Constructive Algorithmics (Part 1)

-

.

Constructive Algorithmics (Part Il)

Zhenjiang HU
University of Tokyo

Copyright (¢) 2006 Zhenjiang Hu, All Right Reserved.

/

Homomorphisms

-

Homomorphisms

Points in this lesson:

o

e Formalization of homomorphism
e Program specification in homomorphism
e Point-free calculation rules for manipulating homomorphism

e Equational reasoning without induction

Homomorphisms 3

4 N

A Problem

Given is a sequence x and a predicate p. Required is an efficient algorithm for
computing some longest segment of x, all of whose elements satisfy p.

lsp even [3,1,4,1,5,9,2,6,5] = [2, 6]

Homomorphisms

-~

Homomorphisms

A homomorphism from a monoid (a, @, idg) to a monoid (8, ®,idg) is a
function A satisfying the two equations:

hld@ — ’Ld@
h(xr®y) = hax®hy

Exercise: Prove that h is a homomorphism iff the following holds.

h-®/ =R/ hx

o

Homomorphisms

-

Examples

e Since fx is a homomorphism from ([a],+,][]) to (|5], #,[]) whenever
f:a— (3, we have

froe) = [e

which is the map promotion rule of the previous lecture.

e Since ¢/ is a homomorphism from ([a], +#,[]) to (R, ®,idg) whenever
(@) : R — R — R, we have

O/ -+ /=0 (D))

which is the reduce promotion rule of the previous lecture.

o

Homomorphisms 6

4 N

Uniqueness Property

We have the fact that ([a], +,[]) is a free monoid, that is for each monoid
(8, @, idg) there is a unique homomorphism h from (|a], H,]) to (5, @, idg).

This homomorphism is determined by the values of i on singletons. That is,
for each f : a — (3, the additional equation

hla] = fa

fixes h completely.

N /

Homomorphisms 7

4 N

Characterization of Homomorphisms

Lemma 1 Every homomorphism on lists can be expressed as the conposition
of a reduction with a map, and every such combination s a homomorphisms.

More precisely, suppose

h] = g
h la) = fa
h(z+ty) = hxdhy

then, h = @/ - fx. Conversely, if h has this form, then h is a homomorphism.

N /

Homomorphisms

-

Proof
=

= { definition of id }
h-id
— { identity lemma (can you prove it?) }
bt /[
= { h is a homomorphism }
B/ hx[]s
= { map distributivity }
s/ (h-)+

— { definition of A on singleton }

®/ - [

Homomorphisms

-

<: We reason that h = @/ - fx is a homomorphism by calculating

h-+/
— { given form for h }
B/ 4/
— { map and reduce promotion }
B/ - (D) - fx)x
— { hypothesis }
D/ - hx

Homomorphisms

10

-

-

Examples of Homomorphisms

e #: compute the length of a list.

=4/ Ki*

e reverse: reverses the order of the elements in a list.
reverse = H / - |-]*

Here, xby =y D z.

Homomorphisms

11

-

e sort: reorders the elements of a list into ascending order.

Here,

sort= N\ /- |]x

M (pronounced merge) is defined by the equations:

My
(la] +=z) M ([b] ++y)

ifa<b

otherwise

Homomorphisms 12

4 N

e all p: returns True if every element of the input list satisfies the predicate
.
allp =N/ - px

e some p: returns True if at least one element of the input list satisfies the
predicate p.
some p =\ / - px

Homomorphisms 13

4 N

e split: splits a non-empty list into its last element and the remainder.

split [a] = (l],a)
split (x +vy) = split x & split y
where (z,a) ® (y,b) = (z ++ [a] ++y,b)

Exercise: Let init = my - split and last = 7 - split where 71 (a,b) = a and
ma(a,b) = b. Show that init is not a homomorphism, but last is.

N /

Homomorphisms

-

e tails: returns all the tail (final) segments of a list.
tails = @/ - fx*

where
fa = |l la]
rs®ys = nitxs+ (last s+) * ys.

Homomorphisms

15

-

All applied to

value and returns the result of applying each function to the value.

[f17f27'°'7f’n]0a: [fl a’va a’v'“:fn CL]

Formally, (° a) is a homomorphism:

[a =]

f]°a = |f 4]

(fst++gs) a = (fs®a)++ (g5 a)
Exercise: Show that [-| = [¢d]°.

