
Constructive Algorithmics (Part II) 1'

&

$

%

Constructive Algorithmics (Part II)

Zhenjiang HU

University of Tokyo

Copyright c© 2006 Zhenjiang Hu, All Right Reserved.

Homomorphisms 2'

&

$

%

Homomorphisms

Points in this lesson:

• Formalization of homomorphism

• Program specification in homomorphism

• Point-free calculation rules for manipulating homomorphism

• Equational reasoning without induction

Homomorphisms 3'

&

$

%

A Problem

Given is a sequence x and a predicate p. Required is an efficient algorithm for
computing some longest segment of x, all of whose elements satisfy p.

lsp even [3, 1, 4, 1, 5, 9, 2, 6, 5] = [2, 6]

Homomorphisms 4'

&

$

%

Homomorphisms

A homomorphism from a monoid (α,⊕, id⊕) to a monoid (β,⊗, id⊗) is a
function h satisfying the two equations:

h id⊕ = id⊗

h (x ⊕ y) = h x ⊗ h y

Exercise: Prove that h is a homomorphism iff the following holds.

h · ⊕/ = ⊗/ · h∗

Homomorphisms 5'

&

$

%

Examples

• Since f∗ is a homomorphism from ([α],++ , []) to ([β],++ , []) whenever
f : α → β, we have

f ∗ · ++ / = ++ / · f ∗ ∗

which is the map promotion rule of the previous lecture.

• Since ⊕/ is a homomorphism from ([α],++ , []) to (R,⊕, id⊕) whenever
(⊕) : R → R → R, we have

⊕/ · ++ / = ⊕/ · (⊕/)∗

which is the reduce promotion rule of the previous lecture.

Homomorphisms 6'

&

$

%

Uniqueness Property

We have the fact that ([α],++ , []) is a free monoid, that is for each monoid
(β,⊕, id⊕) there is a unique homomorphism h from ([α],++ , []) to (β,⊕, id⊕).

This homomorphism is determined by the values of h on singletons. That is,
for each f : α → β, the additional equation

h [a] = f a

fixes h completely.

Homomorphisms 7'

&

$

%

Characterization of Homomorphisms

Lemma 1 Every homomorphism on lists can be expressed as the conposition
of a reduction with a map, and every such combination is a homomorphisms.

More precisely, suppose

h [] = id⊕

h [a] = f a

h (x ++ y) = h x ⊕ h y

then, h = ⊕/ · f∗. Conversely, if h has this form, then h is a homomorphism.

Homomorphisms 8'

&

$

%

Proof

⇒:
h

= { definition of id }
h · id

= { identity lemma (can you prove it?) }
h · ++ / · [·]∗

= { h is a homomorphism }
⊕/ · h ∗ ·[·]∗

= { map distributivity }
⊕/ · (h · [·])∗

= { definition of h on singleton }
⊕/ · f∗

Homomorphisms 9'

&

$

%

⇐: We reason that h = ⊕/ · f∗ is a homomorphism by calculating

h · ++ /

= { given form for h }
⊕/ · f ∗ · ++ /

= { map and reduce promotion }
⊕/ · (⊕/ · f∗)∗

= { hypothesis }
⊕/ · h∗

Homomorphisms 10'

&

$

%

Examples of Homomorphisms

• #: compute the length of a list.

= +/ · K1∗

• reverse: reverses the order of the elements in a list.

reverse = +̃+ / · [·]∗

Here, x⊕̃y = y ⊕ x.

Homomorphisms 11'

&

$

%

• sort: reorders the elements of a list into ascending order.

sort = ∧∧ / · [·]∗

Here, ∧∧ (pronounced merge) is defined by the equations:

x ∧∧ [] = x

[] ∧∧ y = y

([a] ++x) ∧∧ ([b] ++ y) = [a] ++ (x ∧∧ ([b] ++ y)), if a ≤ b

= [b] ++ (([a] ++x) ∧∧ y), otherwise

Homomorphisms 12'

&

$

%

• all p: returns True if every element of the input list satisfies the predicate
p.

all p = ∧/ · p∗

• some p: returns True if at least one element of the input list satisfies the
predicate p.

some p = ∨/ · p∗

Homomorphisms 13'

&

$

%

• split: splits a non-empty list into its last element and the remainder.

split [a] = ([], a)
split (x ++ y) = split x ⊕ split y

where (x, a) ⊕ (y, b) = (x ++ [a] ++ y, b)

Exercise: Let init = π1 · split and last = π2 · split where π1 (a, b) = a and
π2(a, b) = b. Show that init is not a homomorphism, but last is.

Homomorphisms 14'

&

$

%

• tails: returns all the tail (final) segments of a list.

tails = ⊕/ · f∗

where
f a = [[], [a]]
xs ⊕ ys = init xs ++(last xs ++) ∗ ys.

Homomorphisms 15'

&

$

%

All applied to

The operator o (pronounced all applied to) takes a sequence of functions and a
value and returns the result of applying each function to the value.

[f1, f2, . . . , fn]oa = [f1 a, f2 a, . . . , fn a]

Formally, (o a) is a homomorphism:

[]o a = []
[f]o a = [f a]

(fs ++ gs) o a = (fs o a) ++ (gs o a)

Exercise: Show that [·] = [id]o.
Exercise: Show that we can redefine tails to be tails = ⊕/ · [[]o, [id]o]o∗.

