
Reusable Self-Adaptation through Bidirectional
Programming

Kevin Colson
University of Namur

Namur, Belgium
kevin.colson

@student.unamur.be

Robin Dupuis
University of Namur

Namur, Belgium
robin.dupuis-1

@student.unamur.be

Lionel Montrieux
National Institute of

Informatics
Tokyo, Japan

lionel@nii.ac.jp

Zhenjiang Hu
National Institute of

Informatics
Tokyo, Japan

hu@nii.ac.jp

Sebastián Uchitel
University of Buenos Aires -
Imperial College of London
Buenos Aires, Argentina -

London, UK
s.uchitel@imperial.ac.uk

Pierre-Yves Schobbens
University of Namur

Namur, Belgium
pierre-yves.schobbens

@unamur.be

ABSTRACT
In self-adaptive systems, an adaptation strategy can apply
to several implementations of a target system. Reusing this
strategy requires models of the target system that are in-
dependent of its implementation. In particular, configura-
tion files must be transformed into abstract configurations,
but correctly synchronizing these two representations is not
trivial. We propose an approach that uses putback-based
bidirectional programming to guarantee that this synchro-
nization is correct by construction. We demonstrate the
correctness of our approach and how it handles typical fea-
tures of configuration files, such as implicit default values
and context overriding. We also show that our approach
can be used to migrate configuration files from one imple-
mentation to another.

We illustrate our approach with a case study, where we
use the same abstract model to adapt two web server imple-
mentations. For each implementation, we provide a bidirec-
tional program that correctly synchronizes the configuration
file with an abstract model of the configuration. A first sce-
nario demonstrates that the same changes on the abstract
model produce, for each implementation, a new configura-
tion that correctly reflects the changes made to the abstract
model, without side effects. A second scenario validates the
migration of a configuration file from the format used by one
web server implementation to another.

Keywords
Self-adaptation, synchronization, bidirectional programming,
model abstraction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4187-5.

DOI: 10.1145/1235

1. INTRODUCTION
Self-adaptive systems are sometimes represented in two

layers: a target system, and an adaptation layer. Systems
modeled around the MAPE-K loop, for example, frequently
adopt this distinction, where the adaptation layer is im-
plemented using a feedback loop whose stages are Moni-
tor, Analyze, Plan, and Execute, using a Knowledge base
where data about the target system and its environment
is stored [4]. This design allows for a clear separation be-
tween the system itself (the target system) and the adapta-
tion logic, which is confined to the adaptive layer. Commu-
nication between the target system and the adaptive layer
is typically implemented using probes and executors, which
is sometimes captured in a third layer, between the target
system and the adaptation layer [10].

Research on reusability of adaptive layers has focused on
providing frameworks for adaptation, allowing developers to
customize each phase of the feedback loop [3, 10], without
having to implement the entire layer themselves. These ap-
proaches rely on users carefully crafting pairs of monitors
and effectors, in order for the adaptive layer to keep an
up-to-date model of the target system and its environment.
The correctness of that synchronization between models and
target system is not trivial to prove. A bug in the synchro-
nization will lead to a progressive drift between the target
system and the model, which can lead to counter-productive
adaptation decisions.

In this paper, we provide a synchronization mechanism
that is correct by construction. Our approach focuses on
the adaptation of configuration files, which are part of the
target system, and describe the configuration of the system.
While this focus limits the kinds of adaptations that our
approach can handle, it allows us to guarantee, by construc-
tion, the correctness of the synchronization of configuration
files (which we call concrete models) with their abstract rep-
resentations. This is not a trivial task to manually carry out,
especially considering common constructs found in configu-
ration files, such as default values or context overriding.

To ensure that abstract and concrete models are consis-
tent, we synchronize them using bidirectional transforma-
tions (BX) [7], automatically derived from bidirectional pro-

grams. BXs consist of a pair of functions: a forward trans-
formation, and a backward transformation. The forward
transformation, or get, takes a source as input and generates
a view. The backward transformation, or put, takes the orig-
inal source and the new view as input, and outputs a source
where the view has been embedded in the original source [8].
Bidirectional programming languages are Domain-Specific
Languages (DSLs) that help developers write BXs. Well-
behaved BXs ensure that the composition of the get and
put functions, or the opposite, is the identity function [7].
In this paper, we use BiGUL, a putback-based bidirectional
programming language and compiler. The behavior of put
is described with the BiGUL language, and the compiler
generates a pair of get and put functions that are guaran-
teed to form a well-behaved BX. Our solution guarantees
the correctness of the synchronization by construction, en-
suring that the models will not drift apart due to errors in
an ad-hoc implementation.

Abstract models can also be used to migrate configura-
tions from an implementation to another. We demonstrate
the applicability of bidirectional programming to guarantee
the correctness of the synchronization, and show how typical
constructs in configurations are dealt with. We also report
on a case study that illustrates our approach with two web
server implementations.

The rest of this paper is structured as follows: Section
2 gives a practical example of the problems our approach
solves. Section 3 provides background on self-adaptive sys-
tems, and BXs. Our approach is presented in Section 4.
Section 5 details our use of bidirectional programming for
synchronization. In Section 6, we present our case study
which consists of two scenarios: adaptation and migration.
We examine threats to the case study’s validity in Section
7. After discussing related work in Section 8, we conclude
in Section 9.

2. PROBLEMS IN REUSE AND SYNCHRO-
NIZATION

In this section, we use web servers as an example to il-
lustrate how abstract models can facilitate the development
of reusable self-adaptation mechanisms, that are not tied to
a particular implementation of a system. We also highlight
the difficulty of manually developing correct synchronization
mechanisms, even for simply configuration files. We use two
web server implementations throughout this paper: Apache
HTTP Server1, and Nginx2.

