
Softw Syst Model
DOI 10.1007/s10270-010-0187-3

SPECIAL SECTION PAPER

Synchronizing concurrent model updates based
on bidirectional transformation

Yingfei Xiong · Hui Song · Zhenjiang Hu ·
Masato Takeichi

Received: 29 November 2009 / Revised: 21 October 2010 / Accepted: 15 December 2010
© Springer-Verlag 2011

Abstract Model-driven software development often
involves several related models. When models are updated,
the updates need to be propagated across all models to make
them consistent. A bidirectional model transformation keeps
two models consistent by updating one model in accordance
with the other. However, it does not work when the two mod-
els are modified at the same time. In this paper we first exam-
ine the requirements for synchronizing concurrent updates.
We view a synchronizer for concurrent updates as a function
taking the two original models and the two updated models
as input, and producing two new models where the updates
are synchronized. We argue that the synchronizer should sat-
isfy three properties that we define to ensure a reasonable
synchronization behavior. We then propose a new algorithm
to wrap any bidirectional transformation into a synchronizer
with the help of model difference approaches. We show that

Communicated by Richard Paige, Jeff Gray and Dang Van Hung.

This research was done while Y. Xiong was at the University of Tokyo.

M. Takeichi
Department of Mathematical Informatics,
The University of Tokyo, Tokyo, Japan
e-mail: takeichi@mist.i.u-tokyo.ac.jp

H. Song
Key Laboratory of High Confidence Software Technologies
(Peking University), Ministry of Education, Beijing, China
e-mail: songhui06@sei.pku.edu.cn

Z. Hu
GRACE Center, National Institute of Informatics, Tokyo, Japan
e-mail: hu@nii.ac.jp

Y. Xiong (B)
Generative Software Development Lab, University of Waterloo,
Waterloo, Canada
e-mail: yingfei@gsd.uwaterloo.ca; xiong.yingfei@gmail.com

synchronizers produced by our algorithm are ensured to sat-
isfy the three properties if the bidirectional transformation
satisfies the correctness property and the hippocraticness
property. We also show that the history ignorance property
contributes to the symmetry of our algorithm. An implemen-
tation of our algorithm shows that it worked well in a practical
runtime management framework.

Keywords Model synchronization · Bidirectional
transformation · Concurrent updates ·Model difference

1 Introduction

One central activity of model-driven software development
is to transform high-level models into low-level models
through model transformation. For example, Fig. 1a shows a
basic Unified Modeling Language (UML) model contain-
ing a Book class with two attributes. To implement this
UML design, we can write a model transformation pro-
gram to transform the model into a basic database model,
as shown in Fig. 1b. Each UML class whose persistent
feature is true is transformed into a database table of the
same name. Each attribute belonging to a persistent class is
transformed into a column with the same name. The data-
base model also contains implementation-related informa-
tion, the owner feature, and this feature is set with default
value ”admin”.

In an ideal situation, the target model is always obtained
from a source model and never needs to be modified. In
reality, however, developers often need to modify the target
model directly. In such cases, the updates need to be reflected
back to the source model.

123

Y. Xiong et al.

(a) (b)

Fig. 1 Transforming a UML model into a database model

(a) (b)

Fig. 2 Non-conflicting concurrent updates

Bidirectional model transformation [1,2] solves this main-
tenance problem by providing a bidirectional model trans-
formation language, which is used to describe the relation
between the two models symmetrically. Programs in these
languages are used not only to transform models from one
format into another, but also to update the other model auto-
matically when a model is updated by users.

Stevens [3] formalizes a bidirectional model transforma-
tion as two functions. If M and N are meta models and R ⊆
M × N is the consistency relation to be established between
them, a bidirectional model transformation consists of two
functions:
−→
R : M × N → N←−
R : M × N → M

Given a pair of models (m, n) ∈ M×N , function
−→
R changes

n to make it consistent with m. Similarly,
←−
R changes m in

accordance with n. Many bidirectional model transformation
languages (roughly) fall into this category; typical languages
include Query/View/Transformation relations (QVT-R) [1]
and TGGs [2].

However, in some cases, models m and n may be simulta-
neously updated before a bidirectional transformation can
be applied. For example, an application designer could
work on the UML model and change the price attribute
into ”bookPrice” at the same time a database designer
changes thetitle column into”bookTitle” in the data-
base model, as shown in Fig. 2. Applying the transformation
in either direction will result in the loss of updates on the
target side.

Because of the large number of available bidirectional
transformation languages and existing transformation pro-
grams, it would be preferable if we could synchronize con-
current updates using existing bidirectional transformations.
One basic idea is to sequentially apply the two updates and
interleave them with two transformations. For the updates in
Fig. 2, we can assume that the title column in the database
model is changed first and perform a backward transforma-
tion to change the title attribute in the UML model. Then,

(a) (b)

Fig. 3 Conflicting concurrent updates

we change the price attribute into ”bookPrice” in the
UML model and perform a forward transformation to change
the price column in the database model.

However, there are two problems in implementing this
idea. First, as with bidirectional transformation, we do not
want to require users to track updates. We thus need to iden-
tify which part of the updated UML model was changed so
that we can later apply the update to the result of the back-
ward transformation. Second, the updates applied to the two
models can sometimes conflict. Figure 3 shows an example
of conflicting updates where the title attribute and the
title column are changed to different values. If we trans-
form backward and then go forward again, we will lose the
update applied to the database model. A preferable synchro-
nizer would detect such conflicts and warn the user.

In this paper we propose a new approach based on the idea
of sequentially applying concurrent updates. We use com-
monly used model difference approaches [4–6] to solve the
two problems mentioned above. We design an algorithm that
uses model difference approaches to wrap any bidirectional
transformation into a synchronizer for concurrent updates.
The synchronizer takes the two original models and two
updated models as input and produces two new models in
which the updates are synchronized.

The main contributions of this work can be summarized
as follows:

– We identify general requirements for synchronizing con-
current updates. The requirements mainly consist of three
properties: consistency, stability and preservation. These
properties are adapted from previous work [7] on non-
symmetrical, language-specific synchronization. We sig-
nificantly modify them to make them appropriate for
more general and symmetrical synchronization.

– We propose an algorithm that can wrap any bidirectional
model transformation and any model difference approach
into a synchronizer supporting concurrent updates. It
treats the bidirectional model transformation and the
model difference approach as black boxes and does not
require the user to write additional code. For any bidirec-
tional transformation satisfying the correctness and hipp-
ocraticness properties [3], the synchronizer satisfies the
consistency, stability, and preservation properties, ensur-
ing correct and predictable synchronization behavior.

– We have implemented our algorithm and applied it
to a runtime management application. The application

123

Synchronizing concurrent model updates based on bidirectional transformation

showed that our algorithm can be customized for spe-
cific cases and its performance is practically enough for
mid-size models.

A previous version of the paper has been published in the
Proceedings of the 2nd International Conference on Model
Transformation [8]. Compared with the conference version,
the present paper contains a completely new section (Sect. 6)
discussing an important property of the algorithm: symmetry.
We also include another bidirectional transformation prop-
erty, history ignorance [9], for discussion and show that this
property can lead to the symmetry of the algorithm by con-
structing constant complements on both sides (Appendix A).
We added discussion about the research on optimistic replica-
tion and incremental bidirectional transformation in Sect. 8.
Finally, many places of the conference version have been
rewritten to improve readability. In particular, Sect. 7 has
been completely rewritten to better address the goal and the
result of the case study.

The rest of the paper is organized as follows: Section 2
describes the bidirectional model transformation proper-
ties introduced by Stevens [3]. Section 3 introduces our
requirements for synchronizing concurrent updates. Sec-
tion 4 describes model difference approaches in our context
and introduces how we use a model difference approach to
construct a three-way merger and a preservation tester, which
are used in our algorithm. Section 5 introduces our algorithm
and proves that bidirectional model transformation proper-
ties lead to model synchronization properties. Section 6 dis-
cusses an important property of the algorithm, symmetry, and
gives a necessary condition to achieve symmetry. Section 7
describes its application and Sect. 8 discusses related work.
Finally, Sect. 9 concludes the paper and discusses a possible
future direction: conflict resolution.

