. pages 466–471, Jan. 2014.

[20] Z. Hu, H. Pacheco, and S. Fischer. Validity checking of
putback transformations in bidirectional
programming. In C. Jones, P. Pihlajasaari, and
J. Sun, editors, FM 2014: Formal Methods, number
8442 in Lecture Notes in Computer Science, pages
1–15. Springer, Jan. 2014.

[21] M. Kudo and S. Hada. XML document security based
on provisional authorization. In Proceedings of the 7th
ACM Conference on Computer and Communications
Security, CCS ’00, pages 87–96, New York, NY, USA,
2000. ACM.

[22] M. Kudo and N. Qi. Access control policy models for
XML. In T. Yu and S. Jajodia, editors, Secure Data
Management in Decentralized Systems, number 33 in
Advances in Information Security, pages 97–126.
Springer, Jan. 2007.

[23] G. Kuper, F. Massacci, and N. Rassadko. Generalized
XML security views. In Proceedings of the Tenth ACM
Symposium on Access Control Models and
Technologies, SACMAT ’05, pages 77–84, New York,
NY, USA, 2005. ACM.

[24] K. Morita, A. Morihata, K. Matsuzaki, Z. Hu, and
M. Takeichi. Automatic inversion generates
divide-and-conquer parallel programs. In Proceedings
of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’07, pages 146–155, New York, NY, USA, 2007.
ACM.

[25] K. Nakano, Z. Hu, and M. Takeichi. Consistent web
site updating based on bidirectional transformation.
International Journal on Software Tools for
Technology Transfer, 11(6):453–468, Dec. 2009.

[26] OASIS. eXtensible access control markup language
(XACML) version 3.0, Jan. 2013.

[27] H. Pacheco, T. Zan, and Z. Hu. BiFluX: A
bidirectional functional update language for XML. In
6th International Symposium on Principles and
Practice of Declarative Programming (PPDP 2014),
2014.

[28] A. Rota, S. Short, and M. A. Rahaman. XML secure
views using semantic access control. In Proceedings of
the 2010 EDBT/ICDT Workshops, EDBT ’10, pages
5:1–5:10, New York, NY, USA, 2010. ACM.

[29] A. Stoica and C. Farkas. Secure XML views. In
E. Gudes and S. Shenoi, editors, Research Directions
in Data and Applications Security, number 128 in
IFIP — The International Federation for Information
Processing, pages 133–146. Springer, 2003.

[30] M. Thimma, T. K. Tsui, and B. Luo. HyXAC: A
hybrid approach for XML access control. In
Proceedings of the 18th ACM Symposium on Access
Control Models and Technologies, SACMAT ’13, pages
113–124, New York, NY, USA, 2013. ACM.

[31] W3C. OWL web ontology language reference, Feb.
2004.

[32] W3C. XSL transformations (XSLT) version 2.0, Jan.
2007.

[33] W3C. XML XPath language (XPath) 3.0, Apr. 2014.
[34] W3C. XQuery 3.0: An XML query language, Apr.

2014.
[35] Y. Yu, Y. Lin, Z. Hu, S. Hidaka, H. Kato, and

L. Montrieux. Maintaining invariant traceability
through bidirectional transformations. In 2012 34th
International Conference on Software Engineering
(ICSE), pages 540–550, June 2012.

[36] T. Zan, H. Pacheco, and Z. Hu. Writing bidirectional
model transformations as intentional updates. In
Companion Proceedings of the 36th International
Conference on Software Engineering, ICSE
Companion 2014, pages 488–491, New York, NY,
USA, 2014. ACM.

[37] X. Zhang, J. Park, and R. Sandhu. Schema based
XML security: RBAC approach. In S. D. C. d.
Vimercati, I. Ray, and I. Ray, editors, Data and
Applications Security XVII, number 142 in IFIP
International Federation for Information Processing,
pages 330–343. Springer, 2004.