Configuration files allow users to specify how they want
an application to behave. They generally follow a tree struc-
ture. Different implementations of a same service, e.g., dif-
ferent implementations of a web server, will likely have simi-
lar configuration options, but the syntax of the configuration
files, as well as the entries available, may change between
implementations, or between different versions of the same
implementation. For example, both Nginx and Apache allow
for log configuration, but in different ways:

access log in Nginx

access_log "/var/logs/access.log";

access log in Apache
1https://httpd.apache.org/
2http://nginx.org/

LogFormat "%v:%p %h %l %u %t \"%r\" %>s %O
\"%{Referer}i\" \"%{User-Agent}i\""
vhost_combined

↪→

↪→

CustomLog "/var/logs/access.log" vhost_combined

Both Nginx and Apache allow users to set the path of the
access log file, but Apache also provides additional options
to specify the format of the log file.

Moreover, a web server can behave differently for some
of the websites it serves, e.g., by serving some of its con-
tent on a secure connection only, generating error pages,
or requiring authentication. Configuration files reflect that
ability through contexts. For instance, in Nginx, a server

context may contain the default behavior that will display a
web page, while another server context will contain the en-
tries to handle secure connections. Those functionalities are
configured in Apache using the VirtualHost context, which
defines a virtual server and its associated behavior:

Contexts in Nginx

http {
server { # http server
listen 80
...

}
server { # ssl server
listen 443
...

}
}

Contexts in Apache

<VirtualHost *:80>
http server

</VirtualHost>
<VirtualHost *:443>
ssl server

</VirtualHost>

In addition to entries and contexts, configuration files can
support other features, such as default values or context
overriding. A default value is a value assumed for an en-
try that does not appear in a configuration file. For this
example, with Nginx:

http {
keepalive_timeout 75s;

}

The keepalive timeout instruction has a default value of
75s. Therefore, this configuration displays the same behav-
ior as the following, where keepalive timeout has been omit-
ted:

http {}

Context overriding infers the value of a missing entry in
a certain context by looking at the value for this entry in
the closest ancestor context that defines it, or the default
value if no ancestor defines it. We again use Nginx for this
example:

http {
keepalive_timeout 100s;
server {
keepalive_timeout 100s;

}
}

will be equivalent to the following, because the value of the
keepalive_timeout entry for the server context is defined
within its http ancestor.

http {
keepalive_timeout 100s;
server {
}

}

Default values and contexts are common in many types of
configuration files. They can greatly complicate the adap-
tation of configuration files, as a change in one entry may
have effects in multiple contexts.

3. BACKGROUND

3.1 Adaptive layer
Adaptation is triggered by changes in a self-adaptive sys-

tem, its environment, and/or its goals [4]. If the data shows
changes in the system, its environment, or its goals, that
require adaptation, changes made by this adaptation have
to be effected on the system. Those steps are realized by
a layer above the system. The MAPE-K loop architec-
ture [12] is composed of four consecutive phases, as well as
a common knowledge base that helps sharing informations
between those phases. Cheng et al. define the four phases
as follows:

• “The monitor function provides the mechanisms that
collect, aggregate, filter and report details (such as
metrics and topologies) collected from a managed re-
source”;

• “The analyze function provides the mechanisms that
correlate and model complex situations (for example,
time-series forecasting and queuing models). These
mechanisms allow the autonomic manager to learn about
the IT environment and help predict future situations”;

• “The plan function provides the mechanisms that con-
struct the actions needed to achieve goals and objec-
tives. The planning mechanism uses policy informa-
tion to guide its work”;

• “The execute function provides the mechanisms that
control the execution of a plan with considerations for
dynamic updates” [12].

3.2 Bidirectional transformations
Bidirectional transformations (BX) are used to synchro-

nize the contents of two related documents. A BX is a pair
of transformations between a source document and a view
document. The forward transformation, called get, takes
a source as input, and produces a view. The backward
transformation, called put, takes both a source and an up-
dated view as input, and produces an updated source, where
changes made to the view are embedded into the source. The
two transformations are defined as follows [8]:

get :: Source -> View
put :: Source -> View -> Source’

A BX could, for example, synchronize a list of elements
(the source) with the first element of the list (the view):

get (x:xs) = x
put (x:xs) y = y:xs

A subset of BX is called well-behaved bidirectional trans-
formations, sometimes called lenses [7]. They provide well-
behaved synchronization between source and view. To be
well-behaved, a BX has to satisfy two laws, PutGet and
GetPut, defined as follows [6]:

get (put s v) = v --PutGet
put s (get s) = s --GetPut

Several programming languages exist to help developers
write BXs. They usually are either get-based programming
languages [?, ?], where the get function is provided by the
developer, and a put function automatically derived, to pro-
duce a well-behaved BX; or putback-based programming lan-
guages[15], where the put function is provided by the devel-
oper, and a get function automatically derived, to produce a
well-behaved BX. For each get function, there may be many
put functions that form a well-behaved BX. The advantage
of putback-based languages is that, under some conditions,
given a put function, there is at most one get function that
forms a well-behaved BX [6].

3.3 BiGUL
In this paper, we use the putback-based bidirectional pro-

gramming language BiGUL [15]. Below is a simple BiGUL
program.

1 data Src = Src {sa :: String,
2 sb :: Int} deriving (Show)
3 data View = View {va :: String} deriving (Show)
4

5 abc :: BiGUL Src View
6 abc = $(rearrAndUpdate
7 [p| View {
8 va = a
9 }|]

10 [p| Src {
11 sa = a
12 }|]
13 [d| a = Replace
14 |])

The source, defined on lines 1 and 2, contains two fields; the
view, defined on line 3, only contains one field. The pro-
gram, which specifies the put behavior, is defined on lines
5-14. The program’s signature, on line 5, indicates that it
matches a source with a view. Line 6-14 are a rearrAndUp-

date instruction, which matches elements of the source with
elements of the view, and performs the specified operations
to update the source. rearrAndUpdate takes three argu-
ments: a pattern for the view, a pattern for the source,
and a pattern for the operations to perform on elements of
the source that were matched with elements of the view.
Lines 7 to 9 indicate that the element va in the view will
be matched to a. Lines 10 to 12 indicate that the element
sa in the source will be matched to a as well. Finally, lines
13 and 14 indicate that the element matched with a in the
source will be replaced by the element matched with a in
the view. Therefore, the element sb in the source will be
left unchanged.
BiGUL guarantees that, if it can compile a bidirectional pro-
gram into a BX, that BX will successfully run only if it is
well-behaved. Hence, using BiGUL for synchronization be-
tween concrete and abstract models guarantees, by construc-
tion, the correctness of the synchronization. By contrast,

developers writing probes, gauges, and effectors, will have
to ensure that their implementation is correct. This can be
difficult and time-consuming.

