構成的アルゴリズム論の基本概念

胡振江東京大学 計数工学科 2006 年度

Copyright © 2006 Zhenjiang Hu，All Right Reserved．

Constructive Algorithmics

Zhenjiang HU
University of Tokyo

Copyright © 2006 Zhenjiang Hu, All Right Reserved.

The First Exercise Revisited

The Maximum Segment Sum (mss) Problem
Try you best to design an efficient and correct program to compute the maximum of the sums of all segments of a given sequence of numbers, positive, negative, or zero.

$$
m s s[3,1,-4,1,5,-9,2]=6
$$

Reference

R.S. Bird: Lecture Notes on Constructive Functional Programming, Technical Monograph PRG-69, ISBN 0-902928-51-1, 1988.

Subject

A calculus of functions for deriving programs from their specifications:

- A range of concepts and notations for defining functions over various data types (including lists, trees, and arrays);
- A set of algebraic laws (rules, lemmas, theorems) for manipulating functions;
- A framework for constructing new calculation rules to capture principles of programming.

Outline

- Basic Concepts
- Deriving Programs for Manipulating Lists
- Homomorphism: Join Lists
- Left Reduction: Snoc Lists
- Deriving Programs for Manipulating Arrays (Matrices)
- Deriving Programs for Manipulating Trees
- Categorical Aspects of Constructive Algorithmics

Basic Concepts

A Problem

Consider the following simple identity:

$$
\left(a_{1} \times a_{2} \times a_{3}\right)+\left(a_{2} \times a_{3}\right)+a_{3}+1=\left(\left(1 \times a_{1}+1\right) \times a_{2}+1\right) \times a_{3}+1
$$

This equation generalizes in the obvious way to n variables $a_{1}, a_{2}, \ldots, a_{n}$, and we will refer to it as Horner'e rule.

- How many \times are used in each side?
- Can we generalize \times to $\otimes,+$ to \oplus ? What are the essential constraints for \otimes and \oplus ?
- Do you have suitable notation for expressing the Horner's rule concisely?

Review: Notations on Functions

- A function f that has source type α and target type β is denoted by

$$
f: \alpha \rightarrow \beta
$$

We shall say that f takes arguments in α and returns results in β.

- Function application is written without brackets; thus f a means $f(a)$. Function application is more binding than any other operation, so $f a \otimes b$ means $(f a) \otimes b$.
- Functions are curried and applications associates to the left, so $f a b$ means $(f a) b$ (sometimes written as $f_{a} b$.)
- Function composition is denoted by a centralized dot (•). We have

$$
(f \cdot g) x=f(g x)
$$

- Binary operators will be denoted by \oplus, \otimes, \odot, etc. Binary operators can be sectioned. This means that $(\oplus),(a \oplus)$ and $(\oplus a)$ all denote functions. The definitions are:

$$
\begin{aligned}
& (\oplus) a b=a \oplus b \\
& (a \oplus) b=a \oplus b \\
& (\oplus b) a=a \oplus b
\end{aligned}
$$

Exercise: If \oplus has type $\oplus: \alpha \times \beta \rightarrow \gamma$, then what are the types for (\oplus), $(a \oplus)$ and $(\oplus b)$ for all a in α and b in β ?

Exercise: Show the following equation state that functional compositon is associative.

$$
(f \cdot) \cdot(g \cdot)=((f \cdot g) \cdot)
$$

- The identity element of $\oplus: \alpha \times \alpha \rightarrow \alpha$, if it exists, will be denoted by $i d_{\oplus}$. Thus,

$$
a \oplus i d_{\oplus}=i d_{\oplus} \oplus a=a
$$

Exericise: What is the identity element of functional composition?

