
Supporting Selective Undo for Refactoring
Xiao Cheng∗, Yuting Chen∗, Zhenjiang Hu†, Tao Zan‡, Mengyu Liu∗, Hao Zhong∗ and Jianjun Zhao∗

∗Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
†National Institute of Informatics, Japan

‡The Graduate University for Advanced Studies, Japan
{x.cheng, chenyt, liumengyu, zhonghao, zhao-jj}@sjtu.edu.cn, {hu, zantao}@nii.ac.jp

Abstract—Due to various considerations, programmers often
need to backtrack their code. Furthermore, as the most recent
edit may not be the wrong edit, programmers sometimes have to
backtrack their code for arbitrary edits, which is referred as a
selective undo in this paper. To meet the needs, researchers have
proposed various approaches to support selective undo. However,
to the best of our knowledge, these approaches can support only
simple edits, and cannot handle refactoring, although most code
editors already provide various refactoring actions. Indeed, it
is challenging to support selective undoes for refactoring, since
multiple code elements and complicated actions can be involved.
In this paper, we present a novel approach that leverages
Bidirectional Transformation (BX) to support selective undoes
for refactoring. We evaluate our approach on a recent refactoring
tool that transfers enhanced for loops to lambda expressions.
Our results show that our approach achieves success ratio of up
to 89%.

I. INTRODUCTION

As human beings, programmers can make mistakes when
coding, so as shown in an empirical study [30], programmers
often need to backtrack their code. To meet the need, most
code editors support undoing from the most recent edit, which
is called a linear undo. Furthermore, as a mistake may not
be the most recent edit, programmers sometimes have to
conduct a selective undo for arbitrary edits, while preserving
the follow-up edits after the mistake [2]. To support selective
undo, Yoon and Myers [31] proposed AZURIE that records
edits (i.e., insert, delete, and replace), and allows programmers
to fix conflicts after conducting a selective undo. However,
despite their positive evaluation results, their tool does not
support selective undo for refactoring.

Program refactoring has attracted great attention from both
industry and academia [8], [18], [21], and most advanced code
editors (e.g., Eclipse [?] and Visual Studio [?]) support various
refactoring actions. Compared with simple edits, refactorings
involve more code elements and more actions. As a result,
it becomes more challenging to support a selective undo for
refactorings. For example, Fig. 1a shows a piece of sample
code. It includes an enhanced for loop that computes the
sum of primes, and it uses EclipseLink [?] to persist the
class. Gyori et al. [9] propose a refactoring tool that refactors
enhanced for loops into lambda expressions. Suppose that
a programmer named Mary is maintaining the sample code,
and knows the above refactoring tool. She may try the tool,
and it refactors the sample code into a lambda expression
as shown in Fig. 1b. After that, she may further insert a
filter and update a parameter name as shown in Fig. 1c.

Later, she reads a discussion on Stackoverflow [?], and realizes
that EclipseLink does not support lambda expressions. As a
result, she has to backtrack her code. If she relies on the
linear undo provided by existing code editors, she has to give
up all the edits after the refactoring action. If she tries the
existing selective-undo tool [31], she will soon find that the
tool does not support selective undo for refactoring actions.
Our approach allows Mary to undo the refactored code while
preserving the follow-up edits as shown in Fig. 1d. To support
such an undo, we have to overcome the following challenge:
Challenge 1. Compared to simple edits such as insert, delete,
and replace, refactoring can involve more code elements and
more actions. As a result, the refactored code can be quite
different from the original code. In such cases, it becomes
difficult to align code elements and to conduct undo correctly.

As a complete concept, our approach has to support both
undo and redo actions for refactoring, which needs to over-
come two additional challenges:
Challenge 2. Typically, undo and redo actions alone shall not
result in different code, which is called the round-trip property.
It is difficult to keep the round-trip property, especially when
refactoring involves multiple code elements and actions.
Challenge 3. Typically, undo and redo actions shall not intro-
duce compilation errors. As refactoring involves multiple code
elements and actions, it can introduce complication errors,
especially when a piece of code is modified after refactoring.

To address the three challenges above, we borrow the idea of
the putback-based updating technique [1], [6], and propose an
approach that supports selective undo and redo for refactoring.
In particular, our approach includes a bidirectional transfor-
mation (BX) engine to ensure the round-trip property, and it
carefully defines putback-based update declarations to reduce
ambiguity in the traditional bidirectional transformation. This
paper makes the following contributions:
• We make the first attempt of formalizing selective undo

and redo for refactoring as a structure-preserved putback-
based updating problem, and solve this nontrivial prob-
lem with the emerging bidirectional transformation [33].
Compared to the traditional bidirectional approaches [28],
[32], our approach is more predictable, especially for
complicated mapping relations.

• We propose an approach that supports selective undo for
refactoring. With predefined mapping relations between
original code and refactored code, our core putback-
based update algorithm automatically propagates edits

1 @Entity
2 public class Prime {
3 @Id
4 private Integer num;
5 public int primeSum(String[] numbers){
6 List<String> l = Arrays.asList(numbers);
7 int sum = 0;
8 for(String e : l){
9 Integer n = Integer.valueOf(e);

10 if(Primes.isPrime(n))
11 sum += n;
12 }
13 return sum;
14 }
15 }

(a) cf1

1 @Entity
2 public class Prime {
3 @Id
4 private Integer num;
5 public int primeSum(String[] numbers){
6 List<String> l = Arrays.asList(numbers);
7 int sum = 0;
8 sum = l.stream()
9 .map(e -> Integer.valueOf(e))

10 .filter(n -> Primes.isPrime(n))
11 .reduce(sum, (x,y) -> x+y);
12 return sum;
13 }
14 }

(b) cf2

1 @Entity
2 public class Prime {
3 @Id
4 private Integer num;
5 public int primeSum(String[] numbers){
6 List<String> l = Arrays.asList(numbers);
7 int sum = 0;
8 sum = l.stream()
9 .filter(e -> e != null)

10 .map(e -> Integer.valueOf(e))
11 .filter(newParameter -> Primes.isPrime(

newParameter))
12 .reduce(sum, (x,y) -> x+y);
13 return sum;
14 }
15 }

(c) cf ′2

1 @Entity
2 public class Prime {
3 @Id
4 private Integer num;
5 public int primeSum(String[] numbers){
6 List<String> l = Arrays.asList(numbers);
7 int sum = 0;
8 for(String e : l){
9 if(e != null){

10 Integer newParameter = Integer.valueOf(e);
11 if(Primes.isPrime(newParameter))
12 sum += newParameter;
13 }
14 }
15 return sum;
16 }
17 }

(d) cf ′1
Fig. 1. A refactoring example

on refactored code back to original code. Moreover,
with more mapping relations, our core putback-update
algorithm can be easily extended to support more types
of refactoring actions.