4. MODEL ABSTRACTION IN
SELF-ADAPTATION

Adaptation performed directly on configuration files re-
quires the customization of the adaptation logic if it is to
be reused across several implementations. For example, a
self-adaptive system could adapt the path of a web server’s
access log file. This can be done with both Apache and Ng-
inx, but differently. With Nginx, the relevant configuration
is the following:

access_log "/var/logs/access.log";

With Apache, we need to define the format of the data that
will be written in the file, then the path to the file with the
format of the log entries, in two separated entries:

LogFormat "%v:%p %h %l %u %t \"%r\" %>s %O
\"%{Referer}i\" \"%{User-Agent}i\""
vhost_combined

↪→

↪→

CustomLog "/var/logs/access.log" vhost_combined

The adaptation mechanisms would be different for Apache
and Nginx and wouldn’t be reusable despite the fact that it
provides the same functionality. In Nginx, the adaptation
mechanisms just need to change one instruction, while in
Apache they need to change two.

4.1 Abstraction
By abstracting the specificities of each model into a com-

mon abstract model, we are able to reuse the analyze and
the plan phases. This abstract model must be synchronized
with a concrete (i.e., implementation-dependent) model of
the configuration (Figure 1). Various implementations of
the same system would each have their own concrete model,
all feeding into an abstract model (Figure 2). This abstract
model is extracted according to the data that the adapta-
tion layer requires. It can contain the shared information of
the concrete models, or only the data for an aspect devel-
opers want to focus on, such as security or performance.
Our approach guarantees, by construction, that the syn-
chronization between concrete and abstract model is well-
behaved, and allows developers to reuse general analyze and
plan phases for each system by deploying them on the ab-
stract models.

Abstract model

Concrete model

BX

K

M E

A P

Figure 1: model abstraction in MAPE loop

In addition to facilitating the reusability of adaptive lay-
ers, our approach also provides a way to copy parts or the

K

M E

A P

Concrete.x 1 Concrete.x 3Concrete.y 2

BX

Abstract model

Figure 2: abstract model equivalent for all systems

entirety of the information between systems that can have
a common abstraction. The system knowledge represented
in the abstract model can be replaced by the data contained
in another abstract model and this new configuration can
then be copied in the new system. In the web server ex-
ample, a concrete model of an Apache configuration could
be abstracted. Then, this information could be copied into
the abstract model of an other web server, and a put trans-
formation, using an empty source, could translate it into
the desired concrete configuration file. This second server
doesn’t need to be implemented in Apache like the first one.
This would effectively copy the configuration from an imple-
mentation to another.

Making those adaptation mechanisms reusable means that
each part that was specific to an implementation has to be
more generic to suit all implementations, or has to be lost if
it cannot be generalized. For example, the abstract model
for access log files in web servers could have this format,
where a nofile value would mean that there is no log file:

abstractLog :: String

The abstract models for both web servers could then be:

Abstract for Nginx (with log file)

abstractLog = "/var/logs/access.log"

Abstract for Apache (without log file)

abstractLog = "nofile"

This example shows that an abstract model can contain
less data than a concrete one. Here, the log format, avail-
able in the Apache configuration, is omitted in the abstract
model. It was necessary in order to construct a common
type for Apache and Nginx, because of the absence of the
ability to change the format in Nginx.

4.1.1 Adaptive Layer Reusability
In our approach, the adaptation phases work on different

models (Figure 3). The monitor phase and the execute phase
work on the concrete models of the systems and therefore
need to be customized for each implementation, since the
concrete models keep their specificities. In contrast, the an-
alyze and plan phases can both work on the abstract models,
and can therefore be reused across several implementations
of the target system. For example, an abstractLog instruc-
tion on the abstract model could represent the following Ng-
inx and Apache configurations:

Nginx access log config

access_log "/var/logs/access.log";

Knowledge base

Monitoring

Analysis Planning

Execution

Abstract model

Concrete model

BX

analyse abstract (sub-) model

plan for solution

update abstract config.

enact concrete plan
update model

Adaptation layer

Target system

update configuration
and reload server

monitor configuration
and environment

Figure 3: Architecture of the approach

Apache access log config

LogFormat "%v:%p %h %l %u %t \"%r\" %>s %O
\"%{Referer}i\" \"%{User-Agent}i\""
vhost_combined

↪→

↪→

CustomLog "/var/logs/access.log" vhost_combined

Both would produce the same abstract model:

abstractLog = "/var/logs/access.log"

Let us assume that an adaptation rule specifies that when
disk space is short on a server, no more accesses will be
logged. The adaptation will consist of stopping the collec-
tion of access logs. The analyze and plan phases will reflect
this in the abstracted models.

Before adaptation

abstractLog = "/var/logs/access.log"

After adaptation

abstractLog = "nofile"

As the execute phase uses concrete models, changes to the
abstract model must be reflected to the concrete model. If
the server uses Apache, we get the following, as the LogFor-
mat must not be removed in case it is used in some other
entry:

LogFormat "%v:%p %h %l %u %t \"%r\" %>s %O
\"%{Referer}i\" \"%{User-Agent}i\""
vhost_combined

↪→

↪→

If the server uses Nginx, no more instructions about the
log file for accesses will appear.

In addition, our approach allows for the extraction of a
subset of a model, for the adaptation of a particular con-
cern. For example, a MAPE loop for security adaptation
would only need a model containing web servers’ security
features. Our approach achieves this with two alternatives.
Figure 4 shows that different partial abstract models can be
extracted from the same concrete model, for different adap-
tation concerns. Figure 5 uses our approach’s composition

Performance concernSecurity concern

Concrete model

Figure 4: direct concern extraction

Performance concernSecurity concern

Abstract model

Concrete model

Figure 5: indirect concern extraction

capabilities. First, a complete abstract model is extracted
from the concrete model. Then, partial models are extracted
from the abstract model. Because our approach to synchro-
nization can be composed, we can guarantee that changes
made to a partial abstract model will be reflected to the
complete abstract model, and then to the concrete model.