- The constant values function $K: \alpha \rightarrow \beta \rightarrow \alpha$ is defined by the equation

$$
K a b=a
$$

Review: Lists

- Lists are finite sequence of values of the same type. We use the notation $[\alpha]$ to describe the type of lists whose elements have type α.
- Examples:
$[1,2,1]:[$ Int $]$
$[[1],[1,2],[1,2,1]]:[[$ Int $]$
[]: $[\alpha]$
- [.] : $\alpha \rightarrow[\alpha]$ maps elements of α into singleton lists.

$$
[.] a=[a]
$$

- The primitive operator on lists is concatenation, denoted by + .

$$
[1]++[2]+[1]=[1,2,1]
$$

Concatenation is associative:

$$
x+(y+z)=(x+y)+z
$$

Exercise: What is the identity for concatenation?

- Algebraic View of Lists:
- $([\alpha],+,[])$ is a monoid.
- ([$\alpha],+,[])$ is a free monoid generated by α under the assignment [.] : $\alpha \rightarrow[\alpha]$.
- $\left([\alpha]^{+},+\right)$is a semigroup.

List Functions: Homomorphisms

A function h defined in the following form is called homomorphism:

$$
\begin{array}{ll}
h[] & =i d_{\oplus} \\
h[a] & =f a \\
h(x+y) & =h x \oplus h y
\end{array}
$$

It defines a map from the monoid $([\alpha],+,[])$ to the monoid $\left(\beta, \oplus: \beta \rightarrow \beta \rightarrow \beta, i d_{\oplus}: \beta\right)$.

Property: h is uniquely determined by f and \oplus.

An Example: the function returning the length of a list.

$$
\begin{array}{ll}
\#[] & =0 \\
\#[a] & =1 \\
\#(x+y) & =\# x+\# y
\end{array}
$$

Note that $($ Int,,+ 0$)$ is a monoid.

Bags and Sets

- A bag is a list in which the order of the elements is ignored. Bags are constructed by adding the rule that H is commutative (as well as associative):

$$
x+y=y+x
$$

- A set is a bag in which repetitions of elements are ignored. Sets are constructed by adding the rule that H is idempotent (as well as commutative and associative):

$$
x+x=x
$$

Map

The operator $*$ (pronounced map) takes a function on lts left and a list on its right. Informally, we have

$$
f *\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left[f a_{1}, f a_{2}, \ldots, f a_{n}\right]
$$

Formally, $(f *)$ (or sometimes simply written as $f *$) is a homomorphism:

$$
\begin{array}{ll}
f *[] & =[] \\
f *[a] & =[f a] \\
f *(x+y) & =(f * x)+(f * y)
\end{array}
$$

Map Distributivity: $(f \cdot g) *=(f *) \cdot(g *)$

Exercise: Prove the map distributivity.

Reduce

The operator / (pronounced reduce) takes an associative binary operator on lts left and a list on its right. Informally, we have

$$
\oplus /\left[a_{1}, a_{2}, \ldots, a_{n}\right]=a_{1} \oplus a_{2} \oplus \cdots \oplus a_{n}
$$

Formally, $\oplus /$ is a homomorphism:

$$
\begin{array}{ll}
\oplus /[] & =i d_{\oplus} \quad\left\{\text { if } i d_{\oplus} \text { exists }\right\} \\
\oplus /[a] & =a \\
\oplus /(x+y) & =(\oplus / x) \oplus(\oplus / y)
\end{array}
$$

If \oplus is commutative as well as associative, then $\oplus /$ can be applied to bags; and if \oplus is also idempotent, then $\oplus /$ can be applied to sets.

Examples:

$$
\begin{aligned}
\max : & {[\text { Int }] \rightarrow \text { Int } } \\
\max : & \uparrow / \\
& \\
& \text { where } a \uparrow b=\text { if } a \leq b \text { then } b \text { else } a \\
\text { head }: & {[\alpha]^{+} \rightarrow \alpha } \\
\text { head }= & \lessdot / \\
& \text { where } a \lessdot b=a \\
\text { last }: & {[\alpha]^{+} \rightarrow \alpha } \\
\text { last }= & \gtrdot / \\
& \text { where } a \gtrdot b=b
\end{aligned}
$$

Promotion

The equations defining $f *$ and $\oplus /$ can be expressed as identities between functions.