APPENDIX
A. CALENDAR SHARING EXAMPLE

Due to space constraints, the calendar sharing example in
this paper had to be kept short. We present an expanded
version in this section.

A.1 Source DTD
This is the DTD to which the source file, i.e. Alice’s entire

calendar, has to conform.

1 <!DOCTYPE calendar [
2 <!ELEMENT calendar (event*)>
3 <!ELEMENT event(starttime , endtime ,

name , note ,
4 location , private)>
5 <!ELEMENT starttime (# PCDATA)>
6 <!ELEMENT endtime (# PCDATA)>
7 <!ELEMENT name (# PCDATA)>
8 <!ELEMENT note (# PCDATA)>
9 <!ELEMENT location (# PCDATA)>

10 <!ELEMENT private (# PCDATA)>
11]>

A.2 View DTD
This is the DTD to which the view file, i.e. Bob’s view of

Alice’s calendar, has to conform.

1 <!DOCTYPE calview [
2 <!ELEMENT calview (event*)>
3 <!ELEMENT event (starttime , endtime ,

name ,
4 location)>
5 <!ELEMENT starttime (# PCDATA)>
6 <!ELEMENT endtime (# PCDATA)>
7 <!ELEMENT name (# PCDATA)>
8 <!ELEMENT location (# PCDATA)>
9]>

A.3 Transformation without Access Control
This is the transformation written by Alice to share a view

of her calendar with Bob. The transformation mandates how
changes to Bob’s view must be reflected to Alice’s source.
It also shows that only private events will appear in Bob’s
view, and that the note field will be hidden.

1 UPDATE $event IN $source/event BY
2 MATCH ->
3 REPLACE $event/starttime WITH

$starttime;
4 REPLACE $event/endtime WITH

$endtime;
5 REPLACE $event/location WITH

$location
6 | UNMATCHV -> CREATE VALUE
7 <event >
8 <starttime/>
9 <endtime/>

10 <name/>
11 <note >nothing </note >
12 <location/>
13 <private >False </private >
14 </event >
15 | UNMATCHS -> DELETE .
16 FOR VIEW event[$starttime AS v:

starttime ,
17 $endtime AS v:endtime , $name AS v:

name ,
18 $location AS v:location] IN $view /*

19 MATCHING SOURCE BY $event/name VIEW BY
$name

20 WHERE private/text() = ’False ’

A.4 Policy
This is the policy written by Alice to further restrict what

Bob is allowed to do with his view of her calendar.

1 policy BobCalendar {
2 subjects {Bob}
3 transformation calendar
4 rule CalRead {
5 action read
6 resource /calview /*
7 }
8 rule CalCreate {
9 action create

10 action update
11 resource /calview /*

matching -by name/
text()

12 condition $workingHours
13 }
14 rule CalUpdateDelete {
15 action delete
16 resource /calview /*

matching -by name/
text()

17 condition $atOffice
18 }
19 }

A.5 Source XML
This is Alice’s calendar at the beginning of our example.

This XML file conforms to the DTD in Section A.1.

1 <?xml version ="1.0"? >
2 <calendar >
3 <event >
4 <starttime >2014 -11 -20 _14:00</

starttime >
5 <endtime >2014 -11 -20 _15:00</endtime >
6 <name >Group meeting </name >
7 <note >Prepare some slides </note >
8 <location >Room 1611</ location >
9 <private >False </private >

10 </event >
11 <event >
12 <starttime >2014 -11 -21 _20:00</

starttime >
13 <endtime >2014 -11 -20 _22:00</endtime >
14 <name >Dinner </name >
15 <note >Meet with Mr. Creosote </note >
16 <location >Restaurant </location >
17 <private >True </private >
18 </event >
19 </calendar >

A.6 View XML
This is Bob’s view of Alice’s calendar after a forward

transformation, using the transformation in Section A.3.
Since the access control policy in Section A.4 allows for Bob
to read the entire view under any circumstances, this view
is also the view obtained after the forward filter.