The biggest concern with this approach is to write this
”mapping” between the abstract configuration and the con-
crete configuration. Those models need to be synchronized,
since the execute and monitor phases will work only on the
concrete configuration.

4.1.2 Configuration Reusability
Using our approach, the user can also reuse parts or all of

the abstract configuration from one system to another. This
allows for the duplication of a configuration, as well as for
migration, which consists in modifying the technology used
for a system while preserving its behavior.

Developers can reuse the view of a system A for another
system, B. The information in the view will then be reflected
in system B and it will behave like system A.

For example, a user might want to migrate an Apache
server to Nginx, without losing the configuration. In this
case, by only replacing the current web server with Nginx,
and replacing the synchronization mechanism in the adap-
tive layer with the one related to Nginx, the configuration
in the abstract model will be copied in the new server.

The user might also want to add a new web server to the
set and have it behave like an existing one. By copying the
information in the abstract model of the existing one into
the abstract model of the new one, and using the correct
synchronization mechanism for the chosen implementation,
the behavior will be correctly replicated.

In our access log example, the configuration of the first
system, implemented with Apache and containing the fol-
lowing:

LogFormat "%v:%p %h %l %u %t \"%r\" %>s %O
\"%{Referer}i\" \"%{User-Agent}i\""
vhost_combined

↪→

↪→

CustomLog "/var/logs/access.log" vhost_combined

would be transformed into the abstract model, which would
then contain

accessLogPath = "/var/logs/access.log"

assuming we only abstract the path. This model could be
reused in another system that would be implemented with
Nginx. After the abstract configuration is reflected in the
new system, the Nginx configuration file would contain:

access_log "/var/logs/access.log"

and this part of the configuration would have been success-
fully copied.

4.2 Synchronization
A synchronization mechanism between concrete and ab-

stract models must be well-behaved, and must handle the
typical constructs of configuration files discussed in Sec-
tion 2.

Synchronization consists of a pair of transformation func-
tions, one for each direction. Usually, the user writes both
but has no guarantee of their well-behavedness. For exam-
ple:

Example get behavior

get {
if (a empty)
then return default
else return a

}

Example put behavior

put {
if (b == default)
then return empty
else return b

}

This pair of functions may seem well-behaved. However,
if a contains the value default, the get function will return
the default value too. Since the put function returns empty
for the default input, the value of the first model will be
modified from default to empty after a combination of get
and put. These bugs cases are sometimes hard to find and
fix. Proving that a pair of functions is well-behaved can be
difficult and time-consuming.

This problem can be solved by using bidirectional pro-
gramming, since languages like BiGUL guarnatee that bidi-
rectional transformations will be well-behaved.

Each BX is specific to a pair of models. Therefore, a new
bidirectional program has to be defined for each implemen-
tation used in the system. The same BX can be reused if a
new system is deployed with the same implementation as an
existing one. Since adaptation made on the abstract model
remains the same, only the BX would need to be replaced
for different implementations of the system.

5. BIDIRECTIONAL PROGRAMMING
In this section, we show how challenges caused by typ-

ical constructs in configuration files can be overcome with
putback-based bidirectional programming.

5.1 Default values
Default values can vary depending on the implementation

(Apache, Nginx, . . .), or even the version of an implemen-
tation (e.g., Apache 1.4 vs. Apache 2.0).

The abstract model needs to be independent from the im-
plementation of the target system. The adaptation layer
cannot infer the value of an empty field in the abstract model

by using default values, since it doesn’t know which tech-
nology is used. Therefore, the bidirectional transformation
between the two models must replace any field that would
be empty in the abstract model by the correct default value.

Each BX is passed the default values specific to the ver-
sion of the implementation considered. The challenge is to
add this knowledge to the transformation while maintain-
ing the guarantee that it is well-behaved. When reflecting
changes from the abstract model to the concrete one, the
previously empty fields must stay empty, unless their value
was modified and is now different from the default value.

The following pseudo-code shows how we solve this issue.
The implementation in BiGUL can be found on our reposi-
tory3.

1 addDefault def {
2 if (viewValue = def)
3 then if (oldSourceValue empty)
4 then newSourceValue = empty
5 else newSourceValue = viewValue
6 else newSourceValue = viewValue
7 }

This pseudo-code defines the put behavior. For exam-
ple, the ssl instruction, if not defined, will be empty in the
source. The get behavior inferred from the put will write
this instruction to its default value off in the view. When
reflecting changes to the source, if the value is equal to the
default value, we check the current value in the source. If
it is empty, we know that the default value in the view was
inferred and we putback empty. If it is not, then the user
might want this instruction to appear in the file despite be-
ing set to the default, and we write it in the updated source.

5.2 Context overriding
Adding the knowledge of the default values to the trans-

formation brings a new challenge. Many configuration files
use context overriding, as discussed in Section 3.2. There-
fore, an undefined directive in a context should not always
be considered to represent its default value. If the directive
is defined in an ancestor, its value is inherited in the nested
contexts, unless it is redefined. Figure 6 shows an example.
The default value for ssl is off. While ssl is not defined
in the server context on the left hand side, it is defined
in the parent, and hence applies to the server context as
well, instead of the default value. On the right hand side,
the value of ssl has been explicitly set to on in the server

context. Therefore, both sides are equivalent.
In bidirectional programs, when getting the abstract model

from the concrete one, empty fields can’t be automatically
replaced by their default values. The BX must check the
upper contexts for any value that would override it.

While not implemented in our case study, we can prove
that it is possible to write a bidirectional program that
handles context overriding properly, and produces a well-
behaved BX.

The put function will update elements one by one. The
challenge consists in providing to our function some knowl-
edge about the fields related to the element it is currently
updating. We define put’, a /textitput function that takes
an extra argument: the result of a function f(v) that deter-
mines whether a value in the view is a default value or not.
We use it to redefine put:
3https://github.com/prl-tokyo/bigul-configuration-
adaptation

...
ssl on;
...
server {
...
(ssl undefined)
...