• We conduct a proof-of-concept experiment to evaluate
the usefulness of our approach. In particular, we define
the mapping relations for the refactoring from enhanced
for loops to lambda expressions [9], and implement our
approach in BiFluX [22]. Our results show that our tool
achieves success ratio of up to 89% on 200 instances of
selective undo for the refactoring.

The remainder of the paper is organized as follows: Sec-
tion II uses a simple example to illustrate the main idea of
selective undo for refactoring. Section III formalizes selective
undo and redo for refactoring as a putback-based updating
problem. Section IV presents the main steps of our approach.
Section V evaluates our approach. Section VII presents related
work, and Section VIII concludes this paper.

II. AN ILLUSTRATIVE EXAMPLE

We next use an example to illustrate the requirements of
selective undo for refactoring, and explain the essential idea
of our approach.

First, let us revisit the refactoring that is proposed by
Gyori et al. [9]. Let a code fragment before refactoring be
a source code fragment and that after refactoring a target one.
The source code fragment (i.e., cf1 in Fig. 1a) contains an
enhanced for loop that takes an array of strings as input,
converts each to an integer, and then sums up all of the primes.
The source code fragment is refactored to a highly abstract
target code fragment (i.e., cf2 in Fig. 1b) which contains a
Collection iterator with functional operations.

After a piece of code is refactored, programmers can make
more edits on the refactored code. For example, let cf ′2 in
Fig. 1c be edited from cf2 by taking two editing operations:
(1) inserting an operation filtering the non-null elements from
the stream in Line 9 and (2) changing the parameter name n
to newParameter in Line 11. In such cases, if programmers
try to undo the refactoring action, we have to revise cf1
appropriately to preserve the follow-up edits. Meanwhile, after
conducting the undo, if programmers modify cf1 and try to
redo the refactoring action, we have to revise cf2 appropriately
to preserve the edits after the undo.

In the above selective undo and redo for refactoring, our
approach must meet two requirements:

• Semantic equivalency. As refactoring does not change

semantics, it requires that after conducting selective undo
or redo, the semantics remain the same, while preserving
the follow-up edits.

• Syntactic traceability. It requires that the code elements
of the original code and the refactored code shall be
traceable so that the follow-up edits can be transferred to
corresponding edits, when an undo or redo is conducted.

To support selective undo for refactoring, our approach has
two major steps:

1) For each refactoring, our approach records the original
code (cf1 in Fig. 1a) and the refactored code (cf2 in
Fig. 1b), and encodes them into an XML file.

2) When programmers undo a refactoring action, our ap-
proach transfers the code structure of cf2 to that of cf1
according to the encoded XML file, and transfers the
follow-up edits according to our putback-based update
algorithm. In particular, our approach puts the insertion
of filter in Fig. 1c to an if statement in Line 9 of
Fig. 1d, and puts the changed parameter in Fig. 1c to its
corresponding construct, i.e., replacing n in Fig. 1a with
newParameter to produce cf ′1 in Fig. 1d.

III. FORMALIZATION

We formalize the selective undo and redo for refactoring as a
structure-preserved putback-based updating problem. We first
abstract code fragments as one or more program constructs, on
which the follow-up edit operations can be propagated from
refactored code fragment to the original one (undo), and vice
versa (redo).

Definition 1: A program construct is captured by its
structure defined as follows:

Atomic structures α ::= string | n[τ]
Sequence structures τ ::= α | () | τ � τ ′ | τ , τ ′ | τ?

In Definition 1, Atomic structures α ∈ Atom are primitive
strings or labeled sequences n[τ]. Sequence structures τ ∈ Seq
are defined with regular expressions such as an empty se-
quence (), an alternative choice τ �τ ′, a sequential composition
τ, τ ′, and an iteration τ?. The choice and composition are
right-nested. In addition, we define τ+ = τ, τ ′ and τ ? = τ �().

By the definition, a program construct can be a text, a
composition of program constructs, or a mix of all above.

If a program construct contains no program constructs,
we call it atomic program construct, otherwise compound
program construct. An atomic program construct can be a
simple statement, an expression, or a variable. A compound
program construct can be a block, a method, or a class. For
example, cf1 in Fig. 1a is composed of a method, and the
method is a compound program construct that is composed
of several statements. Among the statements, the for loop is
also a compound program construct, while the expressions and
some of the statements in the enhanced for loop are treated
as atomic program constructs.

We take each code fragment as a compound program
construct, therefore, the structures of the program constructs

represent those of the code fragments. We use S to denote the
abstract syntax structure of a code fragment.

Let CF be a set of code fragments, and CF1 be a set of
programs whose structures are S1:

CF1 := {cf ∈ CF | cf : S1}

Let CF2 be a set of programs whose structures are S2:

CF2 := {cf ∈ CF | cf : S2}

Let R : CF1 × CF2 be the refactoring relation between CF1

and CF2.
If there exists (cf1, cf2) ∈ R, the selective undo for

refactoring from cf1 to cf2 is to produce cf ′1 ∈ CF1 when cf2
is edited to cf ′2 ∈ CF2, so that (cf ′1, cf

′
2) ∈ R; the selective

redo for refactoring from cf1 to cf2 is to produce cf ′2 ∈ CF2

when cf1 is edited to cf ′1 ∈ CF1, so that (cf ′1, cf
′
2) ∈ R.

We formalize the two general requirements in Section II by
defining the next three properties. When the selective undo or
redo for refactoring needs to be conducted, these properties
should be kept.