Empty Rules

$$
\begin{aligned}
f * \cdot K[] & =K[] \\
\oplus / \cdot K[] & =i d_{\oplus}
\end{aligned}
$$

One-Point Rules

$$
\begin{aligned}
f * \cdot[\cdot] & =[\cdot] \cdot f \\
\oplus / \cdot[\cdot] & =\text { id }
\end{aligned}
$$

Join Rules

$$
\begin{aligned}
f * \cdot+/ & =+/ \cdot(f *) * \\
\oplus / \cdot+/ & =\oplus / \cdot(\oplus /) *
\end{aligned}
$$

Exercise: Prove the join rules.

An Example of Calculation

$$
\begin{array}{cc}
& \oplus / \cdot f * \cdot+/ \cdot g * \\
= & \{\text { map promotion }\} \\
& \oplus / \cdot+/ \cdot / \cdot f * * \cdot g * \\
= & \{\text { reduce promotion }\} \\
& \oplus / \cdot(\oplus /) * \cdot f * * \cdot g * \\
= & \{\text { map distribution }\} \\
& \oplus / \cdot(\oplus / \cdot f * \cdot g) *
\end{array}
$$

Directed Reductions

We introduce two more computation patterns \nrightarrow (pronounced left-to-right reduce) and \nleftarrow (right-to-left reduce) which are closely related to /. Informally, we have

$$
\begin{aligned}
\oplus \not \psi_{e}\left[a_{1}, a_{2}, \ldots, a_{n}\right] & =\left(\left(e \oplus a_{1}\right) \oplus \cdots \oplus a_{n}\right. \\
\oplus \psi_{e}\left[a_{1}, a_{2}, \ldots, a_{n}\right] & =a_{1} \oplus\left(a_{2} \oplus \cdots \oplus\left(a_{n} \oplus e\right)\right)
\end{aligned}
$$

Formally, we can define $\oplus \not_{e}$ on lists by two equations.

$$
\begin{array}{ll}
\oplus \not_{e}[] & =e \\
\oplus \not_{e}(x+[a]) & =\left(\oplus \not \psi_{e} x\right) \oplus a
\end{array}
$$

Exercise: Give a formal definition for $\oplus \psi_{e}$.

Directed Reductions without Seeds

$$
\begin{aligned}
\oplus \nleftarrow\left[a_{1}, a_{2}, \ldots, a_{n}\right] & =\left(\left(a_{1} \oplus a_{2}\right) \oplus \cdots\right) \oplus a_{n} \\
\oplus+\left[a_{1}, a_{2}, \ldots, a_{n}\right] & =a_{1} \oplus\left(a_{2} \oplus \cdots \oplus\left(a_{n-1} \oplus a_{n}\right)\right)
\end{aligned}
$$

Properties:

$$
\begin{aligned}
& (\oplus \nrightarrow) \cdot([a]+H)=\oplus \nrightarrow a \\
& (\oplus+) \cdot(+[a])=\oplus \neq a
\end{aligned}
$$

An Example Use of Left-Reduce

Consider the right-hand side of Horner's rule:

$$
\left(\left(\left(1 \times a_{1}+1\right) \times a_{2}+1\right) \times \cdots+1\right) \times a_{n}+1
$$

This expression can be written using a left-reduce:

$$
\begin{aligned}
& \odot \not \not_{1}\left[a_{1}, a_{2}, \ldots, a_{n}\right] \\
& \quad \text { where } a \odot b=(a \times b)+1
\end{aligned}
$$

Exercise: Give the definition of \ominus such that the following holds.

$$
\ominus \nrightarrow\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left(\left(\left(a_{1} \times a_{2}+a_{2}\right) \times a_{3}+a_{3}\right) \times \cdots+a_{n-1}\right) \times a_{n}+a_{n}
$$