}

...
ssl on;
...
server {
...
ssl on;
...

}

Figure 6: Context overriding

put s v = put’ (f v) s v

Because of how put’ can be implemented in BiGUL, we
know that the result of f(v) will not be used in the generated
get’, which we can use to redefine get:

get s = get’ _ s

BiGUL guarantees a well-behaved bidirectional transforma-
tion, therefore we know that the PutGet and GetPut laws
hold for put’ and get’:

get’ _ (put’ (f v) s v) = v
put’ (f v) s (get’ _ s) = s

We can then show that get and put satisfy the PutGet

and GetPut laws, and therefore form a well-behaved BX:

get (put s v) = get’ _ (put’ (f v) s (get’ _ s))
= get’ _ s = v

put s (get s) = put’ (f v) s (get’ _ s) = s

This proves that context overriding can be handled using
put-based bidirectional programming.

6. CASE STUDY
This case study is based on web server configuration files.

We use two implementations: Apache and Nginx; we con-
sider their apache2.conf and nginx.conf configuration files,
respectively.

We designed two scenarios. The first one simulates an
adaptation layer that results in a switch from insecure client
connections to only secure ones using SSL. The second sce-
nario simulates an adaptation layer that adds a new web
server to the server pool it is handling. This can be used
to reduce the system load or improve overall system qual-
ity. This new server needs to be configured. We suppose
that its configuration has to be the same as another web
server in the pool. However, those two servers aren’t imple-
mented with the same technology. We show that the copied
abstract configuration from a server using implementation A

to a server using implementation B is correctly reflected in
the new server’s concrete configuration using our approach.

This case study focuses on BX within a self-adaptive sytem,
and hence some of the operations that would be performed
on a live system are simulated or ignored. For example, in
the first scenario, a self-adaptive system would have to up-
date the configuration file on the target system, as well as
reload the web server, for the new configuration to be taken
into account; in the second scenario, a new server would
need to be commissioned, before the configuration file can
be transferred, and the web server started.

6.1 Setup

6.1.1 Internal representation
We present here the sample configuration files used in our

case study. Listing 1 shows the Apache configuration file
and Listing 2 shows the Nginx configuration file. They are
simple configuration files, each defining log file locations, a
single context where simple HTML files are served, and a few
other configuration items for the servers to run correctly.

Listing 1: Apache configuration file
1 User www-data
2 ServerRoot "/etc/apache2"
3 PidFile /var/run/apache2/apache2.pid
4 KeepAlive On
5 MaxKeepAliveRequests 100
6 KeepAliveTimeout 65
7 ErrorLog /var/log/apache2/error.log
8 LogLevel warn
9 DocumentRoot html

10 Listen 80
11 Listen 443
12 ServerTokens OS
13 ServerSignature On
14 IncludeOptional mods-enabled/*.load
15 IncludeOptional mods-enabled/*.conf
16 IncludeOptional conf-enabled/*.conf
17 <VirtualHost *:80>
18 ServerName www.example.com
19 ServerAdmin webmaster@localhost
20 DocumentRoot /var/www/html
21 ErrorLog /var/log/apache2/error.log
22 KeepAlive On
23 MaxKeepAliveRequests 100
24 KeepAliveTimeout 65
25 <Directory />
26 Options FollowSymLinks
27 AllowOverride None
28 Require all denied
29 </Directory>
30 <Directory /var/www/>
31 Options Indexes FollowSymLinks
32 AllowOverride None
33 Require all granted
34 </Directory>
35 </VirtualHost>

To turn a configuration file into a source usable by BiGUL,
we use a parser, to translate the data from the configuration
file format to the source format (a Haskell record).

The source format is static, so it must contain everything
that is possible to write in a configuration file. The entries
that are not in a particular configuration file cannot be ig-
nored, and hence the source contains all possible entries.
We use the Maybe monad in Haskell to denote configuration
items that are not present in the configuration file.

Once adaptation has been made, we obtain a new source
that has to be translated into the configuration file, which
is done using a pretty printer and a set of rules.

We present here a simplified example of the sources ex-
tracted from the configuration files using parsers. The full
sources are available on our repository. Listing 3 shows
a simplified version of the Apache source, while Listing 4
shows a simplified version of the Nginx source.

6.1.2 View
Both simplified sources in Listings 3 and 4 give the same

resulting view. Listing 5 presents a simplified version of the

Listing 2: Nginx configuration file
1 pid /run/nginx.pid;
2 user www-data;
3 worker_processes 4;
4 events {
5 worker_connections 768;
6 }
7 http {
8 keepalive_timeout 65;
9 keepalive_requests 100;

10 access_log /var/log/nginx/access.log;
11 error_log /var/log/nginx/error.log;
12 ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
13 tcp_nodelay on;
14 tcp_nopush on;
15 server_tokens on;
16 gzip on;
17 gzip_comp_level 2;
18 server {
19 listen 80;
20 root /var/www/html;
21 server_name example.com;
22 error_log /var/log/nginx/error.log;
23 keepalive_timeout 65;
24 keepalive_requests 100;
25 }
26 }

view extracted using the get transformation.

6.2 Scenario 1: Adaptation
In this scenario, we show that two web servers using a dif-

ferent technology, but with the same behavior for a specific
concern, can be adapted using our approach. Both behaviors
should be adapted in the same way. The MAPE loop up-
dates the SSL configuration. The initial configuration does
not use SSL, and the adaptation will activate and configure
it.

6.2.1 Experiment
We first ran both servers to confirm that they serve pages

over HTTP, but not over HTTPS.
We then extracted the concrete model from the Nginx and

Apache configuration files discussed in Section 6.1.1. They
are represented by the Haskell records, portions of which are
on Listing 3 and Listing 4, respectively. The whole sources
are available on our repository.

The abstract models were then built using the get trans-
formations generated by our Nginx and Apache bidirectional
programs, also available on our repository. Samples of the
abstract models are in Listing 5, and the entire records are
on the repository.

We then simulated the adaptation by changing the follow-
ing values in the views. The changes are made on the same
items and with the same values in both models, as if both
had been modified by the same adaptation rules.

