Generation of Efficient Programs for
Solving Maximum Multi-Marking Problems

Isao Sasano*, Zhenjiang Hu, and Masato Takeichi

Department of Information Engineering, University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN
{sasano,hu,takeichi}@ipl.t.u-tokyo.ac.jp
http://www.ipl.t.u-tokyo.ac.jp/ " {sasano,hu,takeichi}

Abstract. Program generation has seen an important role in a wide
range of software development processes, where effective calculation rules
are critical. In this paper, we propose a more general calculation rule for
generation of efficient programs for solving maximum marking problems.
Easy to use and implement, our new rule gives a significant extension of
the rule proposed by Sasano et al., allowing multiple kinds of marks as
well as more general description of the property of acceptable markings.
We illustrate its effectiveness using several interesting problems.

Keywords: Program Generation Rule, Optimization Problem, Maxi-
mum Marking Problem, Functional Programming, Algorithm Synthesis.

1 Introduction

Program generation has seen an important role in a wide range of software
development processes. A successful program generation system requires not only
a powerful language supporting coding of program generation, but also a set of
effective transformation rules for the generation of programs. An example, which
convincingly shows the importance of the design of effective transformation rules,
is the well-known fold-build rule [1] for fusing composition of functions in Glasgow
Haskell Compiler (GHC). It is this general, concise and cheap calculation rule
that makes it possible for GHC to practically generate from large-scale programs
efficient programs without unnecessary intermediate data structures. Generally,
the effective rules for program generation should meet several requirements.

— First, they should be general enough to be applied to a program pattern, by
which a useful class of problems can be concisely specified.

— Second, they should be abstract enough to capture a big step of the program
generating process rather than being a set of small rewriting rules.

— Third, they can be efficiently implemented by program generation systems.

* Isao Sasano is supported by JSPS Research Fellowships for Young Scientists.

In this paper, we shall propose such a rule for generating efficient programs
from the following program pattern

mmmp wf k = wa/ o filter p o gen k,

with which one can straightforwardly specify solutions for the mazimum marking
problems [2] (sometimes also called mazimum weightsum problems [3]): from the
elements of a data structure, find a subset which satisfies a certain property p
and whose weightsum is maximum. Informally speaking, this program pattern
generates all the possible ways of marking the elements in the input data using
the generation function gen, keeps those markings satisfying the property p,
and finally selects one which has the maximum value with respect to the weight
function wf. More formal explanation can be found in Section 3.

The maximum marking problems are interesting because they encompass a
very large class of optimization problems [4, 5], and they have attracted many
researchers. Based on the algebraic laws of programs [6,7], Bird successfully
derived a linear algorithm to solve the maximum segment sum problem [6],
which is a maximum weightsum problem on lists. Bird et al. [7] demonstrated the
derivation of many kinds of maximum marking problems. However, the success of
derivation not only depends on a powerful calculation theorem but also involves
careful and insightful justification to meet the conditions of the theorem, which
makes it difficult for the theorem to be used for mechanical program generation.
On the other hand, it has been shown for decades [4,5], that if specified by
so-called regular predicates [5], the maximum marking problems are linear time
solvable and such linear time programs can be automatically generated. Though
being systematic and constructive, the generated linear time programs suffer
from an impractically large table [5], which actually prevents them from practical
use. To resolve this problem, Sasano et al. gave a new approach [3] to generating
practical linear time algorithms for the maximum marking problems over data
structures such as lists, trees, and decomposable graphs. The key point there is
to express the property p by a recursive function of certain form, and to apply
program transformation techniques for program optimization.

However, there still remain several limitations. First, the number of kinds of
marks are basically restricted to two. Although by using two marks (marking an
element or not) one can describe many combinatorial optimization problems such
as the 0-1 knapsack problem, it is difficult to handle the optimization problems
where more states on elements are required, as will be seen later. Second, the
property p is restrictive in the sense it must be a function without the use
of accumulating parameters, which makes it hard to specify history-sensitive
properties. Third, the weight function wf is restricted to only the sum of marked
elements.

To remedy this situation, we extend the work in Sasano et al. [3], giving a
calculation rule for generating efficient programs for solving maximum multi-
marking problems. Our main contributions can be summarized as follows.

— We propose a new calculation rule (Section 4) for generating efficient al-
gorithms for solving maximum multi-marking problems. It can efficiently

handle multi-marking, general weight functions, and property description
with an accumulating parameter, leading to a more general framework for
solving a wider class of combinatorial optimization problems, covering those
in the previous work [2-5].

— We demonstrate, with several non-trivial example problems, that our cal-
culation rule provides a practical and friendly interface for people both to
specify those problems and to generate efficient programs automatically. Sur-
prisingly, as partly shown in Section 5, our approach can deal with many
optimization problems in Bird et al. [7]. By contrast, the derivation process
in Bird et al. [7] is difficult to be mechanized.

