Mathematical Structures in Programs

. Algebra)
The Shorter Oxford English Dictionary):
—the reunion of broken parts

15
w —Q calculus of symbols combined according
|.E to defined laws
Haskell

3
4

ip

s Richard Bird. Introduction to Functional
Inl'rTf--:- 1994 . ISBN4-7649- Programming in Haskell, Prentice Hall,
e Ll 0181-1 1998.

(R. Bird and P. Wadler,
Introduction to
Functional
Programming, Prentice
Hall, 1988)

http://www.ipl.t.u-tokyo.ac.jp/~hu/pmO03/

.

10
11
12

10%
20%
70%

John Hughes

Software

Software = Programs + Data

*Numbers

oL etters

*Email messages
*Songson aCD

.

Data

Datais any kind of storable information. Examples:

*Maps
*Video clips
*Mouse clicks

*Programs

Programs

Programs compute new data from old data.

Example: Baldur’s Gate computes a sequence of screen
images and sounds from a sequence of mouse clicks.

.

Building Software Systems

A large system may contain many millions of lines of code.

Soafdtware systems are among the most complex artefacts ever
made.

Systems are built by combining existing components as far as
possible.

Volvo buys engines Bonnier buys
Quicktime Video from

B e from Mitsubishi.
E Apple.

Programming Languages

Programs are written in programming languages.

There are hundreds of different programming languages, each
with their strengths and weaknesses.

A large system will often contain components in many
-8 different languages.

.

Which Language Should We Teach?

Functional languages Imperative languages

@ Visual Basc(4)

Haskel

"®®
®E

Industrial Uses of Functional
Languages

Legasys (Y 2K tool)
Hafnium (Y 2K tool)

Intel (microprocessor

verification)

Hewlett Packard (telecom event
. Shop.com (e-commerce)

correlation)

Ericsson (telecommunications) Motorola(test generation)
Carlstedt Research &
Technology (air-crew

& Scheduling)

Thompson (radar tracking)

Why Haskell?

*Haskell isavery high-level language (many details taken
care of automatically).

*Haskell is expressive and concise (can achieve alot with a
little effort).

*Haskell is good at handling complex data and combining
components.

@ *Haskell is not a high-performance language (prioritise
E programmer-time over computer-time).

Haskell

Functional Programming

A function isaway of computing aresult from the
function arguments.

A function producing a number
from an angle.

f(x) = sin x/cos x

game(mouse clicks) = screen animation

A function producing a sequence
of images from a sequence of mouse clicks.

. & A functiona program computes its output as a function of its
E input.
Values and Expressions Operations
Avalue() isapieceof data Operators are always explicit:
2, 4, 3.14159, " John", b2 - 4*atc
Power. Multiplication.
«Cannot be written as b2 - 4ac.

Anexpression () computes avalue.
2+ 2, 2%pi*r

@ Expressions combine values using functions and operators.

.

*Means (b"2) - (4*a*c), not e.g. b™((2-4)*a*c).

Multiplication (*) binds more tightly than subtraction (-).

p

Functions

The solution of a quadratic equation:

(-b + sgrt (b2 - 4*a*c)) / (2*a)

Definitions and Types

A definition givesanameto avaue.

ypes specify wha
kind of valuethisis.

area:: Int
area=41*37

Names start with a
small letter, and are
made up of
letters and digits.

An expression says how
the value is computed.

Function Definitions

A function definition specifies how theresult is

computed from the arguments.

Function types specify the
types of the arguments

area:: Int-> Int-> Int and the result.

aealw =l The body specifies how
the result is computed.
The arguments

are given names,
after the function
name.

Cf. area(l,w) = I*w

Function Notation

Function arguments need not be enclosed in brackets!

Example: average :: Float -> Float -> Float
averagexy=(x+y)/2
Calls: average2 3 25
average (2+2) (3*3) — 6.5
-
E Brackets are for grouping only!

Functional Programming

A functional program consists mostly of function definitions.

Simple functions are used to define more complex ones, which
are used to define still more complex ones, and so on.

Finally, we define a function to compute the output of the
entire program from itsinputs.

If you can write function definitions,
-
E you can write functional programs!

A simple Haskell Program (Script)

]
]

Test.hs
square X = X * X
side = 12
area = square side

min’ :: Int -> Int -> Int

min’ Xy | x<=y =X

= | otherwise =y

.

Running Haskell Programs

Install Hugs in your PC
http://www.haskell.org/hugs/
(ECC has Hugs installed) LN

Primitive Library: Prelude.hs

Extended Library: Char.hs, List.hs, System.hs, ...

Your Program: Test.hs, ...
-

.

A Tour of Some Basic Types

From mathematics, we're used to functions whose arguments
and results are numbers. In programs, we usually work with
much richer types of values.

Some types are built in to programming languages (e.g.
numbers), others are defined by programmers (e.g. MP3).

L€t ustour some of Haskell’ s built-in types (in Prelude.hs).

.

Types: Integers

Whole numbers
(between -2731
and 2/31-1).

1,2,3,4... :lnt

Some oper ations:

5 dv72 — ., 3

2+3
%3 —— 6 mod72 —» 1

223 — 8
il! OBS integer division!

Types: Real Numbers

Rea numbers
(with about 6
significant
figures).