Values before adaptation

vListen = ["80"],
vServKeepaliveTimeout = "65",
vServSSL = "off",
vServSSLCertificate = "",
vServSSLCertificateKey = ""

Values after adaptation

vListen = ["443"],
vServKeepaliveTimeout = "75",

Listing 3: Simplified Apache source
1 apacheSource :: ApacheWebserver
2 apacheSource = ApacheWebserver {
3 aDocumentRoot = Nothing,
4 aKeepAlive = Just "On",
5 aKeepAliveTimeout = Just "65",
6 aMaxKeepAliveRequests = Just "100",
7 aListen = Just ["80"],
8 aDirectoryIndex = Nothing,
9 aSSLCertificateFile = Nothing,

10 aSSLCertificateKeyFile = Nothing,
11 aVirtualHosts = Just [
12 VirtualHost {
13 sVirtualHostAddress = Just "*:80",
14 sDocumentRoot = Just "/var/www/html",
15 sKeepAlive = Just "On",
16 sKeepAliveTimeout = Just "65",
17 sMaxKeepAliveRequests = Just "100",
18 sLocation = Nothing,
19 sServerName = Just "example.com",
20 sDirectoryIndex = Nothing,
21 sSSLEngine = Nothing,
22 sSSLCertificateFile = Nothing,
23 sSSLCertificateKeyFile = Nothing
24 }
25]
26 }

vServSSL = "on",
vServSSLCertificate = "/srv/ssl/cert.pem",
vServSSLCertificateKey = "/srv/ssl/cert.key"

Here, the vListen item represents the port on which the
server listens. Its value is set from 80, the default HTTP
port, to 443, the default HTTPS port. Setting vServSSL
to ”on” activates SSL and the next two items provide the
location of the SSL certificate and its key. The modification
of the vServKeepaliveTimeout item is not mandatory for a
working SSL configuration, but was added to extend the
example.

Those changes were then reflected to the sources using
the put transformations generated by our bidirectional pro-
grams. The following are samples of the updated sources:

Modifications in Nginx

sKeepaliveTimeout = Just "75",
sListen = Just ["443"],
sSsl = Just "on",
sSslCertificate = Just "/srv/ssl/cert.pem",
sSslCertificateKey = Just "/srv/ssl/cert.key"

Modifications in Apache

aListen = Just ["443"],
sVirtualHostAddress = Just "*:443",
sKeepAliveTimeout = Just "75",
sSSLEngine = Just "On",
sSSLCertificateFile = Just "/srv/ssl/cert.pem",
sSSLCertificateKeyFile = Just "/srv/ssl/cert.key"

The new sources were then pretty printed in new config-
uration files. The servers were reloaded to use their new
configuration, with the expectation that both would then
serve pages over HTTPS, but not HTTP.

6.2.2 Results
The two web servers, that did not use SSL initially, ran

with SSL activated after the simulated adaptation. The
changes in the view were correctly reflected to the source,
without manual modification of the configuration files.

Listing 4: Simplified Nginx source
1 nginxSource :: NginxWebserver
2 nginxSource = NginxWebserver {
3 nWorkerProcesses = Just "4",
4 nHttp = Just Http {
5 hKeepaliveDisable = Nothing,
6 hKeepaliveTimeout = Just "65",
7 hKeepaliveRequests = Just "100",
8 hRoot = Nothing,
9 hServer = Just [

10 Server {
11 sKeepaliveDisable = Nothing,
12 sKeepaliveTimeout = Just "65",
13 sKeepaliveRequests = Just "100",
14 sListen = Just ["80"],
15 sLocation = Nothing,
16 sRoot = Just "/var/www/html",
17 sServerName = Just ["example.com"],
18 sSsl = Nothing,
19 sSslCertificate = Nothing,
20 sSslCertificateKey = Nothing }
21],
22 hSsl = Nothing,
23 hSslCertificate = Nothing,
24 hSslCertificateKey = Nothing
25 }
26 }

Listing 5: Simplified view
1 reducedView :: CommonWebserver
2 reducedView = CommonWebserver {
3 vRoot = "html",
4 vKeepaliveTimeout = "65",
5 vSSL = "off",
6 vSSLCertificate = "",
7 vSSLCertificateKey = "",
8 vServers = [
9 VServer {

10 vListen = ["80"],
11 vServNames = ["example.com"],
12 vServRoot = "/var/www/html",
13 vServKeepaliveTimeout = "65",
14 vServSSL = "off",
15 vServSSLCertificate = "",
16 vServSSLCertificateKey = ""
17 }
18]
19 }

6.3 Scenario 2: Migration
For this scenario, we show that our approach allows to

copy an abstract model of a web server technology, and use
this copy to replicate the server’s behavior on a newly de-
ployed web server using a different technology.

6.3.1 Experiment
First, we confirmed that the first web server is running

properly, and behaved as expected. It used Nginx.
We then used the get transformation for Nginx to gener-

ate the abstract model of the server configuration. The put

transformation for Apache was then used, with an empty
source, to produce a concrete Apache model, that represent
an equivalent configuration to the original Nginx configura-
tion.

We pretty printed the configuration file for Apache and
then ran an Apache web server with this configuration file.
We verified that the behavior of the Apache server was iden-
tical to the behavior of the Nginx server.

6.3.2 Results
Both servers ran correctly after the migration. The config-

uration of the Nginx server was unchanged, and the Apache
server exhibited the same behavior as the Nginx server.

7. THREATS TO VALIDITY

7.1 Internal Validity
In both scenarios, we simulated the outcome of a MAPE

loop, by manually modifying abstract models, rather than
implementing a feedback loop. Since this paper focuses on
the synchronization between concrete and abstract models,
and the associated challenges, we argue that a simulated
MAPE loop does not negatively impact the case study’s va-
lidity. Similary, we ignored the issue of transferring updated
configuration files to the servers, and reloading them.

7.2 External Validity
We assumed that no modification was done on the config-

uration file between parsing and rewriting. In a production
system, a synchronization mechanism able to cope with con-
current modifications of view and source would be required,
such as the one described by Xiong et al [23].