— We show that our calculation rule can be easily implemented by using the
existing transformation systems like MAG [8], and efficient programs can be
obtained in a fully automatic way.

The organization of this paper is as follows. In Section 2, we briefly review
the previous work on the maximum marking problems and explain limitations.
In Section 3, we give a formal definition of the maximum multi-marking prob-
lems. In Section 4, we propose our optimization theorem which gives the rule for
generation of efficient programs for maximum multi-marking problems. In Sec-
tion 5, we show the effectiveness of our approach by deriving efficient algorithms
for solving several interesting problems. Related work is discussed in Section 6,
and the conclusion is made in Section 7.

2 Maximum Marking Problems

In this section, we briefly review the previous work on maximum marking prob-
lems and the results obtained in Sasano et al. [3]. The maximum marking prob-
lems are a special and simpler case of the maximum multi-marking problems.

We assume that the readers are familiar with the functional language Haskell
[9], whose notation will be used throughout this paper.

2.1 Overview

Given a data structure zs (of type D «), a mazimum marking problem is to find
a marking of zs’s elements such that the marked data structure zs* (of type
D «*) satisfies a certain property p, and that the sum of the marked elements
in £s* is maximum. Here the “maximum” means that no other marking of zs
satisfying p can produce a larger weightsum.

As an example, consider the maximum independent sublist sum problem (mis
for short) [3], which is to compute a way of marking of the elements in a list
xs, such that no two marked elements are adjacent and the sum of the marked
elements are maximum. For instance, for

zs =[1,2,3,4,5]

the result is the marking of
[1*7 27 3*7 47 5*]7

which gives the maximum sum of 9 among all the feasible marking of zs. One
can check that any other way of feasible marking cannot give a larger sum.

A straightforward solution for the general maximum marking problem, whose
complexity is exponential to the number of elements in xs, can be defined pre-
cisely as follows:

mws : (D o* = Bool) - D a — D o*
mwsp = Twsum / © filterp o gen.

The function gen generates all the possible markings of input data, and from
those which satisfy the property p the function teysum / selects one whose
weightsum of marked elements is maximum. The operator / is called reduce
[10] and is defined as follows:

@/[xlam%"'axn]zml Dr2D---Dxy

where @ is an associative operator. The operator 1 is called selection [10] and
is defined as follows:
mTfy:a:a iffJUZfZ/
=y, otherwise.

Using mws, one can specify many interesting optimization problems by giving
different definition for the property p [3]. For example, the property p for the
above mis problem can be naturally defined as follows:

p] = True
p (x :xs) = if marked x then p; xs else p zs

(] = True
p1 (z : zs) = not (marked ©) A p xs.

Here, the function marked takes as its argument an element z and returns True
when z is marked and returns False otherwise. The calculation rule already pro-
posed in Sasano et al. [3] says that if the property is described in a mutumorphic
form (which can be considered as a mutually recursive version of fold), then a
linear program can be automatically generated. So for the mis problem, since
the property p is already described in a mutumorphic form, we can conclude
that a linear program can be obtained.

2.2 Limitations

To see the limitations of the existing approach, consider the following coloring
problem, a simple extension of the mis problem. Suppose there are three marks:
red, blue, and yellow. The problem is to find a way of marking all the elements
such that each sort of mark does not appear continuously, and that the sum
of the elements marked in red minus the sum of the elements marked in blue is
maximum. To obtain an efficient algorithm for this problem by using the existing

approach [3], we intend to specify this coloring problem using the following
program pattern:

mwsp = Twsum / o filterp o gen.

Unfortunately, there are several problems preventing us from doing so. First,
the existing generation function gen generates all the possible markings with
just a single kind of mark, but a single kind of mark is not enough for this
problem. That means we need to extend the generation function gen so that it
can generate all the possible markings with multiple kinds of marks. A generation
function for the coloring problem may be written as follows:

gen (] =l

gen (z : xs) = [(z,m) : ys | m <+ [Red, Blue, Yellow],ys + gen xs].

Second, the property description p for the coloring problem can be naturally
specified as follows:

indep xs = indep’ xs Neutral
indep’ [] color = True
indep’ (z : x8) color = markKind x # color A indep’ xs (markKind x).

But this is not in a required mutumorphic form such that the rule in Sasano et
al. [3] can be applied, because indep’ has an additional accumulating parameter
color. Here, Neutral is used as the initial value of the accumulating parameter,
which is different from all the colors used for coloring the elements. The function
markKind takes as its argument a marked element and returns the kind of mark
of the element. If we insist on specifying indep in a mutumorphic form, we would
have to instantiate all the possible values of color used by indep’, and could reach
the following complicated definition:

indep [] = True

indep (x : xs) = case markKind x of
Red — indepg, s
Blue — indepg s
Yellow — indepy xs

indepg [] = True

indepg (z : xs) = case markKind x of
Red — False
Blue — indepg xs
Yellow — indepy xs

indepg [] = True

indepg (x : xs) = case markKind z of
Red — indepg s
Blue — False
Yellow — indepy xs

indepy [] = True

indepy (x : xs) = case markKind x of
Red — indepp, xs
Blue — indepp xs
Yellow — False.

