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ABSTRACT
Graph has emerged as a powerful data structure to describe
various data. Query evaluation on distributed graphs takes
much cost due to the complexity of links among sites. Dan
Suciu has proposed algorithms for query evaluation on semi-
structured data that is a rooted, edge-labeled graph, and
algorithms are proved to be efficient in terms of commu-
nication steps and data transferring during the evaluation.
However, one disadvantage is that communication data are
collected to one single site, which leads to a bottleneck in
the evaluation for real-life data. In this paper, we propose
two algorithms to improve Dan Suciu’s algorithms: one-pass
algorithm is to significantly reduce a large amount of redun-
dant data in the evaluation, and iter acc algorithm is to
resolve the bottleneck. Then, we design an efficient imple-
mentation with only one MapReduce job for our algorithms
in Hadoop environment by utilizing features of Hadoop file
system. Experiments on cloud system show that one-pass al-
gorithm can detect and remove 50% of data being redundant
in the evaluation process on YouTube and DBLP datasets,
and iter acc algorithm is running without the bottleneck
even when we double the size of input data.

Categories and Subject Descriptors
H.2.4 [Database Management]: System—Query process-
ing, Distributed databases; D.1.3 [Programming Tech-
niques]: Concurrent Programming—Distributed program-
ming, Parallel programming

General Terms
Algorithms, Performance
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Graph databases, MapReduce, Big data
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1. INTRODUCTION
Currently, graphs are ubiquitous. The world wide web is

a graph whose nodes correspond to static pages, and whose
edges correspond to links between these pages [4]. Social
network graph consists of edges denoting many complex re-
lationships [12, 23]. Despite of the popularity of graph, there
are still not so many research studies that focus on efficient
evaluation for queries on distributed graphs whose nodes and
edges are distributed on different sites.

To see the difficulties of query evaluation on distributed
graphs, consider simple graph queries defined in terms of
regular expressions [9]. The process of evaluating a query is
to find paths in the graph that satisfy the regular expression,
and return nodes and edges related to those paths. Query
evaluation on a centralized graph is efficiently performed by
DFS/BFS algorithms. However, with a distributed graph,
query evaluation is more difficult in the sense that the amount
of data transferred via network in the evaluation process is
large. Because each site just has the local/partial informa-
tion of the graph, sites have to communicate and exchange
a lot of information with others.

Dan Suciu [21] has proposed an efficient algorithm to eval-
uate query on distributed graphs with distinguished proper-
ties as follows:

• The number of communication steps is four (indepen-
dent of the data or query).

• The total amount of data exchanged during commu-
nications has size of O(n2) + O(r), where n denotes
the number of cross-links (edges between two nodes at
two different sites) in distributed database, r the size
of the result of query.

However, in Dan Suciu’s algorithms the amount of data
O(n2) are sent to only one site to process, which results
in a bottleneck in the algorithm when evaluating on social
graphs where the number of cross-links is quickly increasing
[13]. In this paper, we show an approach to overcoming this
bottleneck with the following contributions:

• We improve the Dan Suciu’s algorithm so that we can
remove a large number of redundant nodes and edges
in the evaluation (Section 3.1), and reduce the total
amount of data transferring via network to O(|N | ×
|S| × |P |), where |N | denotes the number of input and
output nodes, |S| the number of states in automaton,
and |P | the number of partitions (Section 3.2).

• We propose an efficient implementation for our algo-
rithms using MapReduce programming model in the



Figure 1: A rooted, edge-labeled graph of Youtube’s
data. The red node is the root node.

Hadoop environment (Section 3.3). The implementa-
tion utilizes the features of Hadoop distributed file sys-
tem (HDFS) to make the implementation correct and
efficient.

The organization of this paper is as follows. In Section 2
we briefly review the key features of a well-known method for
query evaluation on distributed graphs. The main contribu-
tions are in Section 3 where we show improvements on Dan
Suciu’s algorithm and propose an efficient implementation
in Hadoop environment. Section 4 shows experimental re-
sults of our algorithms with data from Youtube and DBLP.
Related works and Conclusion will be mentioned in Sections
5 and 6.