8. RELATED WORK

8.1 Reusability
Klein et al. introduce a new way to program for self-

adaptation based on optional code that can be dynami-
cally deactivated, and apply this technique to a web ap-
plication [14]. Garlan et al. show the use of a framework,
Rainbow, that is composed of reusable parts to which the
user can hook personalized code [10]. Rainbow was also
extended by Swanson et al. with a framework called RE-
FRACT, which brings failure avoidance components and al-
gorithms [18]. Barna et al. propose a platform for deploying
self-managing web applications on cloud called Hogna [3].
Although these approaches also allow for the reuse of ab-
stract models, they require the careful development of both
monitors and effectors, forming a BX that need to be shown
to keep the abstract model in sync with the target system’s
configuration. Our contribution is different in that only one
direction of the transformation needs to be written, and the
other one is automatically derived, in such a way that guar-
antees that the BX is well-behaved, and hence the abstract
model correctly synchronized with the target system’s con-
figuration. Ramirez and Cheng present different patterns
that can be reused for adaptation [16].

8.2 Models within self-adaptation
Vogel and Giese present a model-driven approach for adap-

tation that contains different types of models for specific
adaptation levels [19]. This allows separation of concerns.
They also present an approach to ease the development of
architectural monitoring based on incremental model syn-
chronization [21]. They demonstrate an executable model-
ing language for ExecUtable RuntimE MegAmodels (EU-
REMA), that makes the development of adaptation engines
easier by following a model-driven engineering approach that
uses megamodels. Megamodels are models that represent a
system at runtime along with its adaptation activities [20].
Angelopoulos et al. use Rainbow as a comparison for their

framework, Zanshin, which is requirement-based instead of
architecture-based [1]. They compare both approaches, which
use different kinds of models. Georgas et al. use a model to
record the history of a managed system’s states [11]. This
model can be used by a developer to reconfigure a system in
another state if he thinks that the current state can lead to a
dangerous situation. Another example of adaptation around
models is the one of Bailey et al. They perform adaptation
on Role-Based Access Control (RBAC) models at run-time
by changing the access control policies, while ensuring that
adapted policies satisfy some security constraints [2]. None
of these approaches use bidirectional programming. As BXs
are often not labeled as such, they need to be manually
maintained, and their well-behavedness needs to be manu-
ally guaranteed. Anderson et al. presents the computational
reflection paradigm within the self-adaptive context [?]. The
causality property from this paradigm states that two enti-
ties are causally connected if changes made in one of the enti-
ties are reflected in the other. The self-adaptation in regard
to computational reflection should have its meta-models rep-
resentation causally connected to the running system. In our
approach, the model and its abstraction are causally con-
nected by the BX and the model itself is causally connected
to the running system by the effectors.

8.3 Bidirectional transformations
An example of synchronization between models support-

ing the Atlas Tranformation Language (ATL) is offered by
Xiong et al. [22]. They propose an automatic approach to
synchronizing models which are conform to their respec-
tive metamodels. Metamodels are related by a unidirec-
tional model transformation. They are able to generate a
synchronization infrastructure from that transformation, a
process very similar to get-based bidirectional programming
languages. This means that one of potentially many possi-
ble putback transformations will be chosen for the user. We
use putback-based programming instead, which gives user
total control over the put transformation. Czarnecki et al.
present notes from the GRACE International Meeting on
Bidirectional Transformations where the multidisciplinary
aspects of bidirectional transformations are presented, in-
cluding model and graph transformations [5]. They do not
mention configuration files and their specificities. Another
application of BXs for synchronizing documents is presented
by Hu et al. [13]. This application focuses on a XML edi-
tor that supports dynamic refinements of a structured doc-
ument. Song et al. present an algorithm that wraps any
BX into a synchronizer, to allow for both the source and
the view to be updated simultaneously [17]. Foster et al.
propose a general theory of quotient lenses [9]. They are
bidirectional transformations that are well-behaved modulo
a set of equivalence relations defined by developers. This
would allow the implementation of BXs that would not be
well-behaved due to some inessential details such as whites-
pace. It is a get-based bidirectional programming approach.
Another example where BXs are applied is Yu et al.’s syn-
chronization between models and generated code by record-
ing manual changes made to the code in a BX, and replaying
them when the manually edited code is overwritten by the
code generator [24]. They use a get-based bidirectional pro-
gramming language.

9. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach based on abstract
models and bidirectional programming for self-adaptation.
Our approach provides, by construction, a provably correct
synchronization between concrete and abstract models, as
opposed to ad-hoc approaches that rely on developers to
carefully build monitors and effectors. Our approach facili-
tates the reuse of adaptive layers across different implemen-
tations of the system. In contrast with a concrete model
closely related to the target system, an abstract model aims
to capture the similarities shared by several implementations
of a target system. This allows any adaptation logic using
the abstract model to be reused for each implementation,
and eases the work of developers. We demonstrated the
use of bidirectional programming to solve the synchroniza-
tion problem between concrete and abstract models, with
proven guarantees on the well-behavedness of the BXs. We
discussed the challenges that arise from typical constructs
in configuration files, and showed that they can be over-
come using bidirectional programming. The approach has
been implemented and its application demonstrated in a web
server case study. The results showed that adaptation was
performed correctly for both implementations using different
technologies, and that the knowledge in the abstract model
could easily be copied between different implementations.

In future work, we will plan a more detailed evaluation
of our approach, using an actual feedback loop. We will
also investigate the applicability and performance of our ap-
proach on large scale examples, and expand its scope beyond
configuration files.

Acknowledgements
The authors would like to thank Dr. Hsiang-Shang Ko and
Mr. Li Liu, from the National Institute of Informatics,
Tokyo, Japan, as well as Mr. Jorge Cunha Mendes, from
INESC Technology and Science, Porto, Portugal, for their
help with BiGUL development.

This work is partially supported by the Nation Basic Re-
search Program (973 Program) of China (grant
No. 2015CB352201) and by JSPS Grant-in-Aid for Scientific
Research (A) No. 25240009 of Japan.

