

リストの表記法

－リスト：線形に順序のついた同じ型の値の集まり ［1，2，3］：：［lnt］
［＇h＇，＇e＇，＇，＇，＇，＇，＇，＇］：：［Char］
［［1，2］，［3］］：：［ $[$ lnt］］
$[(+),(-)]::[\operatorname{lnt} \rightarrow \operatorname{lnt} \rightarrow \operatorname{lnt}]$
［］$\because:$［a］
［1，3．．5］：：［lnt］
［1．．］：：［lnt］
4
1，＂fine day＂］X

リストの内包表記

－集合を記述する数学の形式を元にした構文：
［ $x^{*} x \mid x<-$［1．．10］，even x ］

内包表記の例

$-[(a, b) \mid a<-[1 . .3], b<-[1 . .2]]$
$\rightarrow[(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)]$
$-[(i, j) \mid i<-[1 . .4], j<-[i+1 . .4]]$
$\rightarrow[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]$
$-[(i, j) \mid i<-[1 . .4]$ ，even $i, j<-[i+1 . .4]$, odd $j]$
$\rightarrow[(2,3)]$
$-[3 \mid j<-[1 . .4]]$
$\rightarrow[3,3,3,3]$

- ［＇＇ $\mid \mathrm{j}<-$［1．．5］］

4
7 \qquad

例題

－正の整数の約数のリストを生成する関数 divisors $n=[d \mid d<-[1 . . n]$ ，n｀mod｀$d==0]$
－与えられた範囲内の $x^{\wedge} 2+y^{\wedge} 2=z^{\wedge} 2$ のすべ て（本質的違うような）x, y, z を求める関数 triads $n=[(x, y, z) \mid x<-[1 . . n]$ ，

> y<-[x..n],
z＜－［y．．n］，
$\left.x^{\wedge} 2+y^{\wedge} 2==z^{\wedge} 2\right]$
－素数を判定する関数
－prime $\mathrm{n}=$（divisors $\mathrm{n}=[\mathrm{l}, \mathrm{n}]$ ）
D
2つの正整数の最大公約数を求める関数 gcd absemaximum［ $\mathrm{d} \mid \mathrm{d}<$－divisors a ，
b ｀mod $\mathrm{d}==0$ ］

例題

リストの演算

－リストの連接

$[1,2,3]++[4,5] \rightarrow[1,2,3,4,5]$
$[1,2]++\left[\begin{array}{l}++ \\ {[1]}\end{array}\right][1,2,1]$
$-(++)::[a] \rightarrow[a] \rightarrow[a]$

- 性質：
- 結合的：$(x s++y s)++z s=x s++(y s++z s)$
- 単位元：［］＋＋xs＝xs＋＋［］＝xs

4
－concat ：：［［a］］\rightarrow［a］
concat $\mathrm{xss}=[\mathrm{x} \mid \mathrm{xs}<-\mathrm{xss}, \mathrm{x}<-\mathrm{xs}]$

リスト上の関数

－リストの長さ
－length $[1,2,3] \rightarrow 3$
－length［］$\rightarrow 0$
－性質 length（xs $++y s$ ）$=$ length $\mathrm{xs}+$ length ys
－リストの先頭要素と後部

- head $[1,2,3] \rightarrow 1$ head []$=\perp$
- tail $[1,2,3] \rightarrow[2,3]$
—性質 xs＝［head xs］＋＋tail xs

リスト上の関数

－リストの前部と末尾要素

- init $[1,2,3] \rightarrow[1,2]$
－last $[1,2,3] \rightarrow 3$
- 性質 $\mathrm{xs}=$ init $\mathrm{xs}++$［last xs］
- 部分リストの取り出し
－take $3[1 . .10] \rightarrow[1,2,3]$
- take $3[1,2] \rightarrow[1,2]$
－drop 3 ［1．．10］ $\boldsymbol{\rightarrow}[4,5,6,7,8,9,10]$
－性質 1 take m ．drop $\mathrm{n}=$ drop n ．take $(\mathrm{m}+\mathrm{n})$
4
性質 $2 \operatorname{drop} m . \operatorname{drop} n=\operatorname{drop}(m+n)$