In fact, this instantiation not only leads to a complicated definition, but also
makes the generated program less efficient than that generated in Section 4.

Finally, the weight function wsum fixed in the program pattern mws p is
rather restrictive. For the coloring problem, we may hope to use the following
weight function:

wf=+/ o map f
where f z = case markKind x of
Red — weight x
Blue — —(weight)
Yellow — 0,

which is clearly not a simple wsum.

To overcome these limitations, in this paper we will give a more general
program pattern for specifying the maximum marking problems with multiple
marks, while guaranteeing that an efficient program can be automatically gen-
erated from this program pattern.

3 Maximum Multi-Marking Problems

In this section, we give a formal definition of the maximum multi-marking prob-
lems. To simplify our presentation, we focus on the problems on lists in this
paper.

A maximum multi-marking problem can be specified as follows. Given a list
xs, the task is to find a way to mark each element in zs such that the marked
data structure zs, say xs*, satisfies a certain property p, and the value of weight
function wf of marked list xs* is maximum. A straightforward program mmm to
solve this problem is

mmm : ([a*] = Bool) = ([a*] = Weight) — Int — [a] — [a*]
mmm p wf k = wa/ o filter p o gen k.

We use gen k, which is different from that in Section 2, to generate all the
possible markings of an input list with &k kinds of marks, and from those which
satisfy the property p we use wa / to select one with maximum value of the
weight function wf. Many optimization problems, including the coloring problem
in Section 2, can be expressed using mmm by giving a suitable property p and
weight function wf.

Before defining gen and wf, we explain some of our notation for marking. For
a data type of a, we use a* to extend a with marking information. It can be
defined more precisely as follows:

o* = (a, Mark)

where Mark is the type of marks. We use integers from 1 to k as marks where £ is
the integer which is given as the third argument of mmm. Of course it is possible

to use any set holding k elements for Mark. Accordingly, we use a*, b*,...,z* to
denote variables of the type a* and use xs*,ys*,... to denote variables of the
type [a*].

The function gen, exhaustively enumerating all the possible ways of marking
elements using marks from 1 to k, can be recursively defined as follows:

gen 2 Int — [o] — [a¥]

gen k [] =[]

gen k (xz :xs) = [x* : xs* | * < mark x,xs* < gen k xs]
where mark is a function for marking which is defined as follows:

mark = [(z,m)|m « [1 .. k]].

In addition, in order to get the mark from a marked element, we define the
function markKind as follows:

markKind (x,m) = m.

Using mmm we can express various kinds of problems. For example, the
coloring problem in Section 2 can be specified as follows:

coloring = mmm indep wf 3

indep xs = indep’ s 0

indep’ [] color = True

indep’ (x : x8) color = markKind x # color A indep’ xs (markKind x)

wf = +/ o map |
where f e* = case markKind e* of
1 — weight e*
2 — —(weight e*)
3= 0.

Of course, this definition of mmm is terribly inefficient, though it is straightfor-
ward. In the next section, we would like to show that they can be automatically
transformed to an efficient linear one.

4 Program Generation

In this section, we propose a theorem for generating efficient algorithms for
solving maximum multi-marking problems, and highlight how this theorem can
be easily implemented for automatic generation of efficient executable programs.

4.1 Generation Rule

We shall propose a theorem for generating efficient algorithms for solving max-
imum multi-marking problems. The theorem gives a significant extension of the
theorem proposed in Sasano et al. [3]. It can efficiently handle multi-marking,
general weight functions, and property description with an accumulating pa-
rameter. Before giving the theorem, we should be more precise about the re-
quirement of the weight function wf and the property p used for specifying a
maximum multi-marking problem mmm in Section 3.

The previous work, including ours, restricted the weight function wfto be just
the sum of weight of marked elements [2-5]. As seen in the coloring problem in
Section 2, we often need to use a more general weight function. For this purpose,
we define the following general form, a kind of list homomorphism [10], which
we call homomorphic weight function.

Definition 1 (Homomorphic Weight Function). A function wf is a homo-
morphic weight function if it is defined as follows:

wf : [o*] = Weight
wf = ©fo map |

where @ is an associative binary operator which can be computed in O(1) time,
which has an identity element g, and which satisfies the condition called dis-
tributivity over Tiq:

(tia / ©s) © (Tia / ys) = T /lzDy|re€xs ANy €YS]

A homomorphic weight function allows any O(1) computation f over each
marked element and a more general operation @ rather than just + for “summing
up”. This enables us to deal with the weight function for the coloring problem
in Section 3.