1.5, 0.425, 3.14159... :: Float

Some oper ations:

25+15—40
3-12—>18
& 1.4142"2 —>1.99996

1/3 — 0.333333
sin (pi/4) — 0.707107

Types: Lists

A list of values
ancsin
square brackets. -

(1,23, [2] : [Int]

Some oper ations:

[1,2,3] ++[45] — [1,2,34,5]
head [1,2,3] 1
L

Elast [1,2,3] 3

Quiz

How would you add 4 to the end of thelist [1,2,3]?

Quiz

How would you add 4 to the end of thelist [1,2,3]?

[1,2,3] ++[4] — [1,2,3,4]

OBS! [4] not 4!
++ combines two lists,
and 4 isnot alist.

Types: Strings

) ., . The type of
Hello!” :: String apiece of text.

"Hello” ++ "World" ——"Hello World"
> show (2+2) g

Any characters
enclosed in
double quotes.

Some operations:

Quiz

1s”2+2" equal t0 "4"?

Quiz

1s"2+2" equal t0 "4"?

No!

"2+2" isastring three characters long.

"4" isastring one character long.

-
E They are not the same text!

Types: Commands

The type of acommand

A command to write 4
which produces no

"Hello!” to myfile.
vt vaue.
writeFile”myfile” "Hello!” ::10()
readFile "myfile” :: 10 String

The type of acommand
which produces a
String.

Quiz

If myfile contains " Hello!”,
isreadFile "myfile” equal to "Hello!”?

Quiz

If myfile contains " Hello!”,
isreadFile"myfile’ equal to "Hello!”?

NO!

Thisis aconstant
piece of text.

Thisisacommand
to read afile.

The result of afunction depends only on its arguments;
& "Hello!” cannot be computed from "myfile”.

.

Effects of Commands

The result of afunction
depends only onits
arguments. >

>

The effect of acommand may
be different, depending on
when it is executed.

" Take one step backwards’

is dways the same command...

Combining Commands

This givesaname to
the String produced.
So contents equals " Hello!”.

producing a String.
Type: 10 String

do contents <- readFile "myfile’

writeFile ”myotherfile” contents

do combines two
or more commands
in sequence.

This command writes
the String contents (i.e.
"Hello!” to myotherfile.

Thisisacommand

More Examples
hello.hs

Display “Hello
hello :: 10 () World!”

hello = putStrL.n “Hello World!”

greeting.hs

greeting :: 10 ()

A P .. | Getaline from

greeting = do putStr “Tell me your name: the input.
name <- getLine

E putStrLn (“Hello “ ++ name ++ “ 1)

Types: Functions

double :: Int -> Int double2
double x = x+x

4
isafunction call.

double

(no arguments) isa

function value.

Function Composition

quadruple :: Int -> Int
quadruple = double . double

Function composition:
an operator on functions!

quadruple 2 — double (double 2)

— double 4
p —

The map Function

doubles :: [Int] -> [Int]
doubles = map double

A function with afunction

asits argument and its result!

doubles[1,2,3] — [double 1, double 2, double 3]

L
I.E ——[2,4,6]

"Higher-Order” Functions

The ability to compute functions (= programs) is one of
Haskell’ s greatest strengths.

Large parts of a program may be computed (" written by the
computer”) rather than programmed by hand.

But thisis an advanced topic to which we will return many
#times.

Putting it Together:
A Friendly Email Sender

mail hu@mist.i.u-tokyo.ac.jp email hu

e
/

e e

s

Define acommand to send mail, which looks up the right
- email address automatically.

.

Storing Email Addresses

Should we store email addresses: Easy to modify.
in the program? Many users can share
the program.

in aseparate file?

File: addresses

Zhenjiang Hu hu@mist.i.u-tokyo.ac.jp
Masato Takeichi takeichi@mist.i.u-toklyo.ac.jp
Kazuhiko Kakehi kaz@ipl.t.u-tokyo.ac.jp

.

What Components Can We Reuse?

egrep to search for the email address.
*emacs to edit the message.
email to send the message.

Our Plan: To Send Email to John
Produces ‘

' Zhenjiang Hu hu@mist.i.u-tokyo.ac.jp’
infile recipient.

«grep Hu addresses > recipient.
sreadFile recipient: the addressisthe last "word”.

*emacs message.

) \LCreae the mes&agefile.j
email address < message

= Send the contents of the
IIE message file to the address.

How Can We Run Another Program?

system "emacs message” :: 10 ExitCode

A command which
executes a String as
ashell command.

The result produced

isan exit code;
ignoreit.

How Can We Extract the Email
Address?

Reuse a standard function:

words :: String -> [String]

words " Zhenjiang Hu hu@mist.i.u-tokyo.ac.jp”

— ["Zhenjiang”, "Hu", "hu@mist.i.u-tokyo.ac.jp"]

.

Putting it all Together

Create the String
" grep Hu addresses>recipient”

email :: String -> 10 Int
email name =
do system ("grep "++namet++" addresses>recipient”)
recipient <- readFile "recipient”
system (" emacs message”)
system ("mail " ++last (words recipient)++
" <message”)
Create the String
' mail hu@mist.i.u-tokyo.ac.jp <m

* Hugs
* Hugs

— http://cvs.haskell.org/Hugs/pages/hugsman
/basics.html