2 Background: properties of bidirectional model
transformation

The definition of bidirectional transformation describes only
the input and output of a transformation; it does not con-
strain the behavior of the transformation. Existing work [3,
9] proposes four properties that a bidirectional transforma-
tion should satisfy to ensure that models are transformed in
a reasonable way. In this paper, however, we require only
that a bidirectional transformation satisfies two of them (cor-
rectness and hippocraticness) because the other two proper-
ties (undoability and history ignorance) would prohibit many
practical transformations.

The first property, correctness [3], ensures that a bidirec-
tional transformation does something useful. Given two mod-
els, m and n, the forward and backward transformations must
establish a consistency relation R between them.

Property 1 (Correctness)

∀m ∈ M, n ∈ N : R(m,
−→
R (m, n))

∀m ∈ M, n ∈ N : R(
←−
R (m, n), n)

The second property, hippocraticness [3], prevents a bidi-
rectional transformation from doing something harmful.
Given two consistent models m and n, if neither model is
modified, the forward and backward transformations should
not modify any model.

Property 2 (Hippocraticness)

R(m, n) �⇒ −→R (m, n) = n

R(m, n) �⇒←−R (m, n) = m

The third property, undoability [3], means that a per-
formed transformation can be undone. Suppose there are two
consistent models, m and n. A user, working on the M side,
updates m to m′ and performs a forward transformation to
propagate the updates to the N side. Immediately after the
transformation, he realizes that the update is a mistake. He
modifies m′ back to m and performs the forward transforma-
tion again. If the bidirectional transformation satisfies undo-
ability, the second transformation will produce the exact n
to cancel the previous modification on the N side.

Property 3 (Undoability)

∀m′ ∈ M : R(m, n) �⇒ −→R (m,
−→
R (m′, n)) = n

∀n′ ∈ N : R(m, n) �⇒←−R (
←−
R (m, n′), n) = m

The last property, history ignorance [9], means that the
result of a transformation does not depend on whether we
have executed a previous transformation or not. In other
words, if a user modifies a model, transforms it to the other
side, then modifies the model again and transforms again,
the result should be equal to the result of performing the two
modifications together and transforming just once.

Property 4 (History Ignorance)

−→
R (m,

−→
R (m′, n)) = −→R (m, n)←−

R (
←−
R (m, n′), n) =←−R (m, n)

Although undoability and history ignorance make sense
in some situations, they are considered too strong and pro-
hibit many useful transformations. One example is the UML-
to-database transformation we mentioned in Sect. 1. If we
change the persistent property of a class to false in
the UML model, a forward transformation will delete the
corresponding table in the database model. However, if we
modify the property back to true, it is not possible for the
forward transformation to recover the original table because
the value of the owner property has been lost. In this case,

123

Y. Xiong et al.

both undoability and history ignorance are violated. This
problem cannot be solved from the transformation alone.
To satisfy those two properties, we must change the meta
model of the database to store all deleted owner properties,
which would be impossible and unnecessary in many cases.
As a result, we do not require bidirectional transformations
to satisfy the two properties in this paper. However, these
properties do make sense in some situations. In Sect. 6 and
Appendix A we will see how history ignorance leads to the
symmetry of the synchronization algorithm.

3 Requirements of synchronizing concurrent updates

As discussed above, the interface of the bidirectional trans-
formation functions do not allow concurrent updates and we
need a new interface. Suppose M and N are meta models
and R ⊆ M×N is the consistency relation to be established.
A synchronizer for concurrent updates is a partial function
of the following type:

sync : R × (M × N)→ M × N

This definition describes the input and output of the syn-
chronizer. The input includes four models: the two origi-
nal models satisfying consistency relation R, and the two
updated models. The output is two new models for which the
updates are synchronized.

This definition already implies some requirements for syn-
chronizing concurrent updates. First, the synchronizer is a
function, which means that this procedure must be determin-
istic. Second, the function is partial, which implies detection
of conflicts in updates. If the updates to the two models con-
flict, the function should be undefined for the input.

However, like bidirectional transformations, this defini-
tion alone confines little the behavior of the synchronizer. We
introduce three properties to ensure the synchronizer behaves
in a reasonable way. These properties were first proposed in
previous work [7] and are significantly modified for the syn-
chronization of concurrent updates.

Similar to the properties of bidirectional transformation,
our first property, consistency1, requires that the synchronizer
to do something useful. It ensures that consistency relation
R is established on the output models.

Property 5 (Consistency)

sync(m, n, m′, n′) is defined �⇒ R(sync(m, n, m′, n′))

The second property, stability, prevents the synchronizer
from doing something harmful. If neither of the two models
has been updated, the synchronizer should not modify any
model.

1 This was called propagation in the previous publication [7].

(a) (b)

Fig. 4 Updates to both models are preserved

Property 6 (Stability)

R(m, n) �⇒ sync(m, n, m, n) = (m, n)

The last property, preservation, is more interesting. Con-
sider the updates shown in Fig. 2. The easiest way to achieve
consistency is to change the attribute name from ”book-
Price” back to ”price” and change ”bookTitle”
back to”title”. However, this is not the behavior we want.
What we want is that the updates are propagated from the
modified parts to the unmodified parts, rather than changing
back the modified parts. To prevent the unwanted behavior,
we require that the user updates be preserved in the output
models. If the user changes the name of the price attribute
to ”bookPrice”, the synchronizer should not change the
attribute to any other value.

However, as the synchronizer only deals with the origi-
nal models and the updated models, it is often unclear what
update is applied to the models. Given two models, there
usually exist multiple updates that can change one into the
other, and choosing a different update may lead to a different
preservation result. For example, in Fig. 3a, we change the
name feature of the Attribute object from ”title” to
”bookName”. However, we can also consider the update
as deleting the Attribute element ”title” and add-
ing a new Attribute element ”bookName”. The same
dilemma applies to the database model. As a result, if we
adopt the feature-changing update, the updates on the two
models conflict and we cannot find a consistent model that
preserves both updates. However, if we adopt the object-
deleting-adding update, the updates to the two models do
not conflict, and the model in Fig. 4 preserves the updates.
How to choose an update from all possible updates is often
application-specific and we should leave the option to users.
To allow such an application-specific option, we assume that
there is an update preservation relation PM ∈ M×M×M for
any model M , where PM (mo, ma, mc) implies that the update
from mo to ma is preserved in mc. Users can specify different
preservation requirements by defining different preservation
relations. In the next section we will see how to define a
preservation relation from a model difference approach.

Given the preservation relations, we can define the
preservation property. Formally, let PM ∈ M × M × M
be a preservation relation over M , and PN ∈ N × N × N be
a preservation relation over N .

123

Synchronizing concurrent model updates based on bidirectional transformation

Property 7 (Preservation)

sync(m, n, m′, n′) = (m′′, n′′) �⇒ PM (m, m′, m′′)
sync(m, n, m′, n′) = (m′′, n′′) �⇒ PN (n, n′, n′′)

The previous work [7] also introduces a fourth property:
composability. However, this property has the same problem
as undoability and history ignorance: it constrains the con-
sistency relation too much and prohibits many useful trans-
formations. Therefore, we do not require the synchronizer to
satisfy this property.

4 Model difference, three-way merger and preservation

Model difference approaches [4–6,10] play an important role
in our approach. First, they are used in our algorithm to iden-
tify updates and detect conflicts, as mentioned in Sect. 1.
Second, they are used to define the preservation relation, as
mentioned in Sect. 3. In this section we describe model dif-
ference approaches in our context.