1) Structure-preserved property. During the process of the
undo or redo, cf1 and its edited version (i.e., cf ′1) need
to keep the structure (say S1). Similarly, cf2 and its edited
version (i.e., cf ′2) need to keep the structure (say S2). That
is,

(cf1, cf2) ∈ R (cf ′1, cf
′
2) ∈ R

cf1 : S1 =⇒ cf ′1 : S1 cf2 : S2 =⇒ cf ′2 : S2
(1)

2) Round-trip property. It denotes that (1) if no edit is made
to refactored code fragment (i.e. cf2), no edit should be
made to original code fragment (i.e., cf1) when the undo
is conducted, or (2) if refactored code fragment (i.e. cf2)
is edited to cf ′2, after the undo is conducted, these edits
need to be reflected in original code fragment (i.e., cf1)
to get cf ′1, and once the redo in conducted, cf ′2 should
be reproduced again. That is,

(cf1, cf2) ∈ R
Undo(cf1, cf2) = cf1

Undo(cf1, cf
′
2) = cf ′1

Redo(cf ′1) = cf ′2
(2)

3) Determinacy. It denotes that a unique result needs to be
given in order to eliminate any ambiguity when either
undo or redo is conducted, i.e.,

(cf ′1a, cf
′
2) ∈ R (cf ′1b, cf

′
2) ∈ R

cf ′1a = cf ′1b
(cf ′1, cf

′
2a) ∈ R (cf ′1, cf

′
2b) ∈ R

cf ′2a = cf ′2b

(3)

IV. APPROACH

We borrowed the putback-based updating technique from
bidirectional transformation (BX) to implement selective undo
and redo for refactoring through building the mapping rela-
tionship between program constructs. In this section, we first
give a brief introduction to BX and its putback-based updating
technique and then present the technical details of the selective
undo and redo for refactoring.

Source
DTD

BiFluX
Program

Target
DTD

Bidirectional
Compiler

get

put

Bidirectional Evaluator

Source
XML

Updated Source
XML

Target
XML

Updated Target
XML

Fig. 2. Framework of BiFluX

A. Bidirectional Transformation

The bidirectional transformation consists of a pair of func-
tions (“get” and “put”) which plays an important role in
maintaining consistency of two related models. Function “get”
maps from a concrete source model to an abstract target
model. Function “put” reflects the modifications on the ab-
stract target model back to the concrete source model.

get : S → T

put : S × T → S

As it is error-prone to write and maintain the two functions
(i.e., get and put) manually, many researchers have proposed
various approaches that aid the programming of bidirectional
transformations. For example, Foster et. al [6] propose lenses
for synchronizing tree-structured data. Lenses consist of a list
of primitive composable lenses, where each one is elaborately
designed with get, put semantics, and lens composition opera-
tor. Those primitives can be composed using lens composition
to accomplish large programs to synchronize complex tree-
structured data. Hidaka et. al [10] propose GroundTram which
gives a bidirectional semantics (put semantics) of an existing
graph query language UnQL to make it workable on graphs,
which is useful in model-driven development.

While normally abstract model only contains part of the
source information, and the correct “put” is not unique. The
proposed approaches above give a fixed “put” semantics which
may not be applicable in real usage, e.g., the get function
does not know how the refactored code fragment will be
edited while the edit operation on the refactored code fragment
needs to be reflected to that before refactoring through the put
function. therefore Hu et. al [33], [23] propose a putback-
based bidirectional transformation language called BiFluX for
XML data, which lets the programmer write a put function
and derives a unique get function automatically.

Figure 2 shows the framework of BiFluX. Both source
and target data are represented in XML and conform to the
corresponding Document Type Definitions (DTDs); the DTDs
are used for validating the corresponding XML before BX

cf1' cf2'

cf1

Undo/Redo
(Put/Get)

Redo
Undo

Refactoring

Edit Operation
Edit Operation

cf2

1

2

2

1

Fig. 3. Overview of putback-based selective undo and redo

program is executed and also guiding the construction of the
update program; a BiFluX update program needs to be written
by programmers for describing how to update a source XML
according to a target XML by inferring possible updates on the
target and reflect them back to the source with the specified
update strategy.

Based on the putback-based bidirectional transformation
techniques [23], [22], we know that if the put function satisfies
the two properties: “put s” is injective and putting t′ twice on
s produces the same s′, the following propositions are also
satisfied:

1) There exists a get function such that get(s) = t and
put(s, t) = s are well-behaved [10].

2) The get function in 1) is the only one such that get and
put are well-behaved.

B. Overview of Putback-based Selective Undo and Redo

We solve selective undo and redo for refactoring under the
framework of bidirectional transformation. The original code
fragments before and after refactoring (e.g., cf1 and cf2) are
treated as source model and target model, respectively. We
conduct undo and redo by the two functions put and get,
respectively. We employ BiFluX to support the bidirectional
transformation mechanism for the consideration that it pro-
vides a simple way to define the relations between source and
target models and provides the mechanism that checks whether
the structures of code fragments satisfy a certain structure
template to ensure the syntactical correctness.

Figure 3 shows an overview of putback-based selective undo
and redo for refactorings. cf1 and cf2 are two code fragments,
where cf2 is refactored from cf1. The code fragment cf ′2 is
edited from cf2. Our approach implements undo by defining
the put function which embeds program constructs in cf ′2
into cf1 to generate cf ′1, and redo is conducted through the
derived get function from put function automatically. Once cf1
is edited to cf ′1, the get function will extract cf ′2 from cf ′1.