2. QUERY EVALUATION ON DISTRIBUTED
GRAPH

In this section, we shall give a brief review of the existing
work on query evaluation for distributed graphs [17, 21].

2.1 Distributed graph
We will represent a database by a rooted, edge-labeled

directed graph. It is a graph with a unique root. Each vertex
(in this paper we call it a node) has its unique identity. Each
edge from a node u to node v has a label, and is denoted

by u
label→ v. Label could be atomic values such as: Int,

Long, String, Bool, Image, . . . . This data model enables
us to develop simple query languages with an underlying
optimized algebras for querying and graph transformation
[6, 5, 7].

A distributed graph DG is a graph whose nodes are parti-
tioned into m sets located on m sites. At each site α, nodes
and correspondent edges make a fragment DGα of the dis-
tributed graph. An edge u→ v is a cross-link if u and v are
stored on different sites.

For any cross-link u
a→ v from site α to site β, we replace

it with a sequence of edges u
a→ v′

ε→ v, where v′ is just

Figure 2: A distributed graph for Youtube’s data
with three fragments. The red node is the root.
Green nodes are input ones. Yellow nodes are out-
put ones.

a copy of v and resides on the site α, ε is a special label
denoting an empty label. Now, v′

ε→ v becomes a cross-link
and u

a→ v′ is an edge in fragment DBα. We call u
a→ v′ an

ε-edge. v′ is called an output node of fragment DBα, and v
is an input node of fragment DBβ .

Figures 1 and 2 are examples of a rooted edge-labeled
directed graph whose root is the node with value “1”, and
dotted edges are cross-links with ε label. Input nodes are in
green and output nodes are in yellow.

2.2 Query evaluation
A query Q on a graph DG is a select-where query that is

a subset of UnQL query language [6, 7]. For simplicity, we
just consider a query with one regular path expression:

select t
where R⇒ t in DG

Here t is a variable that stores records returned, R is a
regular path expression:

R = a | | R|R | R⇒ R | R ∗ | R

where a is a label including ε label. denotes any label,
R | R is an alternation, R⇒ R denotes concatenation, and
R∗ is the Kleene closure.

Evaluation of a query Q on a graph DG is denoted by
DG(Q).

A problem of query evaluation on a distributed graph is
stated as follows: Given a distributed graphDG =

⋃
α=1,mDGα,

and a query Q, compute DG(Q).
A well-known method for query evaluation [17, 21] based

on partial evaluation technique [10] consists of 6 steps:
Step 1: Client computes an automaton A for the regular

expression R in the query Q, then sends A to each sites.
Step 2: At each site α, compute a partial result Pα as in

Algorithm 1. Note that if a node u is a root node then (1)
it is also an input node, (2) a node (s, u) is an input node,



Algorithm 1: Partial result computation

input : A fragment DGα, an automaton A
output: A partial result Pα

begin
Pα ← DGα ; /* copy nodes and edges from DGα
to Pα */

foreach u ∈ InputNodes(DGα) do
foreach s ∈ States(A) do

S ← visit(s, u);
foreach p ∈ S do

adding an edge (s, u)
ε→ p to Pα;

end

end

end

end

where s is a state in the automaton A. If u is an input or
output node, then (s, u) is an input or output respectively.

Step 3: Compute a local accessible graph LAGα from
Pα. LAGα contains all input and output nodes from Pα
and an edge from an input node to an output node if there
exists a path between them in Pα.

Step 4: Each site α sends its LAGα to client where LAGs
will be combined together, then be added cross-links to get
a global accessible graph GAG. Starting from the node
(sinitial, uroot) where sinitial is the initial state in A, uroot is
the root node of DG, we find all nodes accessible in GAG,
then send the set of accessible nodes back to each site.

Step 5: At each site α, compute a partial answer as fol-
lows. With each element in the set of accessible nodes, we
find its successors in Pα and add them to the partial answer.
Finally, send the partial answer to client.

Step 6: Client will combine partial answers together, and
add cross-links to get a final answer of the query. The final
answer is the result of DG(Q).