For the property p which is to specify the feasible markings with multiple
kinds of marks, the existing approach [3] (as seen in the definition of indep in
Section 2) only allows p to be defined in a mutumorphic form with several other
functions, say p1, ..., Pn, whose ranges are finite.

p(] =e
p(x:xs) =¢x (pxs,p1L 8,...,Pn TS)

pi [] =e;
Di ('Z. : .CL'S) = ¢i z (p Ts,p1 TS,---,Pn .Z’S)

If p is defined in the mutumorphic form, by applying the tupling transformation
[11,12], we can always come up with the following definition for p, a composition
of a project function with a foldr:

p= fst o foldr €'
where ¢ z es = (¢ x es, 1 © €s,...,¢, T €5)
e'=(e,e1,...,ep).

To specify a history-sensitive property, we often want to use an accumulating
parameter. So we extend the above p to a composition of a function with a foldry,
a higher order version of foldr, which is defined as follows:

foldry, (¢1,¢2) 0[] e =d1e
foldry, (¢1,¢2) 6 (z: zs) e = ¢2 x e (foldry, (P1,¢2) 6 zs (§ x e)).

Using this function foldr,, we define the following form, which we call finite
accumulative property.

Definition 2 (Finite Accumulative Property). A property p is a finite ac-
cumulative property if it is defined as follows:

p: [a*] = Bool

p zs = g (foldry, (¢1,¢2) d x5 eo)
where the domain of g and range of § is finite.

Now we propose our main theorem.
Theorem 1 (Generation Rule). Suppose a specification of a mazimum multi-
marking problem is given as
mmm p wf k = wa/ o filterp o gen k.
If wf is a homomorphic weight function
wf = ®/ o map f

and p is a finite accumulative property

pxs = g (foldr, (¢1,¢2) § zs eg),

then the mazimum multi-marking problem (mmm p wf k) can be solved by

opt k (/\(c,e) -gc AN e== 60) (f:eaaLEB) ¢1 ¢2 d.
The definition of opt is given in Figure 1.

This theorem has a form similar to that in Sasano et al. [3] except for using
array in the definition of opt for efficiency, and it can be proved by induction
on the input list. We omit the detailed proof in this paper, due to the space
limitation. One remark worth making is about the cost of the derived program.
Assuming that § and g have the types

d:a* = Acc — Acc
g : Class — Bool,

we can conclude that the generated program using opt can be computed in
O(|Acc| - |Class|- k - n) time, where n is the length of input list, k is the number
of marks, and |Acc| and |Class| denote the size of the type Acc and the type
Class respectively. That means that our approach is applicable only when the
domain of g and the range of § is finite. If our approach is applicable, our
generated program is much more efficient than the initial specification program
mmm p wf k, which is exponential.

opt k accept (f,®,tq) ¢1 ¢p2 § s =
let opts = foldr 12 Y1 xs
in snd (Tfst/ [(w,r*)]| Just (w,r") < [optsli|i < range bnds,
optsli # Nothing, accept i]])
where 11 = array bnds [(i, g ©) | i < range bnds
P2 x cand = accumArray h Nothing bnds
[((p2 2" ec,e), (f 2" Bw, " :77))
| 2" + [(z,1),(,2),...,(z, k)],
e <+ acclist,
(cs) Just (w,r"))
[(3, cand%) |i <+ [(c',d * €)|c' + classlist],
inRange bnds 1,
candli # Nothing]]
g (c,e) = if (c == phiy e) then Just (1g,[]) else Nothing
h (Just (w1, 1)) (w2,x2) = if w1 > wa then Just (w1, z1)
else Just (w2, T2)
h Nothing (w,z) = Just (w, z)
bnds = ((head classlist, head acclist), (last classlist, last acclist))
acclist = list of all the values in Ace
classlist = list of all the values in Class

Fig. 1. Optimization function opt.

An Example To see how the theorem works, we demonstrate how to derive a
linear algorithm for the coloring problem in Section 2. Recall that the specifica-
tion for the coloring problem has been given in Section 3. The weight function
has been written in our required form, and the property indep can be easily
rewritten using foldr, as follows:

indep xs = id (foldr), (¢1,¢P2) 0 s 0)
where ¢; e = True
¢o x e = markKind x #eAr
0 ¢ e = markKind x.

Now applying the theorem quickly yields a linear time algorithm, whose program
coded in Haskell is given in Figure 2. Notice that in this example, k = 3, |Acc| =
4, and |Class| = 2. Evaluating the expression

> coloring [1,2,3,4,5]
gives the result of
[(]‘7 1)7 (2’ 3)7 (37]')7 (47 3)7 (5’ 1)]'

It is worth while to compare the generated algorithms from the two property
description with and without an accumulating parameter. Consider the coloring
problem with & colors and with certain homomorphic weight function wf. By

using property description with an accumulating parameter, O(k2n) algorithm
is obtained because |Acc| = k + 1 and |Class| = 2. On the contrary, by using
property description in mutumorphic form without accumulating parameters as
described in Section 2, O(2*n) algorithm would be obtained by applying the
previous method [3], if it could deal with multiple kinds of marks.