Homomorphisms 16'

&

$

%

Conditional Expressions

The conditional notation

h x = f x, if p x

= g x, otherwise

will be written by the McCarthy conditional form:

h = (p → f, g)

Laws on Conditional Forms

h · (p → f, g) = (p → h · f, h · g)
(p → f, g) · h = (p · h → f · h, g · h)
(p → f, f) = f

Homomorphisms 17'

&

$

%

Filter

The operator / (pronounced filter) takes a predicate p and a list x and returns
the sublist of x consisting, in order, of all those elements of x that satisfy p.

p/ = ++ / · (p → [id]o, []o)∗

Exercise: Prove that the filter satisfies the filter promotion property:

(p/) · ++ / = ++ / · (p/)∗

Exercise: Prove that the filter satisfies the map-filter swap property:

(p/) · f∗ = f ∗ ·(p · f)/

Homomorphisms 18'

&

$

%

Cross-product

X⊕ is a binary operator that takes two lists x and y and returns a list of
values of the form a ⊕ b for all a in x and b in y.

[a, b]X⊕[c, d, e] = [a ⊕ c, b ⊕ c, a ⊕ d, b ⊕ d, a ⊕ e, b ⊕ e]

Formally, we define X⊕ by three equations:

xX⊕[] = []
xX⊕[a] = (⊕a) ∗ x

xX⊕(y ++ z) = (xX⊕y) ++ (xX⊕z)

Thus (xX⊕) is a homomorphism.

Homomorphisms 19'

&

$

%

Properties

[] is the zero element of X⊕:

[]X⊕x = xX⊕[] = []

We have cross promotion rules:

f ∗ ∗ · X++ / = X++ / · f ∗ ∗∗
⊕/ ∗ ·X++ / = X⊕/ · (X⊕/)∗

And, if ⊗ distributes through ⊕, then we have the following general
promotion rule:

⊕/ · X⊗/ = ⊗/ · (⊕/)∗

Homomorphisms 20'

&

$

%

Example Uses of Cross-product

• cp: takes a list of lists and returns a list of lists of elements, one from each
component.

cp : [[α]] → [[α]]
cp [[a, b], [c], [d, e]] = [[a, c, d], [b, c, d], [a, c, e], [b, c, e]]

cp = X++ / · ([id]o∗)∗

Homomorphisms 21'

&

$

%

• subs: computes all subsequences of a list.

subs : [α] → [[α]]
subs [a, b, c] = [[], [a], [b], [a, b], [c], [a, c], [b, c], [a, b, c]]

subs = X++ / · [[]o, [id]o]o∗

Homomorphisms 22'

&

$

%

• (all p)/:
(all p)/ = ++ / · (all p → [id]o, []o)∗

Note that all can be eliminated with the following property.

all p → [id]o, []o = X++ / · (p → [[id]o]o, []o)∗

Exercise: Compute the value of the expression (all even) / [[1, 3], [2]].

Homomorphisms 23'

&

$

%

Selection Operators

Suppose f is a numeric valued function. We want to define the operator ↑f by

x ↑f y = x, f x ≥ f y

= y, otherwise

Properties:

1. ↑f is associative and idempotent;

2. ↑f is selective in that

x ↑f y = x or x ↑f y = y

3. ↑f is maximizing in that

f(x ↑f y) = f x ↑ f y

Homomorphisms 24'

&

$

%

An Example: ↑#

Distributivity of ↑#：

x ++(y ↑# z) = (x ++ y) ↑# (x ++ z)
(y ↑# z) ++x = (y ++x) ↑# (y ++ z)

That is,
(x ++)· ↑# / = ↑# / · (x ++)∗
(++ x)· ↑# / = ↑# / · (++ x)∗

We assume ω =↑# /[].

Homomorphisms 25'

&

$

%

A short calculation

↑# / · (all p)/
= { definition before }

↑# / · ++ / · (X++ / · (p → [[id]o]o, []o)∗)∗
= { reduce promotion }

↑# / · (↑# / · X++ / · (p → [[id]o]o, []o)∗)∗
= { cross distributivity }

↑# / · (++ /· ↑# / ∗ ·(p → [[id]o]o, []o)∗)∗
= { map distributivity }

↑# / · (++ / · (↑# / · (p → [[id]o]o, []o))∗)∗
= { conditionals }

↑# / · (++ / · (p →↑# / · [[id]o]o, ↑# / · []o)∗)∗
= { empty and one-point rules }

↑# / · (++ / · (p → [id]o,Kω)∗)∗

Homomorphisms 26'

&

$

%

Solution to the Problem

Recall the problem of computing the longest segment of a list, all of whose
elements satisfied some given property p.

↑# / · (all p) / ·segs
= { segment decomposition }

↑# / · (↑# / · (all p) / ·tails) ∗ ·inits
= { result before }

↑# / · (↑# / · (++ / · (p → [id]o,Kω)∗) ∗ ·tails) ∗ ·inits
= { Horner’s rule with x ¯ a = (x ++ (p a → [a], ω) ↑# [] }

↑# ·¯→/ [] ∗ ·inits
= { accumulation lemma }

↑# ·¯→// []

Homomorphisms 27'

&

$

%

Exercise: Show that the definition of ¯ can be simplified to

x ¯ a = p a → x ++ [a], [].

Exercise: Show the final program is linear in the number of calculation of p.

Exercise: Code the final algorithm in Haskell.