1 <?xml version ="1.0"? >
2 <calview >
3 <event >

4 <starttime >2014 -11 -20 _14:00</
starttime >

5 <endtime >2014 -11 -20 _15:00</endtime >
6 <name >Group meeting </name >
7 <location >Room 1611</ location >
8 </event >
9 </calview >

A.7 Updated view
This is Bob’s view after he has modified it. Bob has added

a new event, and deleted the existing one. The new event
can only be reflected in Alice’s source during working hours,
while the deleted event can only be removed from Alice’s
source when Bob is at the office.

1 <?xml version ="1.0"? >
2 <calview >
3 <event >
4 <starttime >2015 -02 -11 _16:00</

starttime >
5 <endtime >2015 -02 -11 _18:00</endtime >
6 <name >Performance review </name >
7 <location >Room 2005</ location >
8 </event >
9 </calview >

A.8 Updated views, after backward transfor-
mation

The view in the previous section is then passed to the
backward filter. Depending on the time of the day and
Bob’s location, the resulting, sanitised view could take one
of four forms. The first possible sanitised view results from
running the backward transformation during working hours,
and while Bob is at the office. In this case, the sanitised view
is identical to the view in Section A.7.

Another possibility, if the backward filter is run during
working hours but while Bob is not at the office, is that the
newly created event is still present, but the deleted event
has been reinstated in the view:

1 <?xml version ="1.0"? >
2 <calview >
3 <event >
4 <starttime >2014 -11 -20 _14:00</

starttime >
5 <endtime >2014 -11 -20 _15:00</endtime >
6 <name >Group meeting </name >
7 <location >Room 1611</ location >
8 </event >
9 <event >

10 <starttime >2015 -02 -11 _16:00</
starttime >

11 <endtime >2015 -02 -11 _18:00</endtime >
12 <name >Performance review </name >
13 <location >Room 2005</ location >
14 </event >
15 </calview >

The other two possible views are omitted due to space
constraints.

A.9 Updated sources
Once the backward filter has been run, BiFluX can then

safely reflect the changes to the view back to the source. The
previous section showed to possible sanitised views. The first
one, where both changes made by Bob were accepted, will
produce the following updated source:

1 <?xml version ="1.0"? >
2 <calendar >
3 <event >
4 <starttime >2015 -02 -11 _16:00</

starttime >
5 <endtime >2015 -02 -11 _18:00</endtime >
6 <name >Performance review </name >
7 <note >Nothing </note >
8 <location >Room 2005</ location >
9 <private >False </private >

10 </event >
11 <event >
12 <starttime >2014 -11 -21 _20:00</

starttime >
13 <endtime >2014 -11 -20 _22:00</endtime >
14 <name >Dinner </name >
15 <note >Meet with Mr. Creosote </note >
16 <location >Restaurant </location >
17 <private >True </private >
18 </event >
19 </calendar >

The second one, where only the newly created event was
accepted, will produce the following updated source:

1 <?xml version ="1.0"? >
2 <calendar >
3 <event >
4 <starttime >2014 -11 -20 _14:00</

starttime >
5 <endtime >2014 -11 -20 _15:00</endtime >
6 <name >Group meeting </name >
7 <note >Prepare some slides </note >
8 <location >Room 1611</ location >
9 <private >False </private >

10 </event >
11 <event >
12 <starttime >2014 -11 -21 _20:00</

starttime >
13 <endtime >2014 -11 -20 _22:00</endtime >
14 <name >Dinner </name >
15 <note >Meet with Mr. Creosote </note >
16 <location >Restaurant </location >
17 <private >True </private >
18 </event >
19 <event >
20 <starttime >2015 -02 -11 _16:00</

starttime >
21 <endtime >2015 -02 -11 _18:00</endtime >
22 <name >Performance review </name >
23 <note >Nothing </note >
24 <location >Room 2005</ location >
25 <private >False </private >
26 </event >
27 </calendar >