4.1 Model difference

Following the definitions of Diskin [9], we consider the space
of models in the meta model M as a directed graph; its nodes
are models and its arrows are updates. We call the starting
node of update δ the pre-model of δ (denoted as δ.pre) and the
end node of δ the post-model (denoted as δ.post), where δ is
considered to update δ.pre into δ.post. There may be different
updates leading from one model to another, so the graph is a
multi-graph, meaning that there can be more than one arrow
between two nodes. In addition, any model in M should be
updatable to any model, so the graph is a complete graph.
This definition is different from that in other work [11,12] in
which updates are considered to be functions. In our defini-
tion, each update has only one associated pre-model and only
one associated post-model, and cannot be directly applied to
other models. We use �M to denote the set of updates in the
model space of M .

We consider that a model difference approach should pro-
vide at least two operations for every meta model. The first
operation is used to identify the updates in two models. We
call it the difference operation. Formally, a difference oper-
ation over M is a function, diff ∈ M × M → �M , that
takes two models, m and m′, and produces update δ, where
δ.pre = m and δ.post = m′. We define a difference operation
as a function to require the procedure to be deterministic.
A difference operation should choose one update from all
possible updates using predefined criteria. For example, in
Alanen et al.’s approach [4], the result is a set of insertions
and deletions that preserve the longest common subsequence
when comparing two ordered features.

The second operation, the union operation, also known
as “parallel composition” in some publications [11], is used
to merge different updates to be applied to the same model.
This operation is useful in distributed development environ-
ments where several developers may simultaneously work
on the same model, and their updates need to be merged.
Given updates δ1 and δ2 where δ1.pre = δ2.pre, we denote
their union as δ1 + δ2, where (δ1 + δ2).pre = δ1.pre = δ2.pre

and (δ1+δ2).post is a model that is considered to have both δ1

and δ2 applied. The union operation should be commutative,
that is, δ1 + δ2 = δ2 + δ1. In addition, we do not require the
union operation to be total. If δ1 and δ2 are in conflict, δ1+δ2

is undefined. The techniques to implement this operation can
be found in existing approaches [4,11].

For example, given the model in Fig. 1a and the model in
Fig. 2a, a difference operation may return the update (intu-
itively) “change the price attribute in Fig. 1a to book-
Price”. Similarly, for Figs. 1a and 3a it may return “change
the title attribute in Fig. 1a to bookName”. The union
of the two updates may be a new update that changes both
attributes in Fig. 1a.

One special case in the model difference function and the
union operation is the identity update, which means nothing
is changed. We require that the difference operation always
returns the identity update when comparing two identical
models and that computing the union of arbitrary update δ

with the identity update results in δ. Formally, we require that
the diff function and the “+” operator satisfy the following
property.

Property 8 (Stability of Model Difference)
Let idm = diff(m, m), we have ∀δ ∈ �M : δ + idδ.pre = δ

4.2 Three-way merger

With the model difference function and the union operator,
we can construct a three-way merger of models. A three-
way merger takes one original model and two independently
updated copies of the model and produces a new model in
which the updates to the two copies are merged. Three-way
mergers are widely used in many distributed systems, like
the Concurrent Versions System (CVS), and in the diff3
command [13] in Unix. Given an original model mo and
two independently modified copies, ma and mb, a three-way
merger is a partial function defined as the following.

merge(mo, ma, mb) = (diff(mo, ma)+ diff(mo, mb)).post

If (diff(mo, ma)+ diff(mo, mb)) is not defined, merge is not
defined, indicting there are conflicts between ma and mb.

123

Y. Xiong et al.

4.3 Preservation

In Sect. 3 we have presented the semantics of update pres-
ervation as a preservation relation, but we have not shown
how to define a preservation relation. To define a preserva-
tion relation, we need to decide how to choose an update
from all possible updates. As model difference approaches
identify an update from two models using certain criteria,
we can define a preservation relation in accordance with the
semantics of a model difference approach.

Definition 1 Given a difference operation diff and a union
operator “+”, we say mc preserves the update from mo to
ma if and only if there exists an update δ from mo to a model
mb where (diff(mo, ma)+ δ).post = mc.

One natural result is that a three-way merger will always
preserve the updates in both models.

Lemma 1 If mc = merge(mo, ma, mb), then mc preserves
the update from mo to ma and the update from mo to mb.

Proof From the definition of merge we get (diff(mo, ma)+
diff(mo, mb)).post = mc. From the commutativity of +, we
get (diff(mo, mb) + diff(mo, ma)).post = mc. Because there
exists diff(mo, mb), from the first formula, we have that mc

preserves the update from mo to ma . Similarly, from the sec-
ond formula, we have that mc preserves the update from mo

to mb.
�
This definition of preservation gives us a basic method for

testing whether three models (mo, ma , and mc) satisfy the
preservation relation. However, to actually test it, we must
iterate all possible updates starting from mo, which is not pos-
sible in practice. What we need is an efficient procedure for
quickly testing the preservation of three models. Such an effi-
cient testing procedure is difficult to find in general. However,
given a specific model difference approach, it is often possi-
ble to define an efficient testing procedure in accordance with
the update operations considered in the difference approach.
In the following, we show how to efficiently test preserva-
tion for Alanen et al.’s [4] model difference approach as an
example.

Testing preservation in Alanen et al.’s approach

Alanen et al. consider an update as a sequence of update
operations, and they define seven types of operations, as
shown in Table 1. In their work, they assume that each ele-
ment has a universally unique identifier (UUID) that does not
change across versions. Under this assumption, we can easily
identify and match model elements in different versions of
objects. In addition, they consider limited types of features
on the models. Features can be classified as attributes that
store primitive values and references that store links to other

Table 1 Modification Operations

Operation Description

new(e, t) Create a new element e of type t

delete(e, t) Delete element e of type t

set(e, f, vo, vn) Set an attribute f of
element e from vo to vn

insert(e, f, et) Add a link from e. f to et
for an unordered
reference f

remove(e, f, et) Remove a link from e. f to
et for an unordered
reference f

insertAt(e, f, et , i) Add a link from e. f to et at
index i for an ordered
reference f

removeAt(e, f, et , i) Remove a link from e. f to
et at index i for an
ordered reference f

Table 2 Testing of Preservation

Operation in δoa Preservation condition

new(e, t) e exists in mc, and all
features of e are the same
as those in ma

delete(e, t) e does not exist in mc

set(e, f, vo, vn) e exists in mc, and e. f is
the same value as vn

insert(e, f, et) e exists in mc, and a link to
et exists in e. f

remove(e, f, et) e does not exist in mc, or a
link to et does not exist in
e. f

insertAt(e, f, et , i) e exists in mc, a link to et
exists in e. f , and the inserted
links have their order in ma
preserved in mc for all inser-
tAt operations on the feature

removeAt(e, f, et , i) Always preserved (as del-
eted links can be inserted
back)

model elements. They assume that all attributes are single
features (can contain only one value) and that all references
are multiple features (can contain more than one feature,
either ordered or unordered).

To test whether an update from mo to ma is preserved in
mc, we first use the difference operation to get the update
δoa = diff(mo, ma). Then we examine mc for each update
operation in δoa . If we find that an operation such that the
union of any operation and this operation cannot reach mc

from mo, we report a violation of preservation. The detailed
rules for examining the update operations can be found in
Table 2.

For example, suppose the price attribute in Fig. 1a, the
bookPrice attribute in Fig. 2a, and the price attribute

123

Synchronizing concurrent model updates based on bidirectional transformation

Fig. 5 Synchronization
algorithm

in Fig. 3a share UUID ep. The difference of Figs. 1a and
2a is thus an update containing one update operation: set(ep,
name, ”price”, ”bookPrice”). This update is not pre-
served in Fig. 3a because the rule for set(e, f, vo, vn) is
violated: ep.name has a value of ”price” and is different
from ”bookPrice” in Fig. 3a.

5 Algorithm

Now we have a three-way merger and can test the preser-
vation of updates. Let us use them to wrap a bidirectional
transformation into a synchronizer for concurrent updates.
The basic idea is to first convert the model from the N side
to the M side using backward transformation, then use the
three-way merger to reconcile the updates, and transform
back using the forward transformation. The detailed algo-
rithm is shown in Fig. 5.