For different refactorings, the structures of code fragments
are quite different, and there exist different mapping relations

iterator

expression expression

l e

operation

lambdaExpression

expression expression

e newInteger(e)

operation

lambdaExpression

expression expression

n Primes.IsPrime(n)

operation

lambdaExpressionexpression

sum expression

+

enhancedForLoop

expression expression

l e

statement

block

statement

expression

Integer n =

expression

new Integer(e)

statement

expression

Prime.isPrime(n)

statement

expression

sum

expression

+=

expression

n

Structure Template
<!ELEMENT expression (#PCDATA)>
<!ATTLIST expression id CDATA #REQUIRED
 marker CDATA #REQUIRED>
…

Code Fragment
for(String e : l){
 Integer n = new Integer(e);
 if(Primes.isPrime(n))
 sum += n;
}

Structure Template
<!ELEMENT expression (#PCDATA)>
<!ATTLIST expression id CDATA #REQUIRED
 marker CDATA #REQUIRED>
…

Code Fragment
sum = l.stream()
 .map(e -> new Integer(e))
 .filter(n -> Primes.isPrime(n))
 .reduce(sum, (x,y) -> x+y);

Refactoring Algorithm

Fig. 4. Structure of code fragments

between the program constructs of code fragments before and
after refactorings. The put and get functions are also varied,
but the major steps are as follows:

1) Defining the code structure templates of code fragments
before and after refactoring (Section IV-C).

2) Generating functions undo and redo (Section IV-D).
3) Performing undo or redo (Section IV-E).
Since the selective undo and redo are implemented through

put and get respectively, we make no differences between undo
and put, redo and get in the remainder of the paper.

C. Define the Structure Templates of Code Fragments

Refactoring algorithms tell us what kind of code fragments
will be refactored and what kind of code fragments will be
generated. In other words, we know the structures of the code
fragments before and after refactoring and use a template,
which is called structure template, to describe the structure.

The structure templates are defined through assigning the
atomic program construct and compound program construct
of the code fragments. For example, each leaf node in the
AST of the code fragment can be assigned as an atomic

program construct. However, it is not always necessary to
assign such fine-grained program construct. For particular
refactoring algorithm, some coarse-grained atomic program
constructs (i.e, expression and statement) are preferred. The
grain of the atomic program construct is determined by the
grain of code edited. After the atomic program constructs are
defined, the compound program constructs will be defined by
composing atomic program constructs. From the definition of
the structure template, we can see that the code fragments are
represented as trees.

Each time the undo or redo is conducted, the structure of
the code fragments will be checked. If it satisfies the structure
template, the undo or redo will continue, otherwise, the undo
or redo will abort and a notification will be sent to the user.
As Fig. 4 shows, the code fragments are transformed to tree
structure checked by the structure template.

Let us revisit the example in Section I. In this example
we define the structure template of enhanced for loop and
Collection iterator with functional operations as follows:
The enhanced for loop consists of two expressions, which de-
note the Collection and its representative element respec-

TABLE I
STRUCTURE TEMPLATES OF FOR LOOP AND ITERATOR

Program Construct Structure Template

expression <!ELEMENT expression (#PCDATA)>
<!ATTLIST expression id CDATA #REQUIRED marker CDATA #REQUIRED>

statement

<!ELEMENT statement (expression+ | block)>
<!ELEMENT block (statement*)>
<!ATTLIST statement id CDATA #REQUIRED marker CDATA #REQUIRED>
<!ATTLIST block id CDATA #REQUIRED marker CDATA #REQUIRED>

enhanced for loop <!ELEMENT enhancedForLoop (expression, expression, statement)>
<!ATTLIST enhancedForLoop id CDATA #REQUIRED marker CDATA #REQUIRED>

λ expression <!ELEMENT lambdaExpression (expression, expression)>
<!ATTLIST lambdaExpression id CDATA #REQUIRED marker CDATA #REQUIRED>

operation <!ELEMENT operation (expression, expression?, lambdaExpression)>
<!ATTLIST operation id CDATA #REQUIRED marker CDATA #REQUIRED>

iterator <!ELEMENT iterator (expression, operation+)>
<!ATTLIST iterator id CDATA #REQUIRED marker CDATA #REQUIRED>

TABLE II
ALIGNED STATEMENTS AND OPERATIONS

Statement Operation
Integer n = new Integer(e); map(e -> new Integer(e))
if(Primes.isPrime(n)) filter(n -> Primes.isPrime(n))
sum += n; reduce(sum, (x,y) -> x+y);

tively, and a statement. An expression is an atomic program
construct represented by a string, while the statement is a com-
pound program construct that consists of either expressions
or a block. Similarly, the structure template of Collection
iterator is defined based on expressions and statements. Table I
shows the structure template of the enhanced for loops and
Collection iterator that represented as DTD.

As BiFluX supports the transformation of files in XML,
we define a language based on srcML [5] to represent code
fragment. Here, srcML is an extended XML language for
representing code. In practice, DTD is widely used to define
structures, legal elements, and attributes of XML documents.
As we define code in a srcML-based language, the code
structures are specified by DTD. In particular, a program
construct is treated as an element in srcML. The element
name denotes the name of a construct; the content of an
element includes more detailed elements or atomic constructs
in the text format; the attributes (or wrapped ones) denote the
attributes of a program construct.

After defining the structure template of code fragments, the
program constructs in the source code fragment and the target
code fragment should be aligned so that once one is edited,
we know which one should be modified accordingly.

The mapping relation between two compound program con-
structs is composed by a set of mapping relations between their
sub-constructs, which can be established when a code fragment
is refactored to another. As Fig. 4 shows, the refactoring
algorithm plays a role in aligning the program constructs. Let
a construct c2j ∈ C2 be refactored from c1i ∈ C1. A mapping
c1i → c2j is constructed between the two constructs, which
means c1i and c2j are aligned. The relations between program
constructs can be built iteratively until no relations can be
found. We set each pair aligned program constructs a marker,

through which a program construct can be easily referred and
matched with another one.

The alignment between the two compound program con-
structs is represented as a set.

C1 × C2 : {(c1i, c2j) | c1i ∈ C1, c2j ∈ C2, c1i → c2j}

For example, the Collection and its representative el-
ement in the enhanced for loop can be aligned to those
in the iterator, and a statement in for loop can be aligned
with a functional operation in the iterator if their composed
expressions are aligned. LambdaFicator [9] transforms all
statements (but if statements) to map operations by default.
For if statements which have no else branch and no state-
ments after them, they are transformed to filter operations.
Finally, the last statement is transformed to an eager operation.
Therefore, the statements and operations in the example are
aligned as Table II shows.

