$

[1,2,3] :: [Int]

[‘h',e’ 1)1, 0] iz [Char]
[[1,2].[31] :: [[Int]]
[(+),()] :: [Int>Int>Int]
[1::1[a]

[1,3..5] :: [Int]

[1..] :: [Int]

[1,”fine day”] X

[x*x | x <-[1..10], even x]

IR

—

« [(ab) | a<-[1..3], b<-[1..2]]
2 [(1,1).(1,2).(2,1).(2,2).(3,1),(3,2)]

e [(i) | i<-[1..4], j<-[i+1..4]]
> [(1,2),(1,3).(1,4).(2,3).(2,:4),(3.4)]

« [(i,j) | i<-[1..4], even i,j<-[i+1..4],0dd j]
> [(2,3)]

- [31j<-[1..41]
> [3,3,3,3]

o [4] <-[L.5]]
>

$

divisors n = [d | d<-[1..n], n "mod~ d==0]

L]
gcd a b = maximum [d | d <- divisors a,
b “mod™ d == 0]

prime n = (dividors n == [1,n])

$

. XN 2+YyN2=2"2
X,Y,Z

triads n = [(x,y,z) | x<-[1..n],
y<-[x..n],
z<-[y..n],
XN2+yN2==2"2]

$

[1,2,3] ++ [4,5] =& [1,2,3,4,5]
[1,2] ++ [1 ++ [1] & [1.2,1]
= (++) 1 [a] 2 [a] > [a]
. (Xs++ys)++zs = xs++(ys++zs)
. T[] ++ xs =xs ++ [] = xs
= concat :: [[a]] = [a]
concat xss = [X | Xxs<-xss, X<-xs]

$

| |
= length [1,2,3] & 3
=« length[] =20

. length (xs++ys) = length xs + length ys
| |

= head [1,23] 2 1 head [] = L

= tail [1,2,3] 2 [2,3]

. xs = [head xs] ++ tail xs

:ﬂ_‘___ ______

« init [1,2,3] =& [1,2]
« last [1,2,3] 2 3
. Xs = init xs ++ [last xs]

take 3 [1..10] & [1,2,3]

take 3 [1,2] =& [1,2]

drop 3 [1..10] = [4,5,6,7,8,9,10]
take m . drop n = drop n . take (m+n)
drop m . drop n = drop (m+n)

$

| |
= takeWhile even [2,4,6,1,5,6] = [2,4,6]
= dropWhile even [2,4,6,1,5,6] = [1,5,6]

= reverse [1,2,3,4] = [4,3,2,1]
= reverse “hello” = “olleh”

$

= zip [1..3] ['a’,’b’,’¢’] 2 [(1,a),(2,'b"),(3,°¢)]
= zipWith fxsys = [fxy | (X,y) <- zip xs ys]

sp (xs,ys) = sum [x*y | (X,y) <- zip xs ys]
sp (xs,ys) = sum (zipWith (*) xsys)

position xs x = [i | (i,y) <- zip [0..length xs-1] xs, x==y]

$

=« [2,468]112>6

nondec xs = and [xs!lk <= xs I! (k+1)
| k<-[0..length xs—21]

« [1,2,1,3,1,3] ¥ [1,3] & [1,2,1,3]
. List.hs load

= "
. map

. map fxs =[fx | x<-xs]
. map square [1,2,3] = [1,4,9]
sum (map square [1..100]) = ?

map (f.g) =mapf.mapg
map f (xs++ys) = map f xs ++ map f xs
map f . concat = concat . map (map f)

. filter p XS
p
. filter pxs = [x | x<-xs, p x]

. filter even [1,2,4,5,32] = [2,4,32]

filter p . filter q = filter q . filter p
filter p (xs++ys) = filter p xs ++ filter p xs
filter p . concat = concat . map (filter p)

gﬁ___ _______ |

= map, filter
| |
s [X | x<-xs] = xs
s [fX]X<-xs] = mapf
s [e] x<-xs, p X, ...]
2> [e | x <-filter p xs, ...]
= [e] X <-xs, y<-ys, ...]
= concat [[e | y<-ys,...] | x<-xs]

*

[1lx<-xs]
> [constlx|x<-xs]
> map (const 1)

[x*x | x <- xs, even xs]

> [x*x | x <-filter even xs]

> [square x | x<-filter even xs]
> map square (filter even xs)

. foldr
foldr f a [x1,x2,...,xn] = fx1 (fx2 (... (f xn a)))
foldr (®) a [x1,x2,...,xn] = x1®(x2®(...(xn®a)))

foldr :: ?

. foldl
foldl (®) a [x1,x2,...,xn] = (((a®x1)®x2)...® xn)
foldr :: ?

g,%___ ______

sum = foldr (+) 0
product = foldr (*) 1
concat = foldr (++) []
and = foldr (&&) True
or = foldr (||) False

Reverse = foldr postfix []
where postfix x xs = xs ++ [x]
= [xn,...,x0] & xn*10™n + ... + x0
pack xs = foldl oplus 0 xs
where n “oplus™ x = 10*n + x

$

| |
D e :
XO(Y@®2)=x@y) Dz
edx=x®e=x

:

foldr (®) e xs = foldl (®) e xs

XS

$

| |
XO(Y®2)=(x®y)®z
X®e=e®Xx

B 1

foldr (®) e xs = foldl (®) e xs

$

foldr (®) e xs = foldl (®) e (reverse xs)
where x®y =y @ X

= foldrl

foldrl (®) [x1,x2,...,xn] = x1®(X2®(...®xn))
= foldll

foldll (&) [x1,x2,...,xn] = ((x1®x2)...)®xn

maximum xs = foldrl (max) xs

scanl, scanr

$

| |
scanl (®) a [x1,x2,...,xn]
=[a,
ao®xl,
(a @ x1) ® x2,

(.(.E;&Bxl)(BxZ)...@ xn]

. scanl (+) 0[12,3,4,5] = [0,1,3,6,10,15]
. scanl (*) 1[1,2,3,4,5] < [1,1,2,6,24,120]

$

. :
=):

1:2:3:4:[] €= [1,2,3,4]

null [] = True
null (x:xs) = False