We explain the algorithm using the example in Sect. 1. Ini-
tially, we have the two models in Fig. 1, which correspond
to mo and no in our algorithm. Users modify the two models
into the models in Fig. 2, which correspond to ma and nb in
our algorithm. We use different subscripts to show different
updates, where a represents the update on mo and b repre-
sents the update on no. The four models together comprise
the algorithm input.

The first step of our algorithm is to invoke backward trans-
formation

←−
R to propagate the updates made to nb to mo,

resulting in mb
2. The result is shown in Fig. 6a. The attribute

name is changed from ”title” to ”bookTitle”.
Now we have model ma containing update a and model

mb containing update b. The second step is to use the three-
way merger we constructed in the last section to merge the
two updates and produce a synchronized model, mab, on the
M side. The result is shown in Fig. 6b. The model has both
attributes changed; i.e., it contains updates from both sides. If

2 We may also implement the algorithm in an opposite direction by
staring with a forward transformation. More discussion about this can
be found in Sect. 6. Here we randomly choose a direction to illustrate
the algorithm.

(a)

(b) (c)

Fig. 6 Execution of algorithm

the updates to the two models conflict, the three-way merger
detects the conflict and reports an error.

The third step is to use forward transformation
−→
R to pro-

duce a synchronized model, nab, on the N side. The result
is shown in Fig. 6c. This model also contains updates from
both sides, with both columns changed.

Now we have two synchronized models to which the
updates have propagated. It looks as if we have performed
enough steps to finish the algorithm. However, the above
steps do not ensure the detection of all conflicts and may lead
to violation of preservation due to the heterogeneousness of
the two models.

To see how this can happen, let us consider the example
in Fig. 7. Initially we have only one class and one table, and
they are consistent. Then suppose that a user changes the
persistent feature of the class to false and changes
the owner of the table to ”xiong”. Because the owner
feature is not related to the UML model, the backward trans-
formation changes nothing, and mb is the same as mo. The
three-way merger detects no updates in mb and produces a
model that is the same as ma . Finally, we perform the for-
ward transformation, and the table is deleted because of the
change to the persistent feature. However, as the user
has modified a feature of the table, so he or she will expect
to see the existence of the table in the final result. The input
models contain conflicting updates, but the synchronization
process does not detect them.

This kind of violation is caused by the heterogeneity of
M and N . Due to the heterogeneity, not all updates to N are
visible on the M side. As the three-way merger only works
on the M side, it cannot detect such invisible conflicts.

123

Y. Xiong et al.

Fig. 7 Violating preservation

To capture such a conflict, we add an additional step, pres-
ervation testing, to the end of the algorithm. It is shown as
the fourth step in Fig. 5. This step uses the preservation test-
ing procedure described in Sect. 4 and checks whether the
update from no to nb is preserved in nab. If not, the algorithm
reports an error.

To facilitate further discussion, we denote the algorithm as
a high-level function SYNC that takes a bidirectional trans-
formation (

−→
R ,
←−
R) over M×N , a model difference operation

diff and a union operator +, and produces a synchronizer
SYNC�

−→
R ,
←−
R , diff,+� to synchronize concurrent updates

over M and N .
The models used in Figs. 6 and 7 are simply examples. The

actual execution depends on the bidirectional transformation
and the model difference approach used in the synchroniza-
tion and may differ from the aforementioned execution. Nev-
ertheless, whatever bidirectional transformation and model
difference approach we choose, our algorithm ensures the
three synchronization properties: consistency, stability, and
preservation.

Theorem 1 If bidirectional transformation (
−→
R ,
←−
R) satis-

fies correctness, synchronizer SYNC�
−→
R ,
←−
R , diff,+� satis-

fies consistency for any model difference approach (diff,+).

Proof Consider the last two steps of the algorithm. Because−→
R (mab, nb) = nab, we have R(mab, nab).
�

Theorem 2 If bidirectional transformation (
−→
R ,
←−
R) satis-

fies hippocraticness and model difference approach (diff,+)

satisfies stability of model difference, synchronizer

SYNC�
−→
R ,
←−
R , diff,+� satisfies stability.

Proof If we have mo = ma and no = nb, we have R(mo, nb).
Because of hippocraticness, we have mb = ←−R (mo, nb) =
mo. Because of stability of model difference, mab =

merge(mo, ma, mb) = (diff(mo, ma)+diff(mo, mb)).post =
(diff(mo, mo)+ diff(mo, mo)).post = mo. On the other hand,
we have nab = −→R (mab, nb) = −→R (mo, no) = no, and the
preservation testing always passes because of the existence
of the identity update.
�

Theorem 3 The synchronizer SYNC�
−→
R ,
←−
R , diff,+�

always satisfies preservation for any bidirectional trans-

formation (
−→
R ,
←−
R) and any model difference approach

(diff,+).

Proof Because of Lemma 1, the update on the M side is pre-
served. Because of the last preservation test, the update on
the N side is preserved.
�

It is worth noting that our algorithm works even if the
bidirectional transformation does not satisfy correctness or
hippocraticness. This has practical value because many exist-
ing bidirectional transformation languages do not guarantee
the properties [3]. In such cases, the algorithm still produces
output but does not guarantee the corresponding synchroni-
zation properties (consistency or stability).

6 Algorithm symmetry

Bidirectional transformations are symmetrical, so we can
also implement this algorithm in the opposite direction. We
can start a forward transformation first, merge models on the
N side, perform a backward transformation, and check pres-
ervation on the M side. We denote the algorithm in the oppo-
site direction as SYNC� where SYNC��−→R ,

←−
R , diff,+� is a

synchronizer over M and N for a bidirectional transforma-
tion (
−→
R ,
←−
R) over M × N , a model difference operation diff

and a union operator+. Here comes one question: do SYNC
and SYNC� always produce the same synchronizer? In other
words, is the algorithm symmetric?

Unfortunately, symmetry is not ensured by our algorithm.
Let us suppose that in the UML-to-database example the
backward transformation

←−
R will delete the corresponding

class in the UML model when a table is deleted in the database
model. Consider the execution described in Fig. 8. Initially
we have a class and a table. Then users change the per-
sistent feature of the class to false and delete the table.
When we first transform backwardly, as shown in Fig. 8a, the
backward transformation will delete the class and there will
be a conflict. However, if we start with the forward transfor-
mation, as shown in Fig. 8b, the change of persistent
will lead to the deletion of table and there will be no conflict.

Asymmetry is an unwanted property. Since bidirectional
transformations are symmetrical, the two domains M and N
are interchangeable; from a bidirectional transformation over
M × N , we can obtain a bidirectional transformation over

123

Synchronizing concurrent model updates based on bidirectional transformation

Fig. 8 An asymmetrical
execution

(a) (b)

(a) (b)

Fig. 9 Bijective transformation

N × M by simply swapping the forward transformation and
the backward transformation. However, as our algorithm is
asymmetrical, the two domains are no longer interchangeable
and users must pay attention to the order of the two domains.
This is sometimes very confusing. In an ideal setting, SYNC
and SYNC� should always produce the same synchronizer.
In this section we try to find a necessary condition for such
a setting.

Let us review the above example. The two synchroniz-
ers produce different results because the two models do not
contain symmetrical information. A UML model containing
no class and a UML model containing non-persistent classes
are not distinguishable on the database side, because they
both correspond to a database model containing no table.
If the two models contain symmetrical information, i.e., the
consistency relation is bijective, the two synchronizers could
possibly be the same. Figure 9 shows an example of two
models in a bijective relation. Compared with our running
example, this example omits the persistent feature on
UML classes and theowner feature on database tables. Now
each UML class corresponds to a database table, and each
UML attribute corresponds to a database column. Any mod-
ification on one side can be reflected to the other side without
information loss.