D. Generating Undo and Redo Functions

We reduce the problem of selective undo and redo for
refactoring to traditional data transformation, through defining
the structure template of both source and target code fragments
and aligning the corresponding program constructs.

For a particular code refactoring, an undo function need
to be designed to describe how to utilize the edited program
constructs in the target code fragment to update its aligned
ones in the source code fragment, such that the new source
code fragment (undo result) preserves the follow-up edit
operation after refactoring. Algorithm 1 presents a generic
undo function which embeds constructs of edited target code
fragment (target′) in the source code fragment source. The
undo function is defined to handle the aligned constructs
in source with those in target′ followed by an activity of
generating new source:

1) If c2j in target is edited, the aligned program construct
in the code needs to be edited (lines 8-14);

2) If no program construct in target is aligned with a
construct (say c1i) in the source, c1i needs to be removed
from the source(lines 3-4);

Algorithm 1 Undo
Input:

A program construct for source C1 : {c11, . . . , c1n}
A program construct for edited target C ′2 : {c21, . . . , c2m}

Output:
A program construct for new source C ′1 : {c′11, . . . , c′1n}

1: for 〈c1i ∈ C1, c2j ∈ C2〉 in aligned construct pairs do
2: if c1i 6= ε && c2j = ε then
3: delete c1i;
4: else if c1i = ε && c2j 6= ε then
5: create c1t ∈ C1 st. 〈c1t, c2j〉 in aligned pairs;
6: goto Line 9;
7: else if c1i 6= ε && c2j 6= ε then
8: if c1i is atomic && c2j is atomic then
9: c1i ← c2j

10: else
11: Undo(c1i, c2j)
12: end if
13: end if
14: end for

Algorithm 2 Redo
Input: A program construct for source C1.
Output: A program construct for target C2.

1: if C1 is atomic then
2: C2 ← C1

3: else if C1 is composed of { c11, c12, · · · , c1n} then
4: {c21, c22, · · · , c1m} ← Redo({c11, c12, · · · , c1n}),

where c2j = redo(c1i);
5: C2 ← {c21, c22, · · · , c1m}
6: end if

3) If a program construct c2j is newly inserted into target,
a corresponding program construct needs to be generated
and inserted into source (lines 5-7).

We find that the undo function defined based on Algorithm 1
satisfies the two properties referred in Section IV-A. With
BiFluX, the unique redo function will be derived automatically
such that redo and undo are well behaved. Although the de-
rived get function are binary code in BiFluX, for convenience,
we recover it in the pseudo code as Algorithm 2 shows. While
it is impossible to derive a redo function from arbitrary the
redo function, the syntax of BiFluX is designed in order
to make a given program derivable. A subset of XPath is
used to retrieve information from a specific location in an
XML, and the bidirectional semantics are carefully designed
to remove ambiguity; XQuery expressions are employed to
represent XML data. Evaluation and inverse computation of
expression are designed. Pattern matching on source and target
are supported to decompose them into small components; An
alignment operator is designed to handle updating a source
list of elements with a target list of elements. All of these
are composed together to construct a BiFluX program and
it is guaranteed to be correct respect to the bidirectional

TABLE III
PROJECT LIST.

Project #For Loops #SLOC of For Loops #Operations
ANTLR 4 46 3.25
FitNesse 2 23 2
Hadoop 3 30 2.33
Tomcat 2 22 2.5

jEdit 2 41 3.5
FindBugs 2 34 3.5

jUnit 2 30 3
Soot 3 43 3.33
Total 20 269 2.95

transformation properties.

E. Performing Undo and Redo

After the undo and redo functions are derived, the refac-
toring can be selectively redone or undone automatically. In
particular, if cf1 is edited to cf ′1, the redo function is called
to produce cf ′2; if cf2 is edited to cf ′2, the undo function is
called to produce cf ′1. Since the redo and undo functions are
well-behaved, the round-trip property referred in Section III is
ensured.

V. EVALUATION

In order to evaluate our approach, among various refactoring
techniques [18], we choose LambdaFicator to perform refac-
toring in our experiment, since it is complicated refactoring
and easy to have edit operation conflict with the refactoring
when editing the refactored code. It will be inspiring if
our approach works well on undo and redo for such kind
complicated refactoring. We conduct the experiment, and try
to answer the following two research questions:

1) How effectively does our approach support selective undo
and redo for refactoring?

2) How much effort is saved compared with using a linear
undo and redo mechanism in the text editor?

In Section V-B, the experiment result shows that our ap-
proach achieves 72.5% and 89% success ratio of redo and
undo, respectively. Through the failure cases, we summarize
two findings. In Section V-C, the result shows that our ap-
proach saves a lot of effort compared with using a linear undo
and redo mechanism in the text editor.

A. Experimental Setup

We selected eight open source projects, which contain a lot
of enhanced for loops, as the subject projects, and randomly
selected several for loops from each project.

Table III shows the statistic of the selected projects. Column
“#For Loops” lists the number of selected enhanced for
loops. Column “#SLOC of Fors” lists lines of for loop code.
For each selected for loop, we use LambdaFicator [9] to
produce the Collection iterator with functional operations.
The produced iterator is in the same manner and is of the same
functionality as the original code. Column “#Operation” lists
the average number of functional operations in the refactored
code. In total, the average #SLOC of the loops is 13.45,
and the average number of functional operation is 2.95. By

the definition of LambdaFicator, 39 out of the 59 (66.1%)
functional operations are eager (e.g., filter, map), and the
remaining 20 operations are lazy (e.g., reduce, etc.).

Although our study is not large-scale, it still reflects the
general nature, since the distribution of our data is largely
consistent with the result of a large-scale study [9]. In other
words, we did not select those samples that are biased in favor
of our approach.

As the produced code is in the same manner as shown in
Section IV-C, we used the same DTD files to define code
structure templates in our evaluation. For each for loop and
its refactored one, we made ten respective edit operations and
checked whether the selective undo for refactoring is correct.
Here, for each pair of produced code fragments cf ′1 and cf ′2,
we use LambdaFicator [9] to refactor cf ′1 again and compare
the re-refactored result with cf ′2. Only when they are exactly
the same, we decide that the produced code is correct, and the
selective undo or redo is successful.