Exercise: Show that we can redefine tails to be tails = @/ - [[]°, [id]°]°*.

o

The operator ° (pronounced all applied to) takes a sequence of functions and a

~

/

Homomorphisms

16

-

Conditional Expressions

The conditional notation

hx = fux, ifpx

= g x, otherwise

will be written by the McCarthy conditional form:

h=({p— f9)

Laws on Conditional Forms

-

h-(p—f,g) = P—h-f,h-g)
(p— f,9)-h = (p-h—f-hg-h)
(p— £, f) = f

Homomorphisms 17

4 N

Filter

The operator < (pronounced filter) takes a predicate p and a list and returns
the sublist of x consisting, in order, of all those elements of x that satisfy p.

pa=—++ /- (p — [id]% []°)*

Exercise: Prove that the filter satisfies the filter promotion property:

(p) -+ / =+ /- (p)*

Exercise: Prove that the filter satisfies the map-filter swap property:
(p) - fx=[f=*-(p- [)<

N /

Homomorphisms

18

-~

Cross-product

Xg is a binary operator that takes two lists and y and returns a list of
values of the form a ® b for all @ in x and b in y.

a, bl Xglc,d,el=la®c,bbc,adDd,bPd,ade bDe
K%

Formally, we define X4 by three equations:

rXo|] =]
rXglal = (Ga)xz
1Xe(y ++2) = (2Xgy) +(2Xe2)

Thus (zXg) is a homomorphism.

o

Homomorphisms

19

-

Properties

|| is the zero element of Xg:
[Xer = 2Xg[] = |[]
We have cross promotion rules:

fxx-Xu/ = Xy /-f*x*x
B/ X/ = Xo/ (Xo/)*

And, if ® distributes through &, then we have the following general
promotion rule:

/- Xo/ =8/ (@)

-

Homomorphisms 20

4 N

Example Uses of Cross-product

o cp: takes a list of lists and returns a list of lists of elements, one from each
component.

cp - |[a]] — [lo]
cp |[a,bl,|c], [d, e]] = [la,c,d], [b, ¢, d], |a,c, el |b,c, el

ep =Xy / - ([id5)x

Homomorphisms

21

-

e subs: computes all subsequences of a list.

subs : |a] — [[a]]

subs [a, b, c| = [[} |al, [0], [a, 0], [c], a, c], [b,], [a,], c]]

subs = Xy /- [[]°. [id)"] s

Homomorphisms

22

-

o (all p)<«:
(all p)a =+ /- (all p— [id]°, []°)*
Note that all can be eliminated with the following property.

all p — [id)°, [|° = Xss / - (p — [[id)°, [°)»

Exercise: Compute the value of the expression (all even) < [[1, 3], [2]].

Homomorphisms 23

/ Selection Operators \

Suppose [is a numeric valued function. We want to define the operator ¢ by

vlry = o, fx=>fy
= 1y, otherwise

Properties:
1. Ty 1s associative and idempotent;

2. 1 1s selective in that

rlry=x or zlry=1y

3. 1r 18 maximizing in that

fxlry)=fxTfy

N /

Homomorphisms

24

-

An Example: T

Distributivity of 740

Y lez) = (@+y) T% (@+2)
(y T4 2) Hz = +Hz) Tx (y +H2)
That is,
(@) T/ = Tg/ (@+H)
(H) T/ = Tg/ (H 2)

We assume w =Tx /|].

Homomorphisms

25

/ A short calculation

Ty /- (all p)<
— { definition before }

T /- 4+ /- (X /- (0 — [led]?]°, []°)%)*

— { reduce promotion }

T /- /- Xogp /- (p— [[4d)°]%, [1°) %)

— { cross distributivity }

T /- (/- T /(o — [ad]°]°, []°) %) *

- { map distributivity }

T /- (H /- (g /- (p— [[2d]°]°, [17))%)*

= { conditionals }

T /- (/- (o =Ty /- [6d]?]% Ty /- [17)%)

= { empty and one-point rules }

Ty /- (/- (p— [id]?, Ko)x)

Homomorphisms

26

-

Recall the problem of computing the longest segment of a list, all of whose

Solution to the Problem

elements satisfied some given property p.

Ty /- (all p) < -segs
{ segment decomposition }

Tw /- (Tx /- (all p) <-tails) * -inits
{ result before }

T /- (Og /- (H /- (p— [id]°, Ky)*) * -tails) x -inits
{ Horner’s rule with x ®a = (x ++ (p a — [a],w) T# [] }

Ty O+

] * -anats

{ accumulation lemma }

Ty O

~

Homomorphisms 27

4 N

Exercise: Show that the definition of ® can be simplified to

rOa=pa— x+lal,|.

Exercise: Show the final program is linear in the number of calculation of p.

Exercise: Code the final algorithm in Haskell.

N /

