
1

↓

•
x^0 = 1 <^.1>
x^(n+1) = x * x^n <^.2>

• Fibonacci
fib 0 = 0 <fib.1>
fib 1 = 1 <fib.2>
fib (n+2) = fib n + fib (n+1) <fib.3>

Base

Recursion

↓ ッ

p(n) ↓ n

• P(0)
• P(1)
• P(n),p(n-1) P(n+1)

x^(m+n) = (x^m)*(x^n)

• m ッ
– 0

x^(0+n) = x^n <^.1>
 = 1 * x^n <* >
 = x^0 * x^m <^.1>

– m+1
x^((m+1)+n)

 = x^((m+n)+1) <+ >
 = x * x^(m+n) <^.2>
 = x * x^m * x^n < >

= x^(m+1) * x^n <^.2>

•
length [] = 0
length (x:xs) = 1 + length xs

•
[] ++ ys = ys

 (x:xs) ++ ys = x : (xs++ys)

base

recursion

ッ

xs P(xs)

• P[]
• P[x]
• P(xs) P(x:xs)

2

length (xs++ys) = length xs + length ys

xs ッ
– []

length ([]++ys)
= length ys <++.1>

 = 0 + length ys <+>
 = length [] + length ys <length.1>

– x:xs
length ((x:xs)++ys)
 = length (x:(xs++ys)) <++.2>

= 1 + length (xs++ys) <length.2>
 = 1 + length xs + length ys < >

= length (x:xs) + length ys <length.2>

• Zip
zip [] ys = []
zip (x:xs) [] = []

 zip (x:xs) (y:ys) = (x,y) : zip xs ys

• length (zip xs ys) = min (length xs) (length ys)
– ッ xs=[], ys

(x:xs), ys=[]
(x:xs), (y:ys)

2

• Take/drop
take 0 xs = []
take (n+1) [] = []
take (n+1) (x:xs) = x : take n xs

drop 0 xs = xs
drop (n+1) [] = []
drop (n+1) (x:xs) = drop n xs

• ッ take n xs ++ drop n xs = xs

• head/tail
head (x:xs) = x
tail (x:xs) = xs

xs
[head xs]++tail xs = xs

head [] = ⊥

tail [] = ⊥

• Init/last
init [x] = []
init (x:x’:xs) = x : init (x’:xs)

last [x] = x
last (x:x’:xs) = last (x’:xs)

init xs = take (length xs –1) xs
 xs ッ

• Map/filter
map f [] = []
map f (x:xs) = f x : map f xs

filter p [] = []
filter p (x:xs) | p x = x : filter p xs

 | otherwise = filter p xs

filter p (map f xs) = map f (filter (p . f) xs)
 xs ッ

3

•
xs \\ [] = xs
xs \\ (y:ys) = remove xs y \\ ys

remove [] y = []
remove (x:xs) y | x==y = xs

 | otherwise = x : remove xs y

•
reverse [] = []
reverse (x:xs) = reverse xs ++ [x]

xs
reverse (reverse xs) = xs

x ys
reverse (ys++[x]) = x : reverse ys

reverse (reverse xs) = xs

xs ッ
– []:

reverse (reverse [])
= reverse [] <rev.1>
= [] <rev.1>

– (x:xs)
reverse (reverse (x:xs))

= reverse (reverse xs ++ [x]) <rev.2>
= x : reverse (reverse xs) < >
= x : xs < >

• ッ

–
 ㈻

•
– ㈻

Init

init xs = take (length xs – 1) xs

– init [x] = take (length [x] –1) [x]
 = take 0 [x]
 = []

– init (x:x’:xs) = take (length (x:x’:xs)-1) (x:x’:xs)
= take (2+length xs-1) (x:x’:xs)
= take (length xs + 1) (x:x’:xs)
= x : take (length xs) (x’:xs)
= x : take (length (x’:xs)-1))(x’:xs)
= x : init (x’:xs)

ッ

Fibonacciゝ

fib 0 = 0
fib 1 = 1
fib (n+2) = fib n + fib (n+1)

fib’ n = fst (twofib n)
twofib n = (fib n, fib (n+1))

Twofib

4

twofib 0 = (fib 0, fib 1)
 = (0,1)

twofib (n+1)
= (fib (n+1), fib (n+2))
= (fib (n+1), fib n + fib (n+1))

 = (b,a+b)
where (a,b) = twofib n

•

fib’ n = fst (twofib n)
twofib 0 = (0,1)
twofib (n+1) = (b,a+b)

where (a,b) = twofib n