リスト上の関数

－部分リストの取り出し
－takeWhile even $[2,4,6,1,5,6] \rightarrow[2,4,6]$
－dropWhile even $[2,4,6,1,5,6] \rightarrow[1,5,6]$
－リストの反転
－reverse $[1,2,3,4] \rightarrow[4,3,2,1]$
－reverse＂hello＂\rightarrow＂olleh＂

4

リスト上の関数

－リストの綴じ合わせ
－zip［1．．3］［＇a＇，＇b，＇，c＇］ $\boldsymbol{\rightarrow}$［（1，＇a＇），（2，＇b＇），（3，＇c＇）］
－zipWith fxs ys $=[\mathrm{fxy\mid} \mid(\mathrm{x}, \mathrm{y})<-$ zip xs ys］

例（内積の計算）：

$\operatorname{sp}(x s, y s)=\operatorname{sum}\left[x^{*} y \mid(x, y)<-z i p ~ x s ~ y s\right]$
$\operatorname{sp}(\mathrm{xs}, \mathrm{ys})=\operatorname{sum}$（zipWith（ ${ }^{*}$ ）xs ys）
例（位置の計算）
${ }^{4}$
position xs $\mathrm{x}=[\mathrm{i} \mid(\mathrm{i}, \mathrm{y})<-\operatorname{zip}[0 . . l e n g t h \mathrm{xs}-1] \mathrm{xs}, \mathrm{x}==\mathrm{y}$ ］
\qquad

リスト上の関数

－リストの番号づけ
$-[2,4,6,8]!!2 \rightarrow 6$
例（非減少判定）
nondec xs＝and［xs！！k＜＝xs ！！（k＋1）
｜ $\mathrm{k}<-[0$ ．．length $\mathrm{xs}-2]]$
－リストの差
$-[1,2,1,3,1,3] \backslash[1,3] \rightarrow[2,1,1,3]$
${ }^{1}$
注：List．hsをloadする必要がある。
－
\qquad

高階関数map

－関数mapは関数をリストのそれぞれの要素に適用する。

- 定義： $\operatorname{map} \mathrm{fxs}=[\mathrm{fx} \mid \mathrm{x}<-\mathrm{xs}$ ］- 例：map square $[1,2,3] \rightarrow[1,4,9]$
sum（map square［1．．100］） $\boldsymbol{\rightarrow}$ ？
－性質：
map（f．g）$=$ map f. map g
4 map $f(x s++y s)=$ map $f x s++$ map f ys map f．concat $=$ concat. $\operatorname{map}($ map f）

高階関数filter

－関数filterは述語pとリストxsを引数にとり，要素がpを満たすような部分リストを返す。

- 定義：filter p xs $=[x \mid x<-x s, p x]$
- 例：filter even［1，2，4，5，32］$\rightarrow[2,4,32]$
- 性質：
filter p ．filter $q=$ filter q ．filter p
filter $p(x s++y s)=$ filter $p \times s++$ filter p ys
4
filter p．concat＝concat ．map（filter p）

内包表記の翻訳

- 内包表記 $\boldsymbol{\rightarrow}$ map，filterでの表記
- 規則：
$-[x \mid x<-x s] \rightarrow x s$
$-[\mathrm{fx} \mid \mathrm{x}<-\mathrm{xs}] \rightarrow$ map fx
$-[e \mid x<-x s, p x, \ldots]$
$\rightarrow[\mathrm{e} \mid \mathrm{x}<-$ filter $\mathrm{pxs}, \ldots]$
$-[e \mid x<-x s, y<-y s, \ldots]$
LP \rightarrow concat $[$［e $\mid y<-y s, \ldots] \mid x<-x s]$
－
\qquad

高階関数fold（1／2）

－畳み込み関数foldはリストを他の種類の値 に変えることが出来る。
－右側畳み込みfoldr
foldr (\oplus) a $[x 1, x 2, \ldots, x n]=x 1 \oplus(x 2 \oplus(\ldots(x n \oplus a)))$