4.2 Implementation

Our generation rule can be implemented, so that efficient programs can be gen-
erated automatically. In this section, we highlight! how we can do so using MAG
system [8], a transformation system with a powerful higher order pattern match-
mng.

As seen in Figure 2, our obtained program can be divided into two parts: the
dynamic and static parts. The dynamic part changes from problems to problems,
while the static part remains the same. In Figure 2, the upper part is dynamic
and the lower is static. We show how to generate the dynamic part from the
specification mmm p wf k.

Using MAG, we may code the generation of the dynamic part from specifi-
cation mmm p wf k as a rule called mmmRule as follows.

mmmRule: mmm p wf k
= opt k accept (f,oplus,e) phil phi2 delta,
if {

wf = foldr (oplus) e . map f;
pxs =g (h xs e0);
h [] = phil;
h (x:xs) y = phi2 x y (h xs (delta x y));
\(c,e) -> g c && e==e0 = accept

s

Now for the coloring problem, we can apply this rule to the following speci-
fication and obtain a linear time program as in Figure 2 automatically.

coloring: coloring = mmm indep wf 3;
wf: wf = foldr (+) O . map f;
f: f = \x -> case markKind x of

1 -> weight x

2 -> - (weight x)

3 -> 0;
pP: p xs =p’ xs 0;
pl: p’ [1 color = True;
p2: p’ (x:xs) color = markKind x /= color && p’ xs (markKind x);
classlist: classlist = [False,Truel;
acclist: acclist = [0..3]

! Although actually we cannot do it because of several restrictions of the MAG system,
we are only showing the flavor of the implementation.

coloring = opt 3 accept (f, (+), 0) phil phi2 delta
acclist = [0..3]
classlist = [False, True]
accept (c,e) = c && e==
f = \x -> case markKind x of
1 -> weight x
2 => - (weight x)
3->0
phil e = True
phi2 x e ¢ = markKind x /= e && c
delta x e = markKind x
markKind (_,m) = m
weight (x,.) = x

opt k accept (f, oplus, id_oplus) phil phi2 delta xs =
let opts = foldr psi2 psil xs
in snd (getmax [(w,r) | Just (w,r) <- [opts!i
| i <~ range bnds,
opts!i /= Nothing,
accept il])
where psil = array bnds [(i, g i) | i <- range bnds]
psi2 x cand = accumArray h Nothing bnds
[((phi2 xm e c, e),
(f xm ‘oplus‘ w, xm:r))
| xm <- [(x,m) | m <- [1..k]1],
e <- acclist,
((c,.),Just (w,r)) <-
[(i,cand!'i)
| i <= [(c’,delta xm e)
| ¢’ <- classlist],
inRange bnds i,
cand!i /= Nothing]]
g (c,e) = if (c == phil e) then Just (id_oplus, [1)
else Nothing
h (Just (wil,x1)) (w2,x2) = if wl > w2 then Just (wl,x1)
else Just (w2,x2)
h Nothing (w,x) = Just (w,x)
bnds = ((head classlist,head acclist),
(last classlist,last acclist))
getmax [] = error "No solution."

getmax xs = foldrl f xs
where f (wl,candl) (w2,cand?2)
= if wid>w2 then (wl,candl) else (w2,cand2)

Fig. 2. A linear-time Haskell program for the coloring problem.

With these, the MAG system can produce the linear time program as given in
Figure 2. Note that the current version of MAG system has several restrictions
such as not allowing case expression, so MAG system needs extension for our
purpose.

5 More Examples

In this section, we give more examples, showing that our proposed gerneration
rule is quite general and powerful.

5.1 Paragraph Formatting Problem

The paragraph formatting problem is the problem of breaking a sequence of
words into lines to form a paragraph. At least one blank space must exist be-
tween any adjacent two words in the same line. Line length, i.e., the number
of characters each line holds, is fixed as m. We want to minimize the sum of
the number of blank spaces in all the lines excluding the last line. We assume
that the input sequence of words is given by a list of words and that a word is
expressed by its length since the spelling of words is not needed. For example,
the sequence of words ”This is a dog. They are cats.” is expressed as the list
[4,2,1,4,4,3,5].

We would like to treat this problem as a multi-marking problem, that is, to
describe this problem in the form

mmm p wf k.