In step 4, the total amount of data transferring is O((|N |×
|S|)2) where |N | is the number of cross-links, |S| is the num-
ber of state in the automaton. Note that these data are ag-
gregated into client. In step 5, that is O(r), where r is the
size of query answer. Therefore, the total data in commu-
nication for the evaluation is O((|N | × |S|)2) + O(r)). [21,
9].

3. EFFICIENT EVALUATION WITH HADOOP
ENVIRONMENT

In this section we focus on describing our framework that
efficiently evaluates queries on distributed graphs.

Figure 3 shows the overview of the framework that con-
sists of three phases. In the first phase, we compute both a
partial result and a local accessible graph in one step. This
computation is performed locally at each site. In the sec-
ond phase, we compute accessible nodes from LAGs in the
distributed way. Each site will communicate with others to
update its LAG. The amount of data in communication will
be computed in detail in Section 3.2. After that, we get
new LAGs at each site. These new LAGs contain nodes ac-
cessible from the root node (sinitial, uroot). Note that our
partial results are unchanged in the phase 2. Finally, we ex-
tract accessible nodes from new LAGs locally, and construct
partial answers by doing a BFS for each accessible node over

Algorithm 2: Visiting algorithm

input : A node s, a state s
output: A set of node
visit(s, u) begin

if (s, u) ∈ visited then
return global matches[(s,u)];

end
visited ← (s,u);
matches ← {};
if u is output node then

matches ← (s,u);
global matches[(s,u)] ← matches;

else if s is terminal state then
matches ← u;
global matches[(s,u)] ← matches;

foreach u
a→ v in DGα do

foreach s
x→ s′ satisfies x == a do

matches ← matches ∪ visit(s′, u);
global matches[(s,u)] ← matches;

end

end
return matches;

end

partial results. Partial answers are fragments of the query’s
final answer. A combinator is used to gather partial answers
and add cross-links between them to make the final answer.

3.1 One-pass evaluation

3.1.1 Observations
Before going to the detail of our one-pass evaluation, we

briefly review the form of partial results and local accessible
graphs.

A partial result consists of the whole nodes and edges in
a fragment. Besides, it has additional nodes in the form
of (s, u), where s is a state in the automaton, u an input
or output node. An example of a partial result is shown in
Figure 4. The input fragment for that partial result includes
nodes indexed from 1 to 8 and edges between them. Here
we have two input nodes: node 1 and node 2; three output
nodes: node 5, node 6, and node 8. The edge (s1, 1)

ε→
(s2, 5) is there because, starting from node 1 with state s1,
we can reach node 5 at state s2 by following transitions
in the automaton. Since s3 is the terminal state, we have
edges (s3, 1)

ε→ 1, (s3, 2)
ε→ 2. We can not find any node

that matches the automaton starting from node 1 or node
2 with state s2, therefore there is no edge emanating from
these nodes.

A LAG contains all input and output nodes from a partial
result and ε-edges from input nodes to output nodes if there
exists a path between them. Figure 5 is an example of a
LAG for the partial result in Figure 4.

We have some important observations on LAGs as follows.
Observation 1: In a partial result, if an input node (s, u)

has no links to other nodes, then we remove it from LAG. We
prove this by considering the state s: if s is a terminal state,
then there always exists an edge (s, u) → u (Algorithm 2),
therefore in this case, s is not a terminal state. Because s is
not a terminal state, u is not the final node yet that satisfies
the automaton. Besides, we can not go further along the



Figure 3: Architecture of our query evaluation
framework.

automaton, so the node u does not contribute to the final
result, it means that we can remove the node (s, u).

Observation 2: For a terminal state sterminal, if there
is an ε-edge (sterminal, uin)

ε→ uin in partial result, then

in LAG only ε-edges uin
ε→ vout are enough, where vout

is an output node that is reachable from uin. It means
that, we do not need to add edges (sterminal, uin)

ε→ vout
to LAG. This is easily proved by showing that if existing a
path from (sterminal, uin) to vout, then the path must con-
tain uin. According to Algorithm 2, when visiting node
(sterminal, uin), because sterminal is a terminal state, we

add an edge (sterminal, uin)
ε→ uin to LAG and finish the

visit of (sterminal, uin). Therefore, the only way to go from
(sterminal, uin) to vout is via uin.