［B

高階関数fold（2／2）

－左側畳み込みfoldl
［ $1 \mid x<-x s$ ］
\rightarrow［ const $1 \mathrm{x} \mid \mathrm{x}<-\mathrm{xs}$ ］
\rightarrow map（const 1）
［ $x^{*} x \mid x<-x s$ ，even x ］
$\rightarrow\left[x^{*} x \mid x<-\right.$ filter even $x s$ ］
\rightarrow［ square $\mathrm{x} \mid \mathrm{x}<$－filter even xs ］
$\xrightarrow{\text { map square（filter even } \mathrm{xs} \text { ）}}$

翻訳の例

foldl $(\oplus) a[x 1, x 2, \ldots, x n]=(((a \oplus x 1) \oplus x 2) \ldots \oplus x n)$
$\mathrm{s}=\mathrm{a} ;$
for（ $\mathrm{i}=1 ; 1<=\mathrm{n}, \mathrm{i}++$ ）$\{$

$$
s=s+x[i]
$$

, $s=s+x[i]$
\}
－ \qquad

例

－簡単な例

sum＝foldr（＋） 0
product $=$ foldr（＊） 1
concat $=$ foldr（＋＋）［］
and＝foldr（\＆\＆）True
or $=$ foldr（II）False
－リストの反転
reverse＝foldr postfix［］
where postfix x xs $=x s++[x]$
－$[\mathrm{xn}, \ldots, \mathrm{x} 0] \rightarrow \mathrm{xn}^{\star} 10^{\wedge} \mathrm{n}+\ldots+\mathrm{x} 0$
4
pack $x s=$ foldl oplus $0 x s$
where n＇oplus＇$x=10^{*} n+x$

畳み込み演算の性質

－第一双対定理
演算子 \oplus とeが単位半群：
$x \oplus(y \oplus z)=(x \oplus y) \oplus z$
$e \oplus x=x \oplus e=x$
xsが有限ノスト

f．foldr (\oplus) exs $=$ foldl $(\oplus) \mathrm{exs}$

畳み込み演算の性質

－第二双対定理

$x \oplus(y \otimes z)=(x \oplus y) \otimes z$
$x \oplus e=e \otimes x$
xsが有限リスト

foldr (\oplus) e xs $=$ foldl (\otimes) e xs
4 \qquad

畳み込み演算の性質

－第三双対定理
foldr (\oplus) e xs $=$ foldl (\otimes) e（reverse $x s)$ where $x \otimes y=y \oplus x$

4 \qquad

空でないリストの畳み込み

－foldr1
foldr1 $(\oplus)[x 1, x 2, \ldots, x n]=x 1 \oplus(x 2 \oplus(\ldots \oplus x n))$
－foldl1
fold11 $(\oplus)[x 1, x 2, \ldots, x n]=((x 1 \oplus x 2) \ldots) \oplus x n$
－例
maximum xs $=$ foldr1 $\max x s$
［B

$$
=\text { foldl1 max xs }
$$

\qquad

リストの走査関数scanl，scanr
－左（右）側の走査
scanl（ \oplus ）a $[\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn}]$
$=[\mathrm{a}$ ，
$\mathrm{a} \oplus \mathrm{x} 1$ ，
$(a \oplus x 1) \oplus x 2$ ，
$((a \oplus x 1) \oplus x 2) \ldots \oplus x n]$

- 例：
- 累積和：scanl（＋） $0[12,3,4,5] \rightarrow[0,1,3,6,10,15]$
- 累乗積：scanl（＊） $1[1,2,3,4,5] \rightarrow[1,1,2,6,24,120]$

リストのパターン

- リストの構成
- 構成子［］
- 空リストを生成する
- 構成子（：）
- リストの新たら第一要素として新しい値を挿入する

1：2：3：4：［］$\longleftrightarrow[1,2,3,4]$
${ }^{1}$ \qquad

リスト上の関数の定義

null［］＝True
null（ $x: x$ ） ）False
length［］$=0$
length（ $x: x s$ ）$=1+$ length $x s$
reverse［］＝［］
LP reverse（ $x: x s$ ）＝reverse $x s++[x]$