Accumulations

With each form of directed reduction over lists there corresponds a form of computation called an accumulation. These forms are expressed with the operators \#H (pronounced left-accumualte) and H (right-accumulate) and are defined informally by

$$
\begin{aligned}
\oplus \mathbb{H}_{e}\left[a_{1}, a_{2}, \ldots, a_{n}\right] & =\left[e, e \oplus a, \ldots,\left(\left(e \oplus a_{1}\right) \oplus \cdots \oplus a_{n}\right]\right. \\
\oplus \notin e\left[a_{1}, a_{2}, \ldots, a_{n}\right] & =\left[a_{1} \oplus\left(a_{2} \oplus \cdots \oplus\left(a_{n} \oplus e\right)\right), \ldots, a_{n} \oplus e, e\right]
\end{aligned}
$$

Formally, we can define $\oplus \#_{e}$ on lists by two equations by

$$
\begin{array}{lll}
\oplus \#_{e}[] & = & {[e]} \\
\oplus \#_{e}([a]+x) & = & {[e]+\left(\oplus_{H}\left(H_{e \oplus a} x\right),\right.}
\end{array}
$$

or

$$
\begin{aligned}
\oplus H_{e}[] & =[e] \\
\oplus H_{e}(x+[a])= & \left(\oplus \not H_{e} x\right)+[b \oplus a] \\
& \text { where } b=\operatorname{last}\left(\oplus \nVdash{ }_{e} x\right) .
\end{aligned}
$$

Efficiency in Accumulate
$\oplus \nVdash{ }_{e}\left[a_{1}, a_{2}, \ldots, a_{n}\right]:$ can be evaluated with $n-1$ calculations of \oplus.

Exercise: Consider computation of first $n+1$ factorial numbers: $[0!, 1!, \ldots, n!]$. How many calculations of \times are required for the following two programs?

1. $\times H_{1}[1,2, \ldots, n]$
2. fact $*[0,1,2, \cdots, n]$ where fact $0=1$ and fact $k=1 \times 2 \times \cdots \times k$.

Relation between Reduce and Accumulate

$$
\begin{aligned}
& \oplus \not \not_{e}=\text { last } \cdot \oplus \not \mathbb{H}_{e} \\
& \oplus \#_{e}=\otimes \not \not_{[e]} \\
& \quad \text { where } x \otimes a=x+[\text { last } x \oplus a]
\end{aligned}
$$

Segments

A list y is a segment of x if there exists u and v such that

$$
x=u+y+v .
$$

If $u=[]$, then y is called an initial segment.
If $v=[]$, then y is called an final segment.

An Example:

$$
\text { segs }[1,2,3]=[[],[1],[1,2],[2],[1,2,3],[2,3],[3]]
$$

Exercise: List all initial segments and final segments in the above example.
Exercise: How many segments for a list $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$?
inits

The function inits returns the list of initial segments of a list, in increasing order of a list.

$$
\begin{gathered}
\text { inits }\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left[[],\left[a_{1}\right],\left[a_{1}, a_{2}\right], \ldots,\left[a_{1}, a_{2}, \ldots, a_{n}\right]\right] \\
\text { inits }=\left(+H_{[]}\right) \cdot[\cdot] *
\end{gathered}
$$

tails

The function tails returns the list of final segments of a list, in decreasing order of a list.

$$
\begin{gathered}
\text { tails }\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left[\left[a_{1}, a_{2}, \ldots, a_{n}\right],\left[a_{2}, a_{2}, \ldots, a_{n}\right], \ldots,[]\right] \\
\text { tails }=\left(+\mathbb{H}_{[]}\right) \cdot[\cdot] *
\end{gathered}
$$

segs

$$
\text { segs }=+/ \cdot \text { tails } * \cdot \text { inits }
$$

Exercise: Show the result of segs $[1,2]$.

Accumulation Lemma

$$
\begin{aligned}
& \left(\oplus \not H_{e}\right)=(\oplus \nrightarrow e) * \cdot \text { inits }_{e} \\
& (\oplus \nVdash)=(\oplus \nrightarrow) * \cdot \text { inits }^{+}
\end{aligned}
$$

The accumulation lemma is used frequently in the derivation of efficient algorithms for problems about segments. On lists of length n, evaluation of the LHS requires $O(n)$ computations involving \oplus, while the RHS requires $O\left(n^{2}\right)$ computations.