Observation 3: Assuming that between fragment Fi and
fragment Fj there is a cross-link u′ → u, u′ ∈ Fi, u ∈
Fj. Then, there always exists edges (sterminal, u) → u in
LAGj of Fj. We prove that these edges are redundant. In
LAGj of Fj , we consider two cases: (1) If there exists an
ε-edge w → (sterminal, u

′), then we have a path as follows:

w
ε→ (sterminal, u

′)
ε→ (sterminal, u)

ε→ u. That path can be

replaced by w
ε→ u′

ε→ u. (2) If there does not exist an ε-edge
w → (sterminal, u

′), then there is no path coming to node
(sterminal, u), we can remove the edge (sterminal, u)→ u.

3.1.2 One-pass Algorithm
Applying above observations, we can remove a large of

redundant nodes and edges from LAGs (Example in Figure
6), leading to significantly decreasing the amount of data
during the computation of accessible nodes. Also by the
observations, we re-organize a local accessible graph into
three parts: the first part contains only edges between non-
state input nodes and non-state output nodes (nodes with-
out state); the second part includes of only edges between

Figure 4: Partial result.

nodes having states (these nodes and edges are computed
by the visiting algorithm); and the remaining part consists
of edges from input nodes having state to other non-state
output nodes, these edges show us that there is a strong
probability that result of query can be appeared in current
site.

We re-design algorithms in Section 2 so that it computes
both partial results and LAGs without redundant data. The
algorithm is shown in Algorithm 3. For each input node,
firstly we compute output nodes that can be reached from
that input node, which constructs the first part of LAG. The
second part and third part of LAG is copied from result of
the visiting algorithm for each node of (s, uin), here we do
not visit with terminal state in order to remove all redun-
dant edges of (sterminal, uin)

ε→ uin. The visiting algorithm
(Algorithm 4) is almost the same as the former one. There is
only one difference that is we check whether a node reaches a
terminal state or not before checking whether it is an output
node, this will replace all edges of (s, u)

ε→ (sterminal, vout)

by (s, u)
ε→ vout.

3.2 Efficient computation of accessible nodes
As discussed in Section 2, to compute accessible nodes

we have to combine all LAGs into a global accessible graph
(GAG). The size of GAG is O((|N | × |S|)2). This is also
the amount of data we have to send over network. In so-
cial networks where the number of relationship is large, the
number of cross-links is also increasing. This causes a bot-
tleneck in evaluation of query. We see that the number of
accessible nodes is not more than the number of node in the
final answer because we use accessible nodes to extract the
final answer from partial results. Therefore sending out all
nodes and edges in LAGs is not necessary.

Borrowing the idea of distributed BFS [15], we propose
an efficient iterative algorithm to compute accessible nodes,
named iter acc algorithm. In the computation process, each
node in a LAG will have one of two values: either ACC node
or OR node, hence we refer a LAG as an ACC/OR graph.
Our algorithm is as follows.

Step 1: Represent a LAG by adjacent lists, in which for
each input node there is a set of output nodes linked with it.
Let a list of adjacent nodes of u be adj(u). Initially, marking
all nodes in LAGs as OR nodes.

Step 2: Create a list to keep accessible nodes during
the computation process, named acc nodesα for each site α.
Initially, acc nodesα contains only the root node (s, r) (s is



Figure 5: Local accessible graph (LAG). Figure 6: LAG after reducing redundant vertices.

Algorithm 3: One-pass algorithm

input : A fragment DGα, an automaton A
output: A partial result Pα, a LAGα

begin
Pα ← DGα ; /* copy nodes and edges from DGα
to Pα */

foreach u ∈ InputNodes(DGα) do
IO ← FindOutNodes(u);
foreach v ∈ IO do

LAGα ← (u
ε→ v);

end
foreach s ∈ States(A)\{sterminal} do

S ← visit(s, u);
foreach p ∈ S do

if u has a state then

adding an edge (s, u)
ε→ p to Pα;

adding an edge (s, u)
ε→ p to LAGα;

else
IO ← FindOutNodes(u);
foreach v ∈ IO do

LAGα ← (u
ε→ v);

end

end

end

end

end

an initial state of the automaton, r is the root node of the
input graph DG).