10. REFERENCES
[1] Konstantinos Angelopoulos, Vitor E. Silva Souza, and

Joao Pimentel. Requirements and architectural
approaches to adaptive software systems: A
comparative study. In Proceedings of the 8th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, pages 23–32.
IEEE Press, 2013.

[2] Christopher Bailey, Lionel Montrieux, Rogério
de Lemos, Yijun Yu, and Michel Wermelinger.
Run-time generation, transformation, and verification
of access control models for self-protection. In
Proceedings of the 9th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems, pages 135–144. ACM, 2014.

[3] Cornel Barna, Hamoun Ghanbari, Marin Litoiu, and
Mark Shtern. Hogna: A Platform for Self-Adaptive
Applications in Cloud Environments. In 2015
IEEE/ACM 10th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pages 83–87. IEEE, May 2015.

[4] Betty H. C. Cheng, Rogério de Lemos, Holger Giese,
Paola Inverardi, Jeff Magee, Jesper Andersson, Basil
Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic,
Giovanna Di Marzo Serugendo, Schahram Dustdar,
Anthony Finkelstein, Cristina Gacek, Kurt Geihs,
Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff
Kramer, Marin Litoiu, Sam Malek, Raffaela
Mirandola, Hausi A. Müller, Sooyong Park, Mary
Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns,
and Jon Whittle. Software Engineering for
Self-Adaptive Systems: A Research Roadmap. In
Software Engineering for Self-Adaptive Systems,
number 5525 in Lecture Notes in Computer Science,
pages 1–26. Springer Berlin Heidelberg, January 2009.

[5] Krzysztof Czarnecki, Nathan Foster, Zhenjiang Hu,
Ralf Lämmel, Andy Schürr, and James Terwilliger.
Bidirectional Transformations: A Cross-Discipline
Perspective. In Richard Paige, editor, Theory and
Practice of Model Transformations, volume 5563 of
Lecture Notes in Computer Science, pages 260–283.
Springer Berlin Heidelberg, 2009.

[6] Sebastian Fischer, ZhenJiang Hu, and Hugo Pacheco.
The essence of bidirectional programming. Science
China Information Sciences, 58(5):1–21, May 2015.

[7] Nathan Foster. Bidirectional programming languages.
PhD thesis, University of Pennsylvania, Department
of Computer and Information Science, 2010.

[8] Nathan Foster, Benjamin Pierce, and Steve
Zdancewic. Updatable Security Views. In Proc.
Computer Security Foundations Symposium (CSF’09),
pages 60–74. IEEE, July 2009.

[9] Nathan Foster, Alexandre Pilkiewicz, and Benjamin
Pierce. Quotient lenses. In ACM Sigplan Notices,
volume 43, pages 383–396. ACM, 2008.

[10] David Garlan, Shang-Wen Cheng, An-Cheng Huang,
Bradley Schmerl, and Peter Steenkiste. Rainbow:
Architecture-based self-adaptation with reusable
infrastructure. Computer, 37(10):46–54, 2004.

[11] John Georgas, André van der Hoek, and Richard
Taylor. Architectural runtime configuration
management in support of dependable self-adaptive
software. In ACM SIGSOFT Software Engineering
Notes, volume 30, pages 1–6. ACM, 2005.

[12] I. B. M. Group. An architectural blueprint for
autonomic computing. Technical report, IBM White
paper, 2005.

[13] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi.
A programmable editor for developing structured
documents based on bidirectional transformations. In
Proceedings of the 2004 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program
manipulation, pages 178–189. ACM, 2004.

[14] Cristian Klein, Martina Maggio, Karl-Erik Arzén, and
Francisco Hernández-Rodriguez. Brownout: building
more robust cloud applications. In Proceedings of the
36th International Conference on Software
Engineering, pages 700–711. ACM, 2014.

[15] Hsiang-Shang Ko, Tao Zan, and Zhenjiang Hu.
BiGUL: A Formally Verified Core Language for
Putback-based Bidirectional Programming. In
Proceedings of the 2016 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, PEPM

2016, pages 61–72, New York, NY, USA, 2016. ACM.

[16] Andres Ramirez and Betty Cheng. Design patterns for
developing dynamically adaptive systems. In
Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems
(SEAMS’10), pages 49–58. ACM Press, 2010.

[17] Hui Song, Gang Huang, Franck Chauvel, Yingfei
Xiong, Zhenjiang Hu, Yanchun Sun, and Hong Mei.
Supporting runtime software architecture: A
bidirectional-transformation-based approach. Journal
of Systems and Software, 84(5):711–723, 2011.

[18] Jacob Swanson, Myra Cohen, Matthew Dwyer, Brady
Garvin, and Justin Firestone. Beyond the rainbow:
self-adaptive failure avoidance in configurable systems.
In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering,(FSE-22), Hong Kong, China, pages
377–388, 2014.

[19] Thomas Vogel and Holger Giese. Adaptation and
abstract runtime models. In Proceedings of the 2010
ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems, pages 39–48. ACM, 2010.

[20] Thomas Vogel and Holger Giese. Model-Driven
Engineering of Self-Adaptive Software with
EUREMA. ACM Transactions on Autonomous and
Adaptive Systems, 8(4):1–33, January 2014.

[21] Thomas Vogel, Stefan Neumann, Stephan
Hildebrandt, Holger Giese, and Basil Becker.
Incremental model synchronization for efficient
run-time monitoring. In Models in Software
Engineering, pages 124–139. Springer, 2010.

[22] Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan
Zhao, Masato Takeichi, and Hong Mei. Towards
automatic model synchronization from model
transformations. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated
software engineering, pages 164–173. ACM, 2007.

[23] Yingfei Xiong, Hui Song, Zhenjiang Hu, and Masato
Takeichi. Supporting parallel updates with
bidirectional model transformations. In Theory and
Practice of Model Transformations, pages 213–228.
Springer, 2009.

[24] Yijun Yu, Yu Lin, Zhenjiang Hu, Soichiro Hidaka,
Hiroyuki Kato, and Lionel Montrieux. Maintaining
invariant traceability through bidirectional
transformations. In Proceedings of the 34th
International Conference on Software Engineering,
pages 540–550. IEEE Press, 2012.