We use three kinds of marks, 1, 2, and 3. So, k¥ = 3. If a word is marked 2,
then it indicates that the word is the last word of the line it belongs to. If a
word is marked 3, then it indicates that the word belongs to the last line. The
other words are marked 1. We make special treatment of the last line in order
to exclude the blank spaces when computing the sum of the number of blank
spaces. The property p checks whether a marking represents a valid breaking
or not. We describe the property p by using an accumulating parameter. The
accumulating parameter holds the pair of position pos and mark mk, where pos
represents the last position filled by the previous words in the current line, and
mk represents the kind of mark of the previous word. We define the property p
as follows:

pzs=p xs (0,2)

P’ [] (pos,mk) =mk # 1

p' (x: zs) (pos,mk) =

case mk of
1 — case markKind x of

l1=spos+la+1<m A p zs(pos+1z+1,1)
2pos+lx+1<m A p zs(0,2)
3 — False

2 — case markKind r of
l1-pos+laz<m A p xs(pos+1z1)
2= pos+lz<m A p zs(0,2)
3= pos+lxz<m A p zs(pos+1x,3)
3 — case markKind z of
1 — False
2 — False
3o pos+lxz+1<m A p zs (pos+1xz+1,1),

where we use the function [to compute the length of a word.

Next, we have to describe the weight function wf. We want to minimize the
sum of the number of blanks except for the last line. The function white which
returns the sum can be written as follows:

white = +/ omap f
where f z = case markKind z of
1> -lzx
2-om-—lx
3—=0.

Using this function, we can define the weight function wf as follows:
wf x = —(white x).
This can be easily transformed into the following form:

wf=+/omap f
where f z = case markKind x of
1=lx
2 -—m+lzx
3—=0.

Now the paragraph formatting problem is written as follows:
mmm p wf 3.

By applying the Theorem 1 (by using the rule mmmRule), we can obtain an O(mn)
algorithm where n is the number of words. This complexity is achieved by the
fact that the number of kinds of marks k is three, the size of the accumulating
parameter |Acc| is 3(m + 1), and the size of the function g (in this case id)
|Class| is 2.

5.2 Security Van Problem

The security van problem can be specified as follows [7].

Suppose a bank has a known sequence of deposits and withdrawals. For
security reasons the total amount of cash in the bank should never ex-
ceed some fixed amount N, assumed to be at least as large as any single

transaction. To cope with demand and supply, a security van can be called
upon to deliver funds to the bank or to take away a surplus. The problem
is to compute a schedule under which the van visits the bank a minimum
number of times.

In order to specify this problem as a maximum multi-marking problem, we con-
sider the security of transactions. A sequence [aq, a2, ..., a,] of transactions is
called secure if there is an amount r, indicating the total amount of cash in the
bank at the beginning of the sequence of transactions, such that each of the sums

r,r+a,r+a +a,...,mrt+a+---+a,

lies between zero and N. For example, taking N = 10, the sequence [3,—5, 6]
is secure because the van can take away or deliver enough cash to make an
initial reserve of, for example, 5. Given the constraint that N is no smaller than
any single transaction, every singleton sequence is secure, so a valid schedule
certainly exists.

To formalize the constraint, define

ceiling = 14,/ o inits
floor = |,/ o inits

where inits is a function which takes as its argument a list and returns the
list which has all the initial segments including empty list. A sequence z of
transactions is secure if and only if

ceiling x — floor ¢ < N.

Considering this condition, we can define property p in the following way. We
express the time the van visits by marking 1 to a transaction after which the van
visits. Transactions marked 2 represent the other transactions. The accumulating
parameter holds a triple of sum, ceiling, and floor for each initial segment.

pxs=p zs (0,0,0)
P[] (s,¢, f) = True
P (z:2s) (s,0,f) =
let (s',c,f)=(s+tw=z, ctigs’, flias)
in case markKind x of
1—=if ¢ — f' < N then p' zs (w z,0 Tig w x,0 ;g w z)
else p' zs (w z,0 1iq w z,0 Jig w x)
2—if ¢ — f' < N then p' zs (s',c, f'))
else False

Here, the function w takes as its argument a marked transaction and returns
the amount of it. We want to minimize the number of times the van visits, so
we first define the function times which computes the times the van visits.

times = +/ o map f
where f z = case markKind = of
1=-1
20

Using this function, we can define the weight function wf as follows:
wf © = — (times x).
This can be easily transformed into the following form:

wf = +/ o map f
where f r = case markKind x of
1—-1
2—=0.

Now the security van problem is written as follows:
mmm p wf 2.

The weight function wfis written in the required form, and the property p can be
easily rewritten into the required form, though we omit the form. By applying
Theorem 1, we obtain O(N®n) algorithm because |Acc| = (N + 1)2(2N + 1),
k=2, and |Class| = 2.

5.3 Knapsack Problem

The knapsack problem [13] is a well known combinatorial optimization problem.
There are several problems called knapsack problem such as 0-1 knapsack prob-
lem, 0-1 multiple knapsack problem, multidimensional knapsack problem, and
so on. Here we consider the simplest one, the 0-1 knapsack problem.

Input of the 0-1 knapsack problem is a set of items each of which has weight
and value. Output is a feasible selection of items whose value sum is maximum
in all the feasible item selections. A selection is feasible when sum of weight of
selected items does not exceed the given capacity C'. We assume weight of items
are integers. Without this assumption, this problem becomes NP-hard.