Bijective relations alone do not ensure the symmetry of the
algorithm because the algorithm still contains a “merge” step
where a model difference approach is used to find and merge
updates on models. We need to further ensure the model dif-
ference approach works consistently with the bijective rela-
tion on the two meta models. If we find and merge updates on
one side, we should get the same result if we find and merge
updates on the other side. This is a natural requirement when

the two meta-models have a one-to-one correspondence. For-
mally, we require that the model difference approach (diff,+)

conforms to the consistency relation R, as defined below.

Property 9 (Conformance to Relation R) If we have

R(mo, no),

R(ma, na), and

R(mb, nb),

we have either

R(merge(mo, ma, mb), merge(no, na, nb))

or both merge(mo, ma, mb) and merge(no, na, nb) are not
defined.

When the consistency relation is bijective and the model
difference approach conforms to the consistency relation, we
can ensure that the synchronization algorithm is symmetrical.

Theorem 4 If the consistency relation R is bijective, the

bidirectional transformation (
−→
R ,
←−
R) satisfies correctness,

and the model difference approach (diff,+) conforms to R,

we have that SYNC�
−→
R ,
←−
R , diff,+� and SYNC��−→R ,

←−
R ,

diff,+� are the same synchronizer.

Proof To show that the two synchronizers are the same, we
need to show that SYNC�

−→
R ,
←−
R , diff,+� and SYNC��−→R ,←−

R , diff,+�produce the same result for any input mo, no, ma,

nb. In the execution of SYNC, we have

mb := ←−R (mo, nb)

mab := merge(mo, ma, mb)

nab := −→R (mab, nb).

In the execution of SYNC�, we have

na := −→R (ma, no)

n′ab := merge(no, nb, na)

m′ab :=
←−
R (ma, n′ab).

123

Y. Xiong et al.

We need to show either mab = m′ab and nab = n′ab, or both
executions fail.

From the definition of the synchronizer, we have
R(mo, no). From correctness, we have R(ma, na) and
R(mb, nb). Because the model difference approach con-
forms to R, we have either R(mab, n′ab), or both executions
fail. If the executions do not fail, we have R(mab, nab) and
R(m′ab, n′ab) from correctness. Because the relation is bijec-
tive, we have mab = m′ab and nab = n′ab.

There is also a preservation testing step, and this testing
will always pass if the merge step does not fail. In the execu-
tion of SYNC, we have nab = n′ab = merge(no, nb, na) =
diff(no, nb)+ diff(no, na), and thus the update from no to nb

is preserved in nab. Similarly, in the execution of SYNC� the
update from mo to ma is preserved in m′ab.
�

This theorem seems to have little practical use at first
glance, because in most cases the consistency relations
between two domains are not bijective [3]. However, using
the constant complement techniques [14,15], many consis-
tency relations can be lifted as a bijective relation. Interested
readers may refer to Appendix A for more information. In
Appendix A we also show that for any bidirectional transfor-
mation satisfying history ignorance, there exists a constant
complement to lift its consistency relation into a bijective
relation [16].

7 Case study

Our algorithm greatly reduces the complexity of developing
synchronizers, but may not have an optimal performance. To
perform a synchronization, we need to cache the old versions
of models and perform two difference operations, two trans-
formations, and a preservation testing. A manually imple-
mented synchronizer can potentially achieve much higher
performance by recording update operations and propagat-
ing updates incrementally. Therefore, one issue to figure out
is how our algorithm performs in a practical setting, so that
we can decide whether the reduced development effort out-
weighs the increased execution time.

Another issue about our approach is that we develop the
three properties purely from a theoretical perspective, but it
is unclear whether the three properties always make sense in
a practical setting.

In this section we discuss these issues through a case
study. We have used our algorithm to implement the run-
time management feature of ArchStudio [17], in which a
C2-style software architecture model and a runtime system
model are synchronized. This case study is also part of a big-
ger project implementing a runtime management framework.
More details of this framework can be found in a technical
report [18].

7.1 Case description

Oreizy et al. [17] propose an architecture-based runtime man-
agement tool, ArchStudio, which allows users to monitor and
reconfigure a running system through a C2-style architecture
model. In our case study, we re-implement this tool to moni-
tor and reconfigure any Java application supporting the JMX
interface [19]. Figure 10 shows a snapshot of our tool, in
which the runtime state of a running web application, Java Pet
Store (JPS) [20] is shown as a C2-style architecture model. In
the model, labeled rectangles are components currently run-
ning in the system, including Enterprise JavaBeans (EJBs),
web modules, and database connections. Solid bars connect-
ing components are called connectors, representing the com-
munication channels between components. Each component
has a set of attributes, which are shown in the “Properties”
view when the component is selected. These attributes reflect
the runtime state of the component. For example, each EJB
component has a property “Pool Size” showing the current
size of its object pool.

The key of the system is a menu item called “synchroni-
zation”. If we make any change on the architecture model,
e.g., adding/removing a component, changing the attribute
of a component, or changing the communication channels
between components, the changes are automatically applied
to the running system after we click the “synchronization”
menu item. At the same time, the architecture model is also
updated to display the latest state of the system.

We implement the system using the structure in Fig. 11.
We create two models for the architecture and the running
system, respectively, and use our algorithm to synchronize
the two models. On the architecture side, we create a C2-style
architecture meta model, and use Eclipse Graphical Model-
ing Framework [21] to generate a visual editor for its model.
On the system side, we use the technology proposed by Song
et al. [22] to wrap the JMX interface as a dynamic runtime
model, which redirects any read/write access to the corre-
sponding JMX functions. The architecture model and the
system model are heterogeneous and need to be synchro-
nized. We write a QVT-R [1] program to synchronize the two
models and use our algorithm to wrap this QVT program as
a synchronizer for concurrent updates. The model difference
approach we used is extracted from the Beanbag system [12].
Every time a user clicks the “synchronization” menu item,
we invoke the synchronizer to perform a synchronization.

The system is not trivial, but using our algorithm, we spent
only a little effort on developing the synchronization com-
ponent. The meta model of the architecture model contains 4
classes and 25 attributes/references, while the meta model of
the system model contains 21 classes and 157 attributes/ref-
erences. Using our algorithm, we only wrote 207 lines of
QVT code and the whole development took no more than
one day.

123

Synchronizing concurrent model updates based on bidirectional transformation

Fig. 10 Tool snapshot

Fig. 11 Structure of our implementation

7.2 Discussion of properties

As we implement the synchronization component using our
algorithm, the three properties of our algorithm affect the
behavior of the whole system. Because of stability, nothing
will change if there is no change on both sides when we
click the “synchronization” menu item. Because of preser-
vation, all changes to the architecture and the system since
last synchronization are preserved during the synchroniza-
tion. Because of consistency, the architecture model and the
system model are ensured to be consistent after we click the
“synchronization” menu item.

The effects of stability and consistencycorrespond to the
basic requirements of runtime management systems [17].
The effect of preservation is more interesting. Because the
running system is constantly changing, it is highly possible
that a change on the architecture conflicts with a change on
the running system. If we enforce preservation, users will
often encounter conflicts when they update the architecture
model, and can only solve the conflicts by canceling the
update. On the other hand, updates on the architecture model
are in fact control operations over the system, so it should
be enforced to the system regardless of whether the system

is changed or not. Based on the consideration, we loosen the
preservation property to give precedence to the architecture
model: the updates on the architecture models are preserved,
while the updates on the system can be overwritten by the
updates from the other side. To implement this, we change
the difference algorithm so that it overwrites an update made
to the running system with one made to the management
UI if the two updates conflict. In addition, we remove the
final preservation test. We also get an extra benefit from this
change: all conflicts are now automatically solved by over-
writing the system updates with the architecture updates.

The case study shows that the properties of synchroniza-
tion are not always required. Depending on the types of the
application, some properties may need to be loosened or can-
celed. On the other hand, since our algorithm is simple, it is
possible to adjust the algorithm for specific cases.