Step 3: Each site α sends its acc nodesα to all other sites.
Step 4: Each site α receives acc nodesi, i = 1..n, i 6= α,

from others and combines them into its acc nodesα, then
removes duplicate nodes.

Step 5: Each site α uses its acc nodesα to update its
LAGα. The update process is as follows: For each node
u ∈ acc nodesα:

• If u ∈ LAGα, then (1) if u is an OR node, then update
it to an ACC node. (2) For each node v in adj(u), if
v is an OR node, then update v to an ACC node and
add v to acc nodesα.

• If u /∈ LAGα, do nothing.

Algorithm 4: A modified visiting algorithm

input : A node u, a state s
output: A set of node
visit(s, u) begin

...

if s is a terminal state then
matches ← u;
global matches[(s,u)] ← matches;

else if u is an output node then
matches ← (s,u);
global matches[(s,u)] ← matches;

...
end

• Removing u from acc nodesα.

Step 6: Repeat Step 3 until all acc nodesi, i = 1..n, is
empty.

Step 7: At each site α, extract all ACC nodes from
LAGα, we have a set of accessible nodes for its fragment
Fα.

An example of the above algorithm is shown in Figure 7
for two LAGs distributed on two different sites.

The amount of data transferring over network in our al-
gorithm is O(|N |×|S|×|P |), where |N | denotes the number
of input and output nodes, |S| the number of state in au-
tomaton, |P | the number of partitions. By using hash data
structure to store LAGs, we check whether u in LAGα or
not in the time complexity of O(1). Because the organi-
zation of LAGs is simple in the sense that it just contains
edges between input and output nodes, the number of levels
to explore in each iteration is only one. This will signifi-
cantly reduce the overhead between iterations.

3.3 Efficient Hadoop-based implementation

3.3.1 Hadoop environment
Hadoop [2] is an open source framework for MapReduce

programming model [8]. It is proved to be efficient and scal-
able. In MapReduce programming model, we only need to
write two functions: Map and Reduce. Map functions ac-
cept a pair of (key1, value1) as its input and produce a list



Figure 7: An example of computation of accessi-
ble nodes with five iterations. acc nodes i denotes
value of acc nodes in site i before each iteration.
(acc nodes i) denotes value of acc nodes in site i af-
ter each iteration. Numbers in square boxes denote
the iteration number.

of pairs of (key2, value2). After that, Shuffle and Sorting
phase will collect pairs with the same key and group them
into pairs of (key2, list of values), this phase is automati-
cally done by Hadoop system. For each different key and a
list of its values, the system will invoke a reduce function
to process. Reduce functions will emit results that are pairs
of (key3, value3). Data, which are used during computa-
tion of a MapReduce job, are stored in a high performance
distributed file system named HDFS. Map tasks and reduce
tasks will be efficiently scheduled so that they are “nearest”
to its input data. “Nearest” in the sense that tasks and its
input data are in the same machine or in the same subset of
network.

3.3.2 An intuitive implementation
Intuitively, our iter acc algorithm can be performed by

iterating over MapReduce jobs. In the first MapReduce job,
each map task takes account into a partition and performs
one-pass evaluation algorithm. There is no reduce task in
the first job, so map task will directly write its result to
HDFS. Next, we have a loop of MapReduce jobs for iter acc
algorithm. Each loop has one MapReduce job. The loop
will finish when there is no new accessible node found. In
each iteration, Map task will compute new accessible nodes
following the algorithm described in Section 3.2, with each
accessible node it emits a pair (1, accessible node). Because
all pairs emitted by map phase has the same key 1, every
accessible nodes will come to the same Reduce task where we
will remove duplicate nodes and emit a list of new accessible
nodes, this list will be used for the next MapReduce job.
The final MapReduce job will compute partial answers in
its Map tasks and send them to a reduce task to get the

final answer.
However, we recognize that the time for initializing a MapRe-

duce job is not small, which leads to an inefficient program
as it iterates over many jobs. Besides, after each job fin-
ished, we have to write results (here, LAGs and accessible
nodes) to HDFS and read them back for next jobs. Because
the size of LAGs is large, the algorithm takes much time.
The problem is that how to design an implementation with
only one MapReduce job and avoiding as much as possible
reading/writing so much data from/to HDFS.