We express selection by marking 1 to selected items and 2 to the others. The
property for 0-1 knapsack problem can be described as follows. The accumulating
parameter holds a value from 0 to C, which indicates the remaining capacity of
knapsack.

knap zs = knap' zs C

knap' [] e = True

knap' (z : zs) e = case markKind x of
1—if e > w z then knap' zs (e — w z) else False
2 — knap' zs e

Here, the function w returns the weight of the item. We want to maximize the
value of selected items, so we can define the weight function wf as follows:

wf= +/omap f
where f © = case markKind = of
1 — value z
2—-0.

Here, the function value returns the value of the item.
Now the 0-1 knapsack problem is written as follows:

mmm knap wf 2.

The weight function wfis written in the required form, and the property knap
can be easily rewritten into the required form, though we omit the form. By
applying Theorem 1, we obtain O(Cn) algorithm because |Acc| = C + 1, k = 2,
and |Class| = 2.

5.4 Weighted Interval Selection Problem

Given a set of weighted intervals, the weighted interval selection problem is to
select a maximum-weight subset such that any two selected intervals are disjoint
[14]. An application of this problem is a scheduling of jobs whose start and end
times are fixed and only one job can be executed at a time. We assume that
start and end times are represented by integers. This assumption is natural in
real-world jobs, where we mean that the time unit is a day or an hour or a
minute or a second, and so on.

Suppose the job set is given as a list of jobs in the order of start time, that
is, if job A starts earlier than job B, then job A appears earlier than job B in
the list. We express a job by a 3-tuple of the start time, the time which it takes,
and the weight of the job. Here we express start time by the difference from the
previous job in the job list except for the first job. We express the time of the
first job as 0. This way of expressing start time is for applying Theorem 1. For
example, the list

Jobs = [(07 3, 2)7 (27 4, 3)7 (37 2, 5)]

is a job list, and jobs represents three jobs where the second job starts at time
2, and the third job starts at time 5, provided that the first job starts at time
0. Feasible solutions are selecting the first and the third job or selecting only
one job. So, the maximum solution is selecting the first and the third job. We
express a selection by marking 1 to selected jobs and 2 to the others. For example,
maximum solution for jobs is expressed as

[((0,3,2),1),((2,4,3),2),((3,2,5), 1)].

Property p checks that the selected jobs do not overlap each other. So, p can be
defined as follows. The accumulating parameter represents the time the currently
executed job takes until it ends.

p TS =p zs0

p[]e = True

p' (x : zs) e = case markKind x of
1—if e—s x>0 then False else p' zs (t x)
2—ife—sz>0thenp zs (e—szx)elsep zs0

Here the function s takes as its argument a job x and returns the start time of
it, that is, the first element of the 3-tuple. The function ¢ takes as its argument
a job x and returns the time it takes, that is, the second element of the 3-tuple.

We want to maximize the sum of weight of selected jobs, so we can define
the weight function wf as follows:

wf=+/omap f
where f z = case markKind z of
lswe
2—-0.

Here the function w takes as its argument a job z and returns the weight of it,
that is, the third element of the 3-tuple.
Now the weighted interval selection problem is written as follows:

mmm p wf 2.

The weight function wf is written in the required form, and the property p
can be easily rewritten into the required form, though we omit the form. By
applying Theorem 1, we obtain O(Wn) algorithm, where W is the maximum
length among all jobs, because |Acc| = W + 1, |Class| = 2, and k = 2.

6 Related Work

In addition to the related work given in the introduction, we show some others
in this section.

Bird calculated a linear-time algorithm for solving the maximum segment
sum problem on lists [6], which is a kind of maximum marking problem. Bird et
al. studied optimization problems, which include maximum marking problems,
in a more general way that uses relational calculus [7]. Using relational calculus,
they developed a very general framework to treat optimization problems. Their
approach is called thinning theory, and the thinning theorem plays the central
role. But when applying the thinning theorem, one has to find two preorders
which meet prerequisites of the thinning theorem, which makes it difficult for
the theorem to be used for mechanical program generation. And they didn’t show
the relation between the complexity of derived algorithms and specifications, in
return for discussing in a very general framework. We instead focus on a useful
class of optimization problems, maximum multi-marking problems, propose a
very simple way to derive efficient algorithms, and assure the complexity of the
derived algorithms.

Johan Jeuring proposed several fusion theorems, each of which deals with a
class of optimization problems such as subsequence problems on lists, partition
problems on lists, and so on [15]. In order to derive an efficient program for a
problem by his method, one has to select a suitable fusion theorem, which is not
necessary in our method.

De Moor considered a generic program for sequential decision processes [16]
which are specified as follows.

listmin r . filter p . fold (choice fs) [c]

The target problems are on lists and trees. They include maximum multi-marking
problems by letting the list of functions fs, used in the above specification of
sequential decision processes, be a list of marking functions. But property p is
restricted to be suffix-closed. There are many examples whose property is not
suffix-closed.