Another interesting issue is the properties of bidirectional
transformation. To ensure stability and consistency, the bidi-
rectional transformation should satisfy hippocraticness and
correctness. However, QVT-R does not always guarantee the
two properties. If a program has complex interaction with
the constraints on the meta models, it may produce inconsis-
tent results. In our implementation, we manually check the
consistency of our program and the constraints on the meta
models to ensure correctness and hippocraticness.

7.3 Performance

To test the performance of our system, we perform four typ-
ical runtime management operations and record the time
required for these operations. The four operations are (1)
synchronize an empty architecture model to get a new

123

Y. Xiong et al.

Table 3 Execution time of management operations

Operation Time (s) in
our tool

Time (s) in
jonasAdmin

Get a new model 0.39 0.82a

Update an exist-
ing model

0.51 0.82a

Change an attribute 0.75 0.79

Add a component 1.37 1.20

aThe two operations are in fact the same because the JOnAS adminis-
trative tool does not have an existing model to update

architecture model from the running system; (2) synchronize
an unchanged architecture model to get the newest system
state; (3) change an attribute of a component and synchro-
nize; and (4) add a new component and synchronize. These
operations are performed on a JPS application running on a
JOnAS application server [23].

For comparison purposes, we perform the same operations
using the JOnAS administrative tool (in WAR file “jonasAd-
min”), a web-based tool for invoking JMX interface. Com-
pared with the execution in our tool, executing the operations
in the JOnAS administrative tool does not need to synchro-
nize any model, but the tool needs to generate web pages and
parse web requests in the background.

The experiments were performed on a computer with Intel
Pentium 3.0 GHz process and 2.0 GB memory. The oper-
ating system was Windows XP and the web browser was
Internet Explorer 7.0. The system model contains 41 model
elements with approximately 300 attributes/references and
the architecture model contains 82 model elements with
approximately 700 attributes/references when we performed
the operations. Based on our experience, these models are
of mid-size in all models that we encounter in practice. All
operations were performed ten times and the average time
was calculated.

Table 3 summarizes the result of the experiment. In three
out of four operations our tools are faster than the JOnAS
administrative tool. This shows that on average the synchro-
nization time of our algorithm is shorter than the background
processing time of the JOnAS administrative tool for mid-
size models. Since the JOnAS administrative tool is widely
used by developers and no performance issue is reported as
far as we know, the performance of our algorithm is accept-
able for practical cases.

8 Related work

Several other approaches also target synchronizing concur-
rent updates on heterogeneous data. Typical ones include
Harmony [24] and Beanbag [12].

The goal of Harmony is similar to ours: to use bidirectional
transformations to construct synchronizers for concurrent

updates. Compared with our approach, Harmony uses an
asymmetrical form of bidirectional transformation, where the
target is an abstract of the source. Users must design a com-
mon replica and write two transformation programs to map
the replicas to be synchronized to the common replica. Our
approach does not require users to design an extra model,
so users can better reuse existing transformation programs.
In addition, we adopt the symmetrical form of bidirectional
transformation, which is more frequently used in the model
transformation community.

Beanbag is a general language for synchronizing concur-
rent updates. Different from this paper, Beanbag uses an
operation-based approach: users need to tell the synchro-
nizer what update operations have been applied, and the syn-
chronizer returns more update operations to make the data
consistent. The approach in this paper is state-based: whole
copies of models (the current states of models) are taken as
input and new copies of these models are returned.

Research on optimistic replication [25] also aims at syn-
chronizing concurrent updates. Different from our approach,
this kind of research mainly deals with homogeneous data
over distributed network and focuses on network commu-
nication, operation scheduling, etc. On the other hand, our
approach focuses on heterogeneous data and simplifies other
problems by assuming that all models are local and oper-
ations can be discovered and merged by model difference
approaches. Our approach can potentially be combined with
approaches of optimistic replications and synchronize heter-
ogeneous data over distributed network.

Another related branch of research is detecting and fix-
ing inconsistencies in models [26,27]. The methods devel-
oped can also be used to synchronize concurrent updates
but they consider a different setting where only the updated
models are available. In such cases we do not know what
updates are applied to the models and usually cannot deter-
mine a unique way to synchronize updates. These approaches
either generate a list of fixing actions for users to choose
from or require users to provide extra operations for fixing.
Compared with them, our approach utilizes the information
of updates and requires neither user intervention nor extra
operations.

Incremental bidirectional transformation [28] potentially
can be combined with our approach to improve the per-
formance of our approach. Instead of transforming mod-
els, incremental bidirectional transformation transforms an
update on one model to an update on the other model. Because
updates are usually much smaller than models, the transfor-
mation time is much shorter. So to improve the performance
of our approach, we may replace the bidirectional trans-
formation with an incremental bidirectional transformation.
Furthermore, because the output of the transformation is also
an update, we can ignore some model difference operations
to further improve performance.

123

Synchronizing concurrent model updates based on bidirectional transformation

Some researchers build frameworks for classifying syn-
chronization approaches. Antkiewicz and Czarnecki [29]
classify synchronization approaches using different design
decisions. Under their classification schema, our synchro-
nization algorithm can be classified as a “bidirectional,
non-incremental, and many-to-many synchronizer using
artifact translation, homogeneous artifact comparison, and
reconciliation with choice”. Diskin [9] builds a more for-
mal framework for bidirectional model synchronization, in
which bidirectional transformation is classified into lenses,
di-systems, and tri-systems on the basis of the relation
between models and the number of input models. Our defi-
nition of a synchronizer for concurrent updates can be con-
sidered a supplement to his framework, where we add qua-
druple-systems, in the sense that our synchronizer takes four
models as input.

9 Conclusion and future work

In this paper we have proposed an approach that wraps a
bidirectional transformation program and a model difference
approach into a synchronizer for concurrent updates. Our
approach is general and predictable. It is general in the sense
that it allows the use of any bidirectional transformation and
any model difference approach, and it is predictable because
it satisfies three model synchronization properties: consis-
tency, stability and preservation. Our approach also shows
the relation between the bidirectional transformation proper-
ties and the synchronization properties. Particularly, correct-
ness leads to consistency, hippocraticness leads to stability,
and history ignorance contributes to the symmetry of the
synchronization algorithm through constant complement.

Currently, our approach only reports the existence of con-
flicts; it does not support conflict resolution. A preferable
synchronizer would report the features and model elements
involved in the conflicts and give a list of solutions for the
user to choose from. However, such a resolution procedure
is difficult to define in general because the reason for a con-
flict is related to the specific bidirectional transformation and
the model difference approach used. We plan to design a
resolution procedure based on a specific transformation lan-
guage and a specific model difference approach. One idea
is to use QVT-R as the transformation language and exploit
the trace information recorded by QVT-R. This remains for
future work.

A Converting history-ignorance transformation
to bijective relation

In this section we show how to convert a history-ignorant
bidirectional transformation into a bijective relation to ensure

symmetrical synchronization. We achieve this through con-
stant complement [14,15], a commonly used method for con-
structing bidirectional transformation. The original constant
complement technique is defined for the asymmetrical form
of bidirectional transformation [30]; here we extend it to the
symmetrical form used in this paper.

A.1 Constant complement

Constructing bidirectional transformation is usually difficult
because the consistency relation R is not bijective. If the rela-
tion is bijective, bidirectional transformation can be achieved
by simply returning the only consistent model on the other
side. A relation is not bijective because the two domains
involved in the relation are not symmetrical; each may con-
tain information that does not exist on the other side. If we
augment the models with the lost information from the other
side (called complement), the relation becomes bijective.

Formally, given a consistency relation R over two domains
M and N , we can construct two complement functions,

lm : M → CM

ln : N → CN

such that the following relation is a bijective relation between
M × CN and N × CM :

S = {((m, cn), (n, cm)) |
cm = lm(m) ∧ cn = ln(n) ∧ R(m, n)}

The complement function cm maps a model in M to a com-
plement containing the information lost on the N side. Sim-
ilarly, cn maps a model in N to a complement containing the
information lost on the M side.