In this paper, we use FOR and ITERATOR to denote the
set of for loops and the set of their refactored ones and use
FOR′ and ITERATOR′ to denote the set of edited for loops
and the set of edited refactored code.

Even if redo is not significantly different from refactoring
again, we also conduct redo in the experiment, since undo
and redo are a pair of inverse actions. When performing
redo, we made edit operations on FOR and checked whether
ITERATOR′ is correct; when performing undo, we made
edit operations on ITERATOR and checked whether FOR′

is correct. In both cases, we checked the saved efforts by
counting generated lines of code.

B. Effectiveness

Table IV shows the result of redo. Column “#Versions”
lists the number of versions. In each version, we made, at
least, an edit operation on a for loop, and each for loop
has ten versions. Columns “#Insert”, “#Delete” and ”#Update”
list number of inserting, deleting and updating, respectively.
In total, 35.6% of edit operations are inserting, 16.9% are
deleting, and 47.5% are updating.

Table V shows the result of undo. Its columns have the same
definitions as Table IV. In total, 43.8% of edit operations are
inserting, 18.3% are deleting, and 37.9% are updating.

Here, we made more inserting and updating edit operations
than deleting modifications, due to the grammar restrictions.
Every edit operation guaranteed the syntactical correctness of
programs, which means each version after revision satisfies
the specified structure.

In Tables IV and V, the columns named “#Error” list
number of incorrect results of redo and undo or failures in
producing the results of redo and undo, and the columns
named “Success Ratio” list their success ratio. As listed in
Column “Success Ratio”, the average success ratio of redo in
our approach is up to 72.5%, while the undo achieved 89%
success ratio in our experiment.

Although our success ratios are relatively high, there is still
space for improvement. In total, 55 errors in the process of

redo and 22 errors in the process of undo are produced. We
investigated these errors, and our findings are as follows:

Finding 1. In the process of redo, most of the error cases are
related to inserting and deleting modification on statements. As
these edits may change the data flow and variable availability,
it can lead to the increment, decrement, or name change of
multiple functional operations in ITERATOR. As our imple-
mentation does not contain such information, it increases or
decreases the functional operations according to the edits,
which is different from what LambdaFicator does. If we
supplemented the information, these errors would be avoided.
For example, consider the following for loop:

for(int type : getItemTypes()) {
if(type != 0){
width += getItemIcon(type).getIconWidth();

}
}

We inserted a statement as follows:

for(int type : getItemTypes()) {
if(type != 0){
width += getItemIcon(type).getIconWidth();
System.out.println(width);

}
}

To refactor the edited code fragment again with LambdaFi-
cator, the reduce operations should be modified. As our
implementation does not analyse variable availability, it skips
this edit. Schürr [26] proposes a triple graph grammar that
specifies interdependencies between graph-like data structures.
It could be feasible to leverage the graph grammar to define
fine-grained m-to-n inter-graph relations between abstract syn-
tax trees and a data flow graph, and the relations could be
useful to reduce this type of errors.

In addition, if the edits violate the preconditions of the
refactoring, LambdaFicator cannot produce any results, we
also judge that the redo is unsuccessful.

Finding 2. In the process of undo, most of the er-
rors are caused by functional operation chains, and es-
pecially, half of the all functional operation chains are
in a form of filter().operation, and 11% are
map().operation. When maintainers edit the internal iter-
ators of functional operation chains, they inject new identifiers
to represent parameters of lambda expressions. As a result,
the functional operations of such a functional operation chain
do not have the same parameters. When perform undo based
on these functional operation chains, it produces undefined
or redefined variables in for loops. For example, in the
following functional operation chain, the parameter of the
filter operation is tp or type:

width = getItemTypes().stream()
.filter((tp) -> tp != 0)

//Both ’tp’ and ’type’ are correct.
.map((type) -> getItemIcon(type).getIconWidth())
.reduce(width, Integer::sum);

The result of undo is as follows:

TABLE IV
RESULTS OF REDO.

Project #Versions #Insert #Delete #Update Total Length #Error Success Ratio
ANTLR 40 20 10 16 46 3.5 12 70%
FitNesse 20 7 1 13 21 2.3 3 85%
Hadoop 30 12 8 15 35 2.5 12 60%
Tomcat 20 8 4 15 27 2.6 5 75%

jEdit 20 12 4 7 23 3.75 6 70%
FindBugs 20 5 3 14 22 3.6 3 85%

jUnit 20 6 2 12 20 3.2 4 80%
Soot 30 10 6 15 31 3.47 10 66.7%
Total 200 80 38 107 225 3.14 55 72.5%

TABLE V
RESULTS OF UNDO.

Project #Versions #Insert #Delete #Update Total #SLOC #Error Success Ratio
ANTLR 40 23 7 17 47 483 5 87.5%
FitNesse 20 14 1 12 27 251 2 90%
Hadoop 30 13 8 13 34 309 2 93.3%
Tomcat 20 10 6 8 24 233 2 90%

jEdit 20 12 6 7 25 416 2 90%
FindBugs 20 10 3 8 21 349 3 85%

jUnit 20 8 2 10 20 308 3 85%
Soot 30 13 10 14 37 432 3 90%
Total 200 103 43 89 235 2772 22 89%

for(int tp : getItemTypes()) {
if(tp != 0){

width += getItemIcon(type).getIconWidth();
}//Error, because ’type’ is undeclared.

}

In the above code fragment, the type variable is undefined.
Typically, a refactoring has some preconditions to avoid such
errors. If two functional operations o1 and o2 are chained as
o1.o2, we propose the constraints as follows:
• o1 is a filter functional operation, and the parameter

of the lambda expression in o2 is the same as that in o1;
• o1 is a map functional operation, and the lambda ex-

pression of o1 returns a variable that is the same as the
parameter of the lambda expression of o2;

• o1 is a map functional operation with a lambda expression
returning an expression, the parameter of the lambda
expression of o2 does not conflict with any parameters
of lambda expression in existing functional operations.