3.3.3 An efficient implementation
Our idea is as follows. We keep LAGs and partial result

in memory to maximize the performance of the algorithm,
and only send out new accessible nodes. In Figure 8, we
propose an implementation for that idea using HDFS. At
each iteration, a map task writes its new accessible nodes to
a file in HDFS, then it reads back all other files what have
written by other map tasks, combines them together, and
checks whether the whole list of accessible nodes is empty
or not in order to decide if we should finish the loop or not.
There are two problems we have to handle in that process:

• Consistency: A task can not read the content of a file
in HDFS before other task completely finish writing it
to HDFS.

• Synchronization between iterations: How to know
that, at each iteration i-th, map tasks only read files of
accessible nodes from the previous iteration (i− 1)-th.

As of consistency, the problem is that how to know when
HDFS finished writing to a file. HDFS uses the length of
a file to do its magic [3]. The length of a file stays at 0
while the first block is being written to. After the first block
is fully written, the length of file will be updated to the
length of data written so far, this update continues until all
blocks of data written to the file. The default value of a
block is 64MB. Because in our model the size of files is not
greater than the size of a file that contains all input and
output nodes, therefore, to keep the length of a file always
to be 0 we set up the default value to be the size of the file
containing all input and output nodes. Now, we just check
the length of a file to see whether other task has finished
writing it or not.

To ensure the synchronization between iterations we name
files by using two parameters: iteration identity and parti-
tion identity. The algorithm is as follows:

• Each partition has a unique identity p, p = 1..n, n the
number of partitions.

• At each iteration i, each map task for a partition p
does:

– output a file containing new accessible nodes to
HDFS, with the file name of the form of : i p.txt

– read back n files i p.txt from HDFS, p = 1..n

– check whether it completely finished reading all
files i p.txt or not, p = 1..n. If finished, increasing
the value of i. If not, continuing to read.



Figure 8: Hadoop-based implementation of evalua-
tion system.

4. EXPERIMENTAL RESULTS
In this section, we present experiments for our implemen-

tation using datasets of YouTube and DBLP.

4.1 Experimental environment
Experiments are performed on Edubase Cloud System 1,

we built a Hadoop environment from five virtual machines
on the Cloud: one machine for master node, and four others
for compute nodes. Each compute node has 8 CPUs and
24GB of RAM.

We used real-life data from YouTube 2 and DBLP 3 to
generate edge-labeled directed graphs with the sizes as fol-
lows.

Dataset |V| |E| Size (|V|+ |E|)
YouTube 7,354,581 8,297,699 15,652,280
DBLP 3,976,588 4,303,895 8,280,483

To make distributed graphs, we used GraphLab library 4

to partition the centralized graphs into 32 partitions stored
by 32 different files and put on HDFS file system. When
the algorithm is executed, each map task will read a file to
process. Using GraphLab library is to ensure the balance
between sizes of partitions and to minimize the number of
cross-links.

For each graphs, we randomly chose a node to be the
root. We used two different queries with following regular
expressions.

1http://edubase.jp/cloud
2http://netsg.cs.sfu.ca/youtubedata/
3http://arnetminer.org/citation
4http://graphlab.org/

Dataset Regular expression
YouTube “∗ => category => Music”
DBLP “∗ => year => 2002”

A query for YouTube graph is to find videos that have
Music as its category, and the one for DBLP to find papers
published in 2002.

4.2 Results
We compared the total size of all local accessible graphs

generated by Dan Suciu’s algorithm with the one of that
generated by our one-pass algorithm. Figure 9 and Figure
10 shows that we can reduce almost 50% of the size of LAGs
for both YouTube and DBLP graphs.

To simulate a bottleneck, we decreased the heap size for
a reduce task to 1024MB. We compared between two pro-
grams: both use the one-pass algorithm to compute LAGs,
in which one program sends all LAGs to one reduce task to
compute accessible nodes (Dan Suciu’s algorithm) and the
other uses our iterative algorithm. Figure 11 shows that
the program without the iterative algorithm can not pass
when evaluating the dataset of the size of 8 millions, mean-
while the other can compute with the data being two times
larger. Furthermore, we can see that when the data size
becomes larger, the difference in running time is also in-
creased. Experiments with DBLP (Figure 12) also show the
same performance.