Since S is bijective, we can easily construct a bidirectional
transformation over S as follows. In the definitions we use
_ to denote the parameters we do not care about.

−→
S ((m, cn), (_ , _)) = (n′, lm(m))

where R((m, cn), (n′, lm(m)))
←−
S ((_ , _), (n, cm)) = (m′, ln(n))

where R((m′, ln(n)), (n, cm))

After we have the bidirectional transformation over S, we
can construct the bidirectional transformation over R. This
is achieved by constructing the complement before the trans-
formation and discarding the complement after the transfor-
mation.

−→
R (m, n) = n′ where (n′, _) = −→S (m, ln(n))

←−
R (m, n) = m′ where (m′, _) =←−S (n, lm(m))

It is easy to see that this bidirectional transformation satisfies
correctness and hippocraticness. Because the complement is

123

Y. Xiong et al.

never modified by users, this technique is called constant
complement.

A.2 Converting history-ignorance transformation

Now let us return to the problem of symmetrical synchroniza-
tion. Given a bidirectional transformation (

−→
R ,
←−
R) and two

model difference operations (diff,+), we would like to have
SYNC and SYNC� produce the same synchronizer. If R is
bijective and (diff,+) conforms to R, we can ensure SYNC
and SYNC� produce the same result. However, in many cases
the consistency relation R is not bijective. On the other hand,
using a pair of complement functions we can convert the
consistency relation R into a bijective relation S. From S

we can derive a bidirectional transformation (
−→
S ,
←−
S) over

S and a bidirectional transformation (
−→
R′ ,
←−
R′) over R, where

(
−→
S ,
←−
S) and (

−→
R′ ,
←−
R′) exhibit the same behavior and only

differ in containing or not containing the complement. If we
can find a pair of complement functions such that the derived

transformation (
−→
R′ ,
←−
R′) is the same as (

−→
R ,
←−
R), we can use

(
−→
S ,
←−
S) to construct a synchronizer sync′ over S. Since S

is bijective, using a proper model difference approach, we
can ensure the symmetry of the algorithm, and the synchro-
nizer sync′ is ensured to be the same whether constructed
by SYNC or by SYNC�. From sync′ we can obtain a syn-
chronizer sync over R by constructing and discarding the
complement, as follows:

sync(m, n, m′, n′) = (m′′, n′′)
where ((m′′, _), (n′′, _)) =
sync′((m, ln(n)), (n, lm(m)), (m′, ln(n′)), (n′, lm(m′)))

However, it is unclear whether there exists such a pair of
complement functions for a specific bidirectional transforma-
tion. Here we show that, at least for any bidirectional transfor-
mation (

−→
R ,
←−
R) satisfying correctness, hippocraticness and

history ignorance, there exists a pair of complement functions
such that the derived bidirectional transformation is the same
as (
−→
R ,
←−
R). This result has been proved by Lechtenbörger

[16] on the asymmetrical form of bidirectional transforma-
tion; here we prove it on the symmetrical form.

To show the existence of the complement functions, we
can construct such a pair of complement functions from the
bidirectional transformation (

−→
R ,
←−
R). Suppose (

−→
R ,
←−
R) is

defined over the consistency relation R ⊆ M × N . First let
us define an equivalence relation on N .

n ∼ n′ iff ∃m ∈ M.
−→
R (m, n) = −→R (m, n′)

It is easy to show this relation is an equivalence relation.
Reflexitivity We have n ∼ n because ∃m.

−→
R (m, n) =−→

R (m, n)

Symmetry If n ∼ n′, we have ∃m.
−→
R (m, n) = −→R (m, n′),

and thus n′ ∼ n.
Transitivity If n ∼ n′ and n′ ∼ n′′, we need to show n ∼ n′′.
From n ∼ n′ we have ∃m.

−→
R (m, n) = −→R (m, n′). From n′ ∼

n′′ we have ∃m′.−→R (m′, n′) = −→R (m′, n′′). Because of his-
tory ignorance, we have

−→
R (m′, n) = −→R (m′,−→R (m, n)) =−→

R (m′,−→R (m, n′)) = −→R (m′, n′) = −→R (m′, n′′), and thus
n′ ∼ n′′.

Similarly, we can define an equivalence relation on M .

m ∼ m′ iff ∃n ∈ M.
←−
R (m, n) =←−R (m′, n)

Now we can define the two complement functions. We
define the complement function as a function mapping a
model to its equivalence class.

lm : M → M/ ∼
lm(m) = [m]∼
ln : N → N/ ∼
ln(n) = [n]∼

We need to show that the relation S constructed by the
two complement functions is bijective and the derived bidi-
rectional transformation (

−→
R ′,←−R ′) is the same as (

−→
R ,
←−
R).

We first prove S is bijective. To prove it, we need to show
this relation is functional, injective, left-total, and right-total.
Functional Suppose we have S((m, cn), (n, cm)) and
S((m, cn), (n′, c′m)), we need to show that n = n′ and
cm = c′m .

– From S((m, cn), (n, cm)) we have R(m, n), and thus−→
R (m, n) = n. Similarly, we have

−→
R (m, n′) = n′.

From ln(n) = cn = ln(n′) we know that there
exists m0,

−→
R (m0, n′) = −→R (m0, n). Given history igno-

rance, we have
−→
R (m, n′) = −→R (m,

−→
R (m0, n′)) =−→

R (m,
−→
R (m0, n)) = −→R (m, n), and thus n = n′.

– From the definition of S we have cm = lm(m) = c′m .

Injective Similar to the above.
Left-total Let (m, cn) be an arbitrary pair in M × CN ;
we need to show that there exists (n, cm) ∈ N × CM

where S((m, cn), (n, cm)). Let n0 be an arbitrary element
in cn ; we have

−→
R (m, n0) = −→R (m,

−→
R (m, n0)) accord-

ing to hippocraticness and correctness, and thus n0 ∼−→
R (m, n0). Consequently ln(

−→
R (m, n0)) = cn . From cor-

rectness we also have R(m,
−→
R (m, n0)). Therefore, we have

S((m, cn), (
−→
R (m, n0), lm(m))). Let n = −→R (m, n0) and

cm = lm(m), we have S((m, cn), (n, cm)).
Right-total Similar to the above.

Next we show that the derived bidirectional transforma-
tion (

−→
R ′,←−R ′) is the same as (

−→
R ,
←−
R). Given two arbitrary

models m, n, we need to show
−→
R ′(m, n) = −→R (m, n) and

123

Synchronizing concurrent model updates based on bidirectional transformation

←−
R ′(m, n) = ←−R (m, n). Let

−→
R (m, n) = n′. From hippo-

craticness we have
−→
R (m, n′) = n′ = −→R (m, n), and thus

n ∼ n′. Consequently ln(n) = ln(n′). From correctness we
have R(m, n′), and thus S((m, ln(n)), (n′, lm(m))). Accord-
ing to the definition of

−→
R ′, we have

−→
R ′(m, n) = n′. Simi-

larly, we can prove
←−
R ′(m, n) =←−R (m, n).

To sum up, using constant complement we can con-
vert a bidirectional transformation into a bijective relation
to ensure the symmetry of the algorithm, and the syn-
chronizer constructed can be applied to the previous meta
models by constructing and discarding complements. The
complement functions are ensured to exist for bidirectional
transformation satisfying correctness, hippocraticness and
history ignorance.

