
1

オ

•
[1,2,3] :: [Int]
[‘h’,’e’,’l’,’l’,’o’] :: [Char]
[[1,2],[3]] :: [[Int]]
[(+),(-)] :: [IntIntInt]
[] :: [a]
[1,3..5] :: [Int]
[1..] :: [Int]
[1,”fine day”] X

オ

• オ

[x*x | x <- [1..10], even x]

オ

– [(a,b) | a<-[1..3], b<-[1..2]]
 [(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)]
– [(i,j) | i<-[1..4], j<-[i+1..4]]
 [(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]
– [(i,j) | i<-[1..4], even i,j<-[i+1..4],odd j]
 [(2,3)]
– [3 | j<-[1..4]]
 [3,3,3,3]
– [‘ ‘ | j <- [1..5]]
 “ “

•
divisors n = [d | d<-[1..n], n `mod` d==0]

•
gcd a b = maximum [d | d <- divisors a,
 b `mod` d == 0]

•
prime n = (divisors n == [1,n])

• x^2+y^2=z^2
㈻ x,y,z

triads n = [(x,y,z) | x<-[1..n],
 y<-[x..n],
 z<-[y..n],
 x^2+y^2==z^2]

2

•
[1,2,3] ++ [4,5] [1,2,3,4,5]
[1,2] ++ [] ++ [1] [1,2,1]

– (++) :: [a] [a] [a]
– ㈻

• (xs++ys)++zs = xs++(ys++zs)
• : [] ++ xs = xs ++ [] = xs

– concat :: [[a]] [a]
concat xss = [x | xs<-xss, x<-xs]

•
– length [1,2,3] 3
– length [] 0
– ㈻ length (xs++ys) = length xs + length

ys
• さ

– head [1,2,3] 1 head [] = ⊥
– tail [1,2,3] [2,3]
– ㈻ xs = [head xs] ++ tail xs

• さ
– init [1,2,3] [1,2]
– last [1,2,3] 3
– ㈻ xs = init xs ++ [last xs]

•
– take 3 [1..10] [1,2,3]
– take 3 [1,2] [1,2]
– drop 3 [1..10] [4,5,6,7,8,9,10]
– ㈻ take m . drop n = drop n . take (m+n)
– ㈻ drop m . drop n = drop (m+n)

•
– takeWhile even [2,4,6,1,5,6] [2,4,6]
– dropWhile even [2,4,6,1,5,6] [1,5,6]

• ㌹
– reverse [1,2,3,4] [4,3,2,1]
– reverse “hello” “olleh”

•
– zip [1..3] [‘a’,’b’,’c’] [(1,’a’),(2,’b’),(3,’c’)]
– zipWith f xs ys = [f x y | (x,y) <- zip xs ys]

ゝ
sp (xs,ys) = sum [x*y | (x,y) <- zip xs ys]
sp (xs,ys) = sum (zipWith (*) xs ys)

ゝ
position xs x = [i | (i,y) <- zip [0..length xs-1] xs, x==y]

•
– [2,4,6,8] !! 2 6

nondec xs = and [xs!!k <= xs !! (k+1)
 | k <- [0 .. length xs – 2]]

•
– [1,2,1,3,1,3] \\ [1,3] [2,1,1,3]
– List.hs load さ

3

map

• map さ

– map f xs = [f x | x<-xs]
– map square [1,2,3] [1,4,9]
 sum (map square [1..100]) ?
– ㈻

 map (f.g) = map f . map g
 map f (xs++ys) = map f xs ++ map f ys
 map f . concat = concat . map (map f)

filter

• filter p xs
さ p
– filter p xs = [x | x<-xs, p x]
– filter even [1,2,4,5,32] [2,4,32]
– ㈻

 filter p . filter q = filter q . filter p
 filter p (xs++ys) = filter p xs ++ filter p ys
 filter p . concat = concat . map (filter p)

オ ゼ

• オ map, filter オ

• ぞ
– [x | x<-xs] xs
– [f x | x <- xs] map f xs
– [e | x<-xs, p x, …]
 [e | x <- filter p xs, …]
– [e | x <-xs, y<-ys, …]
 concat [[e | y<-ys,…] | x<-xs]

ゼ

[1 | x <- xs]
[const 1 x | x <- xs] const k x = k
map (const 1)

[x*x | x <- xs, even x]
[x*x | x <- filter even xs]
[square x | x<-filter even xs] square x =

x*x
map square (filter even xs)

fold (1/2)

• ㎲ fold

– ㎲ foldr
foldr (⊕) a [x1,x2,…,xn] = x1⊕(x2⊕(…(xn⊕a)))

s = a;
for (i=n; i> =1; i--) {
 s = x[i] + s
}

fold (2/2)

– ㎲ foldl
foldl (⊕) a [x1,x2,…,xn] = (((a⊕x1)⊕x2)…⊕ xn)

s = a;
for (i=1; 1<=n, i++) {
 s = s + x[i]
}

4

•
sum = foldr (+) 0
product = foldr (*) 1
concat = foldr (++) []
and = foldr (&&) True
or = foldr (||) False

• ㌹
reverse = foldr postfix []
 where postfix x xs = xs ++ [x]

• [xn,…,x0] xn*10^n + … + x0
pack xs = foldl oplus 0 xs
 where n `oplus` x = 10*n + x

㎲ ㈻

•
⊕ e :

 x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z
 e ⊕ x = x ⊕ e = x
xs

 foldr (⊕) e xs = foldl (⊕) e xs

㎲ ㈻

•
x ⊕ (y ⊗ z) = (x ⊕ y) ⊗ z

 x ⊕ e = e ⊗ x
 xs

 foldr (⊕) e xs = foldl (⊗) e xs

㎲ ㈻

•

 foldr (⊕) e xs = foldl (⊗) e (reverse xs)
where x ⊗ y = y ⊕ x

㎲

• foldr1
foldr1 (⊕) [x1,x2,…,xn] = x1⊕(x2⊕(…⊕xn))

• foldl1
foldl1 (⊕) [x1,x2,…,xn] = ((x1⊕x2)…)⊕xn

•
maximum xs = foldr1 max xs
 = foldl1 max xs

scanl, scanr

•
scanl (⊕) a [x1,x2,…,xn]
 = [a,
 a ⊕ x1,
 (a ⊕ x1) ⊕ x2,
 …,
 ((a⊕x1)⊕x2)…⊕ xn]

•
– scanl (+) 0 [12,3,4,5] [0,1,3,6,10,15]
– scanl (*) 1 [1,2,3,4,5] [1,1,2,6,24,120]

5

•
– []

•
– (:)

• さ

 1:2:3:4:[] [1,2,3,4]

null [] = True
null (x:xs) = False

length [] = 0
length (x:xs) = 1 + length xs

reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