Finally, we do a comparison to see the overhead of a loop
of MapReduce jobs. As shown in the Figures 11 and 12,
the algorithm using a loop of MapReduce jobs (MRLoop)
is about 3 or 4 times slower than our iterative algorithm
which used the in-memory technique. This overhead is pro-
portional to the number of iterations in a loop.

5. RELATED WORKS
Evaluating regular path queries on distributed, rooted,

edge-labeled directed graphs are studied by Dan Suciu in
[21], and extended in [18] based on message passing. In [18],
the algorithm will create a set of processes, each process
starts by creating an initial task for itself and a table to
store results during computation. Tasks then communicate
with others to update their tables in an iterative way. This
is different to our approach: (1) We only use the iterative
way to compute accessible nodes, most computations of the
algorithm are done locally; (2) The amount of data sending
over the network in [18] is O(n2), where n is the number of
cross-links between different sites.

In [9], Fan Wenfei proposed an algorithm for reachability
problem with regular path expressions. The algorithm used
Boolean formulas to keep local accessible nodes, and then
combine them together to make a dependent graph. This
algorithm only needs one visit for each site and therefore
fits to the MapReduce model. Basically, the approach in [9]
still follows the query evaluation model in [21], therefore the
amount of data transferred is quadratic to the number of
cross-links. Furthermore, our algorithm can evaluate more
general queries of regular expression (queries that return
data extracting from the input graph) other than reachabil-
ity queries with True/False answer.

In 2010, Google developed Pregel [14], a distributed pro-
gramming framework, focused on providing users with a nat-
ural API for programming graph algorithms while manag-
ing the details of distribution invisibly, including messaging
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Figure 9: Reduction of redundant data (YouTube
dataset).
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Figure 10: Reduction of redundant data (DBLP
dataset).
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Figure 11: Running time with YouTube dataset.
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Figure 12: Running time with DBLP dataset.

and fault tolerance. Pregel was inspired by the Bulk Syn-
chronous Parallel model [24], which provides its synchronous
superstep model of computation and communication. Pregel
concepts were cloned by several open source projects such
as: Apache Hama [16], Giraph [1], Signal/Collect [20]. This
model is different with ours, in which our model is mainly
based on partial evaluation. We believe that Pregel can be
used to compute accessible nodes in the iter acc algorithm.

Ligra [19] is a lightweight interface for graph algorithms
that is particularly well suited for graph traversal problems.
This work is motivated by developing a very fast BFS for
shared memory machines. Ligra consists of two simple in-
terfaces: (1) EDGEMAP is to apply a function to all edges
with source vertex in a subset of vertex and target vertex
satisfying some condition, and (2) VERTEXMAP is to apply
a function to every vertex in a subset of vertex. Neverthe-
less, the idea of applying Ligra to query evaluation was not
mentioned in [19].

Pig [11] and Hive [22] are two popular high-level dataflow
systems on top of MapReduce to analyze enormous datasets
in spirit of SQL. Programs are compiled into sequences of
Map-Reduce jobs and executed in Hadoop environment. How-
ever, they were not designed mainly to support scalable pro-
cessing of graph-structured data.

6. CONCLUSION
We have proposed an improvement for query evaluation

on distributed graphs, which reduces a large amount of re-
dundant data and avoids the bottleneck during the evalua-

tion. The total amount of data transferred over network of
our algorithm is linear to the number of cross-links between
different sites. We have also proposed an efficient implemen-
tation based on Hadoop file system HDFS and used HDFS
to ensure the consistency of data and to synchronize itera-
tions in the algorithm. With our knowledge, we see that our
algorithm is the first approach trying to combine the par-
tial evaluation with iteration approach to evaluate queries
on distributed graphs.

In the future, we will apply our approach to deal with
more other queries of UnQL query language, and to evaluate
queries on multiple sources of data. Another direction is
to extend our approach to incrementally maintain views to
database.
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