References

1. Object Management Group: MOF query/views/transforma-
tions specification 1.0. (2008). http://www.omg.org/docs/formal/
08-04-03.pdf

2. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Pro-
ceedings of the 4th International Conference on Graph Transforma-
tion. Lecture Notes in Computer Science, vol. 5214, pp. 411–425.
Springer, Berlin (2008)

3. Stevens, P.: Bidirectional model transformations in QVT: semantic
issues and open questions. Softw. Syst. Model. 9(1), 7–20 (2010)

4. Alanen, M., Porres, I.: Difference and union of models.
In: UML’03: Proceedings of the 6th International Conference on the
Unified Modeling Language. Lecture Notes in Computer Science,
vol. 2863, pp. 2–17. Springer, Berlin (2003)

5. Mehra, A., Grundy, J., Hosking, J.: A generic approach to sup-
porting diagram differencing and merging for collaborative design.
In: ASE ’05: Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering, New York, NY,
USA, ACM, pp. 204–213 (2005)

6. Abi-Antoun, M., Aldrich, J., Nahas, N., Schmerl, B., Garlan, D.:
Differencing and merging of architectural views. In: ASE ’06: Pro-
ceedings of the 21st IEEE/ACM International Conference on Auto-
mated Software Engineering, Washington, DC, USA, IEEE Com-
puter Society, pp. 47–58 (2006)

7. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards
automatic model synchronization from model transformations.
In: ASE ’07: Proceedings of the 22nd IEEE/ACM International
Conference on Automated Software Engineering, New York, NY,
USA, ACM, pp. 164–173 (2007)

8. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Supporting parallel
updates with bidirectional model transformations. In: ICMT ’09:
Proceedings of the Second International Conference on Theory and
Practice of Model Transformations. Lecture Notes in Computer
Science, vol. 5563, pp. 213–228. Springer, Berlin (2009)

9. Diskin, Z.: Algebraic models for bidirectional model synchroni-
zation. In: MoDELS ’08: Proceedings of the 11th International
Conference on Model Driven Engineering Languages and Systems.
Lecture Notes in Computer Science, vol. 5301, pp. 21–36. Springer,
Berlin (2008)

10. Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object-oriented
design differencing. In: ASE ’05: Proceedings of the 20th
IEEE/ACM International Conference on Automated Software
Engineering, New York, NY, USA, ACM, pp. 54–65 (2005)

11. Cicchetti, A., Ruscio, D.D., Pierantonio, A.: Managing model con-
flicts in distributed development. In: MoDELS ’08: Proceedings of
the 11th International Conference on Model Driven Engineering
Languages and Systems. Lecture Notes in Computer Science,
vol. 5301, pp. 311–325. Springer, Berlin (2008)

12. Xiong Y., Hu Z., Zhao H., Song H., Takeichi M., Mei H.: Sup-
porting automatic model inconsistency fixing. In: ESEC/FSE ’09:
Proceedings of 7th Joint Meeting of the European Software Engi-
neering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, New York, NY, USA, ACM,
pp. 315–324 (2009)

13. Khanna, S., Kunal, K., Pierce, B.C.: A formal investigation of
diff3. In: Arvind, P. (eds.) Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), pp. 485–496 (2007)

14. Bancilhon, F., Spyratos, N.: Update semantics of relational
views. ACM Trans. Database Syst. (TODS) 6(4), 557–575 (1981)

15. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bi-
directionalization transformation based on automatic derivation of
view complement functions. In: ICFP ’07: Proceedings of the 2007
ACM SIGPLAN international conference on Functional program-
ming, New York, NY, USA, ACM, pp. 47–58 (2007)

16. Lechtenbörger, J.: The impact of the constant complement
approach towards view updating. In: PODS ’03: Proceedings of
the Twenty-Second ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, New York, NY, USA,
ACM, pp. 49–55 (2003)

17. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based run-
time software evolution. In: Proceedings of the 20th International
Conference on Software Engineering (ICSE’98), pp. 177–186
(1998)

18. Song, H., Xiong, Y., Hu, Z., Huang, G., Mei, H.: A model-driven
framework for constructing runtime architecture infrastructures.
Technical Report GRACE-TR-2008-05, GRACE Center, National
Institute of Informatics, Japan (2008)

19. Java Management Extensions http://www.jcp.org/en/jsr/detail?
id=77

20. Java PetStore http://java.sun.com/developer/releases/petstore/
21. Eclipse Consortium: The Eclipse Graphical Modeling Framework

(2008). http://www.eclipse.org/modeling/gmf/
22. Song, H., Xiong, Y., Chauvel, F., Huang, G., Hu, Z., Hong, M.:

Generating synchronization engines between running systems and
their model-based views. In: Proceedings of the 4th International
Workshop on Models@run.time, pp. 11–20 (2009)

23. JOnAS Project. Java Open Application Server. http://jonas.
objectweb.org

24. Pierce, B.C., Schmitt, A., Greenwald, M.B.: Bringing Harmony to
optimism: a synchronization framework for heterogeneous tree-
structured data. Technical Report MS-CIS-03-42, University of
Pennsylvania (2003)

25. Saito, Y., Shapiro, M.: Replication: optimistic approaches. Techni-
cal Report HPL-2002-33, HP Laboratories Palo Alto (2002)

26. Egyed, A., Letier, E., Finkelstein, A.: Generating and evaluating
choices for fixing inconsistencies in UML design models. In: ASE
’08: Proceedings of the 23rd IEEE/ACM International Conference
on Automated Software Engineering, Washington, DC, USA, IEEE
Computer Society, pp. 99–108 (2008)

27. Kolovos, D., Paige, R., Polack, F.: Detecting and repairing inconsis-
tencies across heterogeneous models. In: ICST ’08: Proceedings of
the 1st International Conference on Software Testing, Verification,
and Validation. IEEE Computer Society, pp. 356–364 (2008)

28. Giese, H., Wagner, R.: From model transformation to incremen-
tal bidirectional model synchronization. Softw. Syst. Model. 8(1),
21–43 (2009)

29. Antkiewicz, M., Czarnecki, K.: Design space of heterogeneous
synchronization. In: GTTSE ’07: Proceedings of the 2nd Sum-
mer School on Generative and Transformational Techniques in

123

http://www.omg.org/docs/formal/08-04-03.pdf
http://www.omg.org/docs/formal/08-04-03.pdf
http://www.jcp.org/en/jsr/detail?id=77
http://www.jcp.org/en/jsr/detail?id=77
http://java.sun.com/developer/releases/petstore/
http://www.eclipse.org/modeling/gmf/
http://jonas.objectweb.org
http://jonas.objectweb.org

Y. Xiong et al.

Software Engineering. Lecture Notes in Computer Science, vol.
5235, pp. 3–46. Springer, Berlin (2007)

30. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt,
A.: Combinators for bidirectional tree transformations: a linguistic
approach to the view-update problem. ACM Trans. Program. Lang.
Syst. 29(3), 17 (2007)

Author Biographies

Yingfei Xiong is a postdoctoral
fellow at University of Water-
loo. Before joining Unviersity of
Waterloo, he got his PhD degree
from the University of Tokyo in
2009. His research interst is in
the change of software, including
synchronization of software arti-
facts, inconsistency management
and tracking changes in code.

Hui Song is a PhD student
at the Institute of Software in
Peking University. His research
interests includes models at run-
time, software architecture, and
system management.

Zhenjiang Hu is a professor of
National Institute of Informat-
ics (NII) in Japan. He received
his PhD degree from the Univer-
sity of Tokyo in 1996. His main
interest is in programming lan-
guages and software engineering
in general, and functional pro-
gramming, program transforma-
tion and model driven software
development in particular.

Masato Takeichi is a Profes-
sor of the University of Tokyo
since 1993, and he is a mem-
ber of the Science Council of
Japan since 2003. His research
concern includes bidirectional
transformation and functional
programming.

123

	Synchronizing concurrent model updates based on bidirectional transformation
	Abstract
	1 Introduction
	2 Background: properties of bidirectional model transformation
	3 Requirements of synchronizing concurrent updates
	4 Model difference, three-way merger and preservation
	4.1 Model difference
	4.2 Three-way merger
	4.3 Preservation

	5 Algorithm
	6 Algorithm symmetry
	7 Case study
	7.1 Case description
	7.2 Discussion of properties
	7.3 Performance

	8 Related work
	9 Conclusion and future work
	A Converting history-ignorance transformation to bijective relation
	A.1 Constant complement
	A.2 Converting history-ignorance transformation

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