In summary, our results show that the selective undo and
redo for refactoring can achieve relatively high success ratio
in our approach. We further analyse those failure cases, and
we propose two findings that could potentially reduce failures
during the selective undo and redo.

C. Saved Effort

We measure the saved effort compared with using redo
and undo mechanism in text editors by counting the lines of
code that is inserted, deleted and removed automatically in
our approach, which should have been done manually by the
programmers.

Table VI shows the saved effort in undo. Comparing with
the lines of code in Table III, we can decide that our im-
plementation saves a lot of manual edit operation. In redo,

TABLE VI
SAVED #SLOC IN UNDO.

Project Insert Delete Update Total
ANTLR 34 11 17 62
FitNesse 23 2 12 37
Hadoop 19 10 13 42
Tomcat 14 7 8 29

jEdit 16 7 7 30
FindBugs 14 5 8 27

jUnit 12 4 10 26
Soot 18 13 14 45
Total 150 59 89 298

as a functional operation chain is counted as a line of code,
only one line of code should have been edited. However, as
the functional operation chain is complicated, it is still tricky
and error-prone to edit a line of functional operation chain.
With the support of our approach, if all of the refactoring is
implemented with our undo and redo mechanism, software
maintainers do not solely rely on manual effort to selective
undo and redo for refactoring any more.

Since the refactoring is treated as an atomic edit, the
refactoring in our experiment is actually treated as using a
statement (iterator) to replace another statement (enhanced
for loop) when the existing selective redo/undo editor is used.
In this case, the edits after refactoring are actually manually
preserved to handle the conflict. It has no significant with
manual work. Therefore, in our experiment, we measure the
saved effort only through comparing with using redo and undo
mechanism in text editors instead of selective one.

D. Threats to Validity

In our evaluation, there exist two main threats:

External validity. Although we try to use a relatively
complicated refactoring which is easily cause the operation
conflict with later edit operation, hoping that working on
these complicated cases can quarantine working well on those
simpler cases. It still cannot represent all kinds of refactoring.
Nevertheless, we would like to try it to some other refactoring
and make it more convincing in the future work.

Internal validity. To reduce possible bias, we randomly
apply inserting, deleting, and updating during the process of
undo and redo, posing an internal validity. As inspired by our
evaluation, we plan to eliminate the threat by introducing data
flow analysis, variable availability analysis, and preconditions
in future work.

VI. DISCUSSION AND FUTURE WORK

Currently, our approach has been implemented to a par-
ticular non-trivial refactoring from enhanced for to lambda
expression, which could well represent such kind of refactor-
ing, in which there exist certain mapping relation between the
program constructs of the code fragments before and after
refactoring in the refactoring algorithm. We would like to
extend and implement our approach on more such kinds of
refactorings in the future work to make them more convincing
and benefit more developers.

There exist some potential for applying the putback-based
approach to variants of code living on separate but related
branches of a repository. Supposing there is a project with
a development branch and a release branch. A patch comes
in to fix the release branch and then must be applied to the
development branch. But the development branch has been
edited since the time it forked from the release branch. We
can firstly put the original development branch to the unfixed
release branch to build the bidirectional transformation be-
tween the two branches. Then when either branch is modified
or fixed, the modification could be reflected to the other branch
through the put or get function to avoid drawback the most
recent edits before propagate the bug fixing action.

VII. RELATED WORK

A. Selective Undo

Selective undo has been well studied in the field of graphi-
cal, interactive editors. Berlage [2] implemented the selective
undo model in GINA though the reverse operation of the
selected command to the current context. Myers et al. [20],
[19] followed the paradigm and improved the mechanism to
supporting select new object. Emacs and DistEdit [24] allowed
user to select a region of text and undid the most recent edit
operations to the region. Yoon et al. [31] proposed AZURIE
that records edits (i.e., insert, delete, and replace) on code, and
allowed programmers to fix conflicts after conducting selective
undo. Maruyama [16] proposed an approach to undoing the
refactoring which did not conflict with other edit operation or
refactoring by keeping a chain of past refactorings for each
source file and monitoring the most recent refactoring in each
chain. However, all of the above techniques do not support
selective undo for refactoring.

B. Refactoring

Program transformations can be conducted between two
programs or two representations of a program. Most pro-
gram transformation techniques are uni-directional. Program
refactoring advocates an idea of transforming one program
into another which holds the same external behaviors as the
original program [8], [18], [21], meanwhile few refactorings
support bi-directional transformations. Schürr has proposed
triple graph grammars [26] which extend the original pair
graph grammar approach [25] to specify the interdependencies
between graph-like data structure, and applied it to define
fine-grained m-to-n inter-graph relationships between program
representations (e.g., abstract syntax tree and control flow
graph) [14]. However, there still remains a difficulty about
how to transform two programs bidirectionally.

C. Bidirectioanl Transformation

In this paper, we have presented a putback-based updating
approach to supporting selective undo for refactoring. The
notion of putback-based updating originates from the database
community, for describing how the relation between two data
sets is maintained, and when one is updated, how the other
is updated [12], [13]. The putback-based updating strategy
has been applied in the domain of software engineering,
as a technique for model-to-model transformations. Lämmel
[15] has identified the category of coupled transformations:
an updating of one artefact requires an updating of another
dependent artefact to be performed such that the consistency
between them is guaranteed. Xiong et al. [29] have proposed
Beanbag, an OLC-based language for defining and checking
model consistencies, which allows updates to be defined and
propagated between models. Yu et al. [32] have proposed a
tool-support approach, blinkit, to maintaining invariant trace-
ability between user-modified and template-generated code
in model-driven development. It utilizes a BX engine called
GRoundTram [10], which helps to guarantee the round-trip
property in bidirectional model transformations. Song et al.
[27] have utilized BX to link software architecture to programs
and eliminate the conflicts between them. Foster et al. [6]
have introduced a domain specific programming language
with which a number of lenses can be defined. Since then, a
variety of lenses [3], [4], [7], [11] have then been developed.
Compared with the above work, we utilize the synchronization
feature to solve the problem of selective undo for refactoring.