Recently, Bird showed that the maximum marking problems can be treated
in the framework of thinning theory [2]. He assured the derived algorithm is a
linear time algorithm, and showed the generic Haskell program for solving the
maximum marking problems on polynomial data types. His method also requires
that the property p should be suffix-closed.

In graph algorithms, Borie et al. proposed a method which enables the deriva-
tion of a linear time algorithm for solving the maximum marking problems on
k-terminal graphs, a restricted class of graphs, from logical description of prop-
erties by a graph variant of monadic second order formula [5]. This graph variant
of MSOL uses Inc (v,e), which means a vertex v is an incident of an edge e,
instead of the use of a successor function in ordinary MSOL [17]. Although ap-
pealing in theory, these methods are hardly useful in practice due to a huge
constant factor for space and time.

7 Conclusions

In this paper, we propose an important theorem (generation rule) for generating
efficient algorithms for solving maximum multi-marking problems, which can effi-
ciently handle multi-marking, general weight functions, and property description
with an accumulating parameter. This theorem leads to a more general frame-
work for automatically generating efficient programs for solving a wider class of
combinatorial optimization problems, covering those in the previous work [2-5].
Although this paper focuses on lists whereas the previous work [3] can treat
any polynomial data structure, we believe that it is not difficult to extend this
work to any polynomial data structure, and we leave it as our future work.

References

1. Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to
deforestation. In Proceedings of the 6th International Conference on Functional
Programming Languages and Computer Architecture (FPCA’93), pages 223-232,
Copenhagen, Denmark, June 1993. ACM Press.

2. Richard Bird. Maximum marking problems, 2000. Available from
http://www.comlab.ox.ac.uk/oucl/work/richard.bird/publications/mmp.ps.

3. Isao Sasano, Zhenjiang Hu, Masato Takeichi, and Mizuhito Ogawa. Make it
practical: A generic linear-time algorithm for solving maximum-weightsum prob-
lems. In Proceedings of the 5th ACM SIGPLAN International Conference on
Functional Programming (ICFP’00), pages 137-149, Montreal, Canada, September
2000. ACM Press.

10.

11.

12.

13.

14.

15.

16.

17.

Marshall W. Bern, Eugene L. Lawler, and A. L. Wong. Linear-time computation
of optimal subgraphs of decomposable graphs. Journal of Algorithms, 8:216-235,
1987.

Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation of
linear-time algorithms from predicate calculus descriptions of problems on recur-
sively constructed graph families. Algorithmica, 7:555-581, 1992.

Richard Bird. Algebraic identities for program calculation. The Computer Journal,
32(2):122-126, 1989.

Richard Bird and Oege de Moor. Algebra of Programming. Prentice Hall, 1996.
Oege de Moor and Ganesh Sittampalam. Generic program transformation. In Pro-
ceedings of the 8rd International Summer School on Advanced Functional Program-
ming (AFP’98), LNCS 1608, pages 116-149, Braga, Portugal, September 1998.
Springer-Verlag.

Richard Bird. Introduction to Functional Programming using Haskell (second edi-
tion). Prentice Hall, 1998.

Richard Bird. An introduction to the theory of lists. In Manfred Broy, editor,
Logic of Programming and Calculi of Discrete Design, NATO ASI Series 36, pages
5-42. Springer-Verlag, 1987.

Maarten M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University of
Twente, Dept INF, Enschede, The Netherlands, 1992.

Zhenjiang Hu, Hideya Iwasaki, Masato Takeichi, and Akihiko Takano. Tupling
calculation eliminates multiple data traversals. In Proceedings of the 2nd ACM
SIGPLAN International Conference on Functional Programming (ICFP’97), pages
164-175, Amsterdam, The Netherlands, June 1997. ACM Press.

Silvano Martello and Paolo Toth. Knapsack Problems : Algorithms and Computer
Implementations. Wiley-Interscience series in discrete mathematics and optimiza-
tion. John Wiley & Sons Ltd., 1990.

Thomas Erlebach and Frits Spieksma. Simple algorithms for a weighted interval
selection problem. In Proceedings of the 11th International Symposium on Algo-
rithms and Computation (ISAAC’00), LNCS 1969, pages 228-240, Taipei, Taiwan,
December 2000. Springer-Verlag.

Johan Jeuring. Theories for Algorithm Calculation. Ph.D thesis, Faculty of Science,
Utrecht University, 1993.

Oege de Moor. A generic program for sequential decision processes. In Proceed-
ings of the 7th International Symposium on Programming Languages, Implemen-
tations, Logics, and Programs (PLILP’95), LNCS 982, pages 1-23, Utrecht, the
Netherlands, September 1995.

Wolfgang Thomas. Automata on infinite objects. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 4, pages 133-192.
Elsevier Science Publishers, 1990.