The Problem: Revisit

Consider the following simple identity:

$$
\left(a_{1} \times a_{2} \times a_{3}\right)+\left(a_{2} \times a_{3}\right)+a_{3}+1=\left(\left(1 \times a_{1}+1\right) \times a_{2}+1\right) \times a_{3}+1
$$

This equation generalizes in the obvious way to n variables $a_{1}, a_{2}, \ldots, a_{2}$, and we will refer to it as Horner'e rule.

- Can we generalize \times to $\otimes,+$ to \oplus ? What are the essential constraints for \otimes and \oplus ?
- Do you have suitable notation for expressing the Horner's rule concisely?

Horner's Rule

The following equation

$$
\oplus / \cdot \otimes / * \cdot \text { tails }=\odot \nrightarrow e
$$

where

$$
\begin{aligned}
& e=i d_{\otimes} \\
& a \odot b=(a \otimes b) \oplus e
\end{aligned}
$$

holds, provided that \otimes distributes (backwards) over \oplus :

$$
(a \oplus b) \otimes c=(a \otimes c) \oplus(b \otimes c)
$$

for all a, b, and c.

Exercise: Prove the correctness of the Horner's rule.

Hints:

- Show that

$$
(a \oplus b) \otimes c=(a \otimes c) \oplus(b \otimes c)
$$

is equivalent to

$$
(\otimes c) \cdot \oplus /=\oplus / \cdot(\otimes c) *
$$

holds on all non-empty lists.

- Show that

$$
f=\oplus / \cdot \otimes / * \cdot t a i l s
$$

satisfies the equations

$$
\begin{array}{ll}
f[] & =e \\
f(x+[a]) & =f x \odot a
\end{array}
$$

Generalizations of Horner's Rule

Generalization 1:

$$
\begin{aligned}
& \oplus / \cdot \otimes / * \cdot \text { tails }^{+}=\odot \nrightarrow \\
& \quad \text { where } \\
& \quad a \odot b=(a \otimes b) \oplus b
\end{aligned}
$$

Generalization 2:
$\oplus / \cdot(\otimes / \cdot f *) * \cdot$ tails $=\odot \not \nrightarrow_{e}$ where

$$
\begin{aligned}
& e=i d_{\otimes} \\
& a \odot b=(a \otimes f b) \oplus e
\end{aligned}
$$

Application

The Maximum Segment Sum (mss) Problem
Compute the maximum of the sums of all segments of a given sequence of numbers, positive, negative, or zero.

$$
m s s[3,1,-4,1,5,-9,2]=6
$$

A Direct Solution

$$
m s s=\uparrow / \cdot+/ * \cdot \operatorname{seg} s
$$

Exercise: How many steps are required in the above direct solution?

Calculating a Linear Algorithm using Corner's Rule

$$
\left.\left.\begin{array}{rl}
& \text { mss } \\
= & \{\text { definition of mss }\} \\
& \uparrow / \cdot+/ * \cdot \text { segs }
\end{array}\right\} \begin{array}{rl}
& \{\text { definition of legs }\}
\end{array}\right\}
$$

A Program in Haskell

```
mss = foldl1 (max) . scanl odot 0
    where a 'odot' b = (a + b) 'max' 0
```

Exercise: Code the derived linear algorithm for mss in your favorite programming language.

Segment Decomposition

The sequence of calculation steps given in the derivation of the mss problem arises grequently. The essential idea can be summarized as a general theorem.

Theorem 1 (Segment Decomposition) Suppose S and T are defined by

$$
\begin{aligned}
& S=\oplus / \cdot f * \cdot \text { segs } \\
& T=\oplus / \cdot f * \cdot \text { tails }
\end{aligned}
$$

If T can be expressed in the form $T=h \cdot \odot \not{ }_{e}$, then we have

$$
S=\oplus / \cdot h * \cdot \odot \#_{e}
$$

Exercise: Prove the segment decomposition theorem.