VIII. CONCLUSION

In this paper, we have formalized selective undo for refac-
toring as a putback-based updating problem and proposed an
approach to solving the problem. We define a BX function
between code fragment before and after refactoring, which
can help propagate the edit operation when either is edited.
We have also conducted a controlled experiment to evaluate
the approach. The results show that our approach provides
with support in selective undo for refactoring effectively.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
feedback. We also thank Hiroyuki Kato and Soichiro Hi-
daka for their invaluable suggestions on bidirectional trans-
formations. Yuting Chen is the corresponding author. This
research is sponsored by 973 Program in China (Grant No.
2015CB352203), and the National Nature Science Foundation
of China (NSFC) (Grant Nos. 61572312, 61572313, and
61272102). This work is also partially supported by JSPS
Grant-in-Aid for Scientific Research (A) No. 25240009 in
Japan. Hao Zhong is partially supported by Science and Tech-
nology Commission of Shanghai Municipality’s Innovation
Action Plan (No.15DZ1100305).

REFERENCES

[1] F. Bancilhon and N. Spyratos. Update semantics of relational views.
ACM Transaction on Database System, 6(4):557–575, 1981.

[2] T. Berlage. A selective undo mechanism for graphical user interfaces
based on command objects. ACM Trans. Comput.-Hum. Interact.,
1(3):269–294, 1994.

[3] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt.
Boomerang: resourceful lenses for string data. In POPL, pages 407–419,
2008.

[4] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses: a
language for updatable views. In PODS, pages 338–347, 2006.

[5] M. L. Collard, J. I. Maletic, and B. P. Robinson. A lightweight
transformational approach to support large scale adaptive changes. In
Proc. ICSM, pages 1–10, 2010.

[6] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt.
Combinators for bi-directional tree transformations: a linguistic ap-
proach to the view update problem. In Proc. POPL, pages 233–246,
2005.

[7] J. N. Foster, A. Pilkiewicz, and B. C. Pierce. Quotient lenses. In ICFP,
pages 383–396, 2008.

[8] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Boston, MA, USA, 1999.

[9] A. Gyori, L. Franklin, D. Dig, and J. Lahoda. Crossing the gap
from imperative to functional programming through refactoring. In
ESEC/FSE, pages 543–553, 2013.

[10] S. Hidaka, Z. Hu, K. Inaba, H. Kato, and K. Nakano. Groundtram: An
integrated framework for developing well-behaved bidirectional model
transformations. In Proc. ASE, pages 480–483, 2011.

[11] M. Hofmann, B. C. Pierce, and D. Wagner. Edit lenses. In POPL, pages
495–508, 2012.

[12] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for
developing structured documents based on bidirectional transformations.
In PEPM, pages 178–189, 2004.

[13] S. Kawanaka and H. Hosoya. bixid: a bidirectional transformation
language for xml. In ICFP, pages 201–214, 2006.

[14] E. Kindler and R. Wagner. Triple graph grammars: Concepts, extensions,
implementations, and application scenarios. Technical report, Software
Engineering Group, Department of Computer Science, University of
Paderborn, 2007.

[15] R. Lämmel. Coupled software transformations. In IWSET, pages 31–35,
2004.

[16] K. Maruyama. An accurate and convenient undo mechanism for
refactorings. In 13th Asia-Pacific Software Engineering Conference
(APSEC 2006), pages 309–316, 2006.

[17] T. Mens and T. Tourwé. A survey of software refactoring. IEEE
Transactions on Software Engineering, 30(2):126–139, 2004.

[18] T. Mens and T. Tourwé. A survey of software refactoring. IEEE
Transactions on Software Engineering, 30(2):126–139, 2004.

[19] B. A. Myers. Scripting graphical applications by demonstration. In
Proceeding of the CHI ’98 Conference on Human Factors in Computing
Systems, pages 534–541, 1998.

[20] B. A. Myers and D. S. Kosbie. Reusable hierarchical command objects.
In Conference on Human Factors in Computing Systems, CHI ’96, pages
260–267, 1996.

[21] W. F. Opdyke. Refactoring: A program restructuring aid in designing
object-oriented application frameworks. PhD thesis, University of
Illinois at Urbana-Champaign, 1992.

[22] H. Pacheco, Z. Hu, and S. Fischer. Monadic combinators for ”putback”
style bidirectional programming. In Proc. PEPM, pages 39–50, 2014.

[23] H. Pacheco, T. Zan, and Z. Hu. Biflux: A bidirectional functional update
language for xml. In Proc. PPDP, pages 147–158, 2014.

[24] A. Prakash and M. J. Knister. A framework for undoing actions in
collaborative systems. ACM Trans. Comput.-Hum. Interact., 1(4):295–
330, 1994.

[25] T. W. Pratt. Pair grammars, graph languages and string-to-graph
translations. J. Comput. Syst. Sci., 5(6):560–595, 1971.

[26] A. Schürr. Specification of graph translators with triple graph grammars.
In WG, pages 151–163, 1994.

[27] H. Song, G. Huang, F. Chauvel, Y. Xiong, Z. Hu, Y. Sun, and
H. Mei. Supporting runtime software architecture: A bidirectional-
transformation-based approach. Journal of Systems and Software,
84(5):711–723, 2011.

[28] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei. Supporting
automatic model inconsistency fixing. In Proc. ESEC/FSE, pages 315–
324, 2009.

[29] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei. Towards
automatic model synchronization from model transformations. In Proc.
22nd ASE, pages 164–173, 2007.

[30] Y. Yoon and B. A. Myers. An exploratory study of backtracking
strategies used by developers. In 5th CHASE, pages 138–144, 2012.

[31] Y. Yoon and B. A. Myers. Supporting selective undo in a code editor.
In Proc. ICSE, pages 223–233, 2015.

[32] Y. Yu, Y. Lin, Z. Hu, S. Hidaka, H. Kato, and L. Montrieux. Maintaining
invariant traceability through bidirectional transformations. In Proc.
ICSE, pages 540–550, 2012.

[33] T. Zan, H. Pacheco, and Z. Hu. Writing bidirectional model transfor-
mations as intentional updates. In ICSE Companion, pages 488–491,
2014.

