\square

自然数の上の再帰法

－べき乗の再帰的な定義 $x^{\wedge} 0=1$ $x^{\wedge}(n+1)=x^{*} x^{\wedge} n$

－Fibonacciの再帰的な定義
fib $0=0$
fib $1=1$
fib $(n+2)=$ fib $n+$ fib $(n+1)$
＜fib．3＞
\qquad

自然数の上の帰納法による証明

命題 $p(n)$ が任意の自然数 n について成立

- $\mathrm{P}(0)$ が成立
- $P(n) P(n-1)$ が成立 $\rightarrow P(n+1)$ が成立

B \qquad

リストの上の再帰法

－リストの長さを求める関数 length［］＝ 0
length（ $\mathrm{x}: \mathrm{xs}$ ）$=1+$ length xs
base recursion
－リストの連接
［］＋＋ys＝ys
（ $\mathrm{x}: \mathrm{xs}$ ）$++\mathrm{ys}=\mathrm{x}:(\mathrm{xs}++\mathrm{ys})$
2 \qquad

帰納法による証明

任意の有限リストxsについてP（xs）が成立

- $\mathrm{P}[\mathrm{]}$ が成立
- $P(x s)$ が成立 $\rightarrow P(x: x s)$ が成立

를 \qquad
length $(x s++y s)=$ length $x s+$ length $y s$
xsに関する帰納法で証明する
－［］の場合
length（［］＋＋ys）
$=$ length ys
$=0$＋length ys
$=$ length［］＋length ys
$-x: x s$ の場合
length（（x：xs）＋＋ys）
$=$ length $(x:(x s++y s))$
$=1+$ length（xs＋＋ys）
$=1+$ length $x s+$ length $y s$
$=$ length（ $x: x s$ ）＋length ys
$<++.1>$
$<+>$
＜length．1＞
＜＋＋．2＞
＜length．2＞
＜仮定＞
＜length．2＞
－Take／dropの再帰的な定義
take 0 xs＝［］
take $(\mathrm{n}+1) \mathrm{n}=[]$
take $(n+1)(x: x s)=x:$ take $n x s$
drop $0 \mathrm{xs}=\mathrm{xs}$
drop $(\mathrm{n}+1)[]=[]$
drop $(\mathrm{n}+1)(\mathrm{x}: \mathrm{xs})=\operatorname{drop} \mathrm{n}$ xs

リスト演算

－Zip

2引数関数：3つの場合
zip［］ys＝［］
zip（ $x: x s$ ）［］＝［］
zip $(x: x s)(y: y s)=(x, y):$ zip $x s$ ys
－length（zip xs ys）$=\min ($ length $x s)$（length ys）
－証明：場合 1 ：$x s=[]$ ，$y s$
場合2：（x：xs），ys＝［］
0場合3：（x：xs），（y：ys）

－head／tail の定義

head（ $x: x s$ ）$=x$
tail（ $x: x s$ ）$=x s$
head []$=\perp$
tail []$=\perp$

空でないリストxsに対して

［head xs］＋＋tail xs＝xs

4

\qquad
\qquad

－Init／last

init $[x]=[]$
init（ $\mathrm{x}: \mathrm{x}^{\prime}: \mathrm{xs}$ ）$=\mathrm{x}$ ：init（ $\mathrm{x}^{\prime}: \mathrm{xs}$ ）
非空リストのニ つの場合
－Map／filter
map $\mathrm{f}[\mathrm{=}=[]$
$\operatorname{map} \mathrm{f}(\mathrm{x}: \mathrm{xs})=\mathrm{fx}: \operatorname{map} \mathrm{fx}$
filter $p[]=[]$
filter $p(x: x s) \mid p x=x$ ：filter $p x s$ ｜otherwise＝filter p xs
filter $p(\operatorname{map} \mathrm{fxs})=\operatorname{map} f(f i l t e r(p . f) x s)$

4

xsに関する帰納法で証明する。
nit xs＝take（length xs－1）xs
xsに関する帰納法で証明する。
\qquad

補助関数

－補助関数

xs $\ 1[]=x s$
$x s ~ \ \(y: y s)=$ remove $x s y \backslash y s$
remove［］y＝［］
remove（ x ：xs）y｜$x==y=x s$
｜otherwise＝x ：remove xs y

$1 D$

reverse（reverse $x s$ ）$=x s$

xsに関する帰納法で証明する。

－場合［］：

reverse（reverse［］）

$=$ reverse［］	＜rev．1＞
$=[]$	＜rev．1＞

－場合（x：xs）
reverse（reverse（x：xs））

> = reverse (reverse xs ++ [x]) <rev.2>
$=x$ ：reverse（reverse xs）

$1 D$

＝x：xs
＜ほしい＞ ＜仮定＞

Initの合成

仕様：init xs＝take（length xs -1 ）xs
導出：
－init $[x]=$ take（length $[x]-1)[x]$
$=$ take $0[\mathrm{x}]$
＝［］
－init $\left(x: x^{\prime}: x s\right)=$ take（length（ $\left.\left.x: x^{\prime}: x s\right)-1\right)\left(x: x^{\prime}: x s\right)$
$=$ take $(2+$ length $x s-1)\left(x: x^{\prime}: x s\right)$
$=$ take（length $x s+1$ ）（ $x: x^{\prime}: x s$ ）
4
証明の手順と
x ：take（length $x s$ ）（ $x: x s$ ）
$=x$ ：take（length（ $\left.\left.\left.x^{\prime}: x s\right)-1\right)\right)\left(x^{\prime}: x s\right)$
$=x$ ：init（ $x^{\prime}: x s$ ）

高速Fibonacci計算

fib $0=0$
fib $1=1$
fib $(n+2)=f i b n+f i b(n+1)$

fib＇$n=$ fst（twofib n ）
twofib $n=(f i b n, f i b(n+1))$ の合成
twofib $0=($ fib $0, f i b 1)$

$$
=(0,1)
$$

twofib（ $\mathrm{n}+1$ ）
$=($ fib $(n+1)$, fib $(n+2))$
$=($ fib $(n+1)$, fib $n+f i b(n+1))$
$=(b, a+b)$
4
where $(a, b)=$ twofib n

－効率のよいプログラム

fib＇$n=f s t(t w o f i b n)$
twofib $0=(0,1)$
twofib $(\mathrm{n}+1)=(\mathrm{b}, \mathrm{a}+\mathrm{b})$
where $(a, b)=$ twofib n
4

