Constructive Algorithmics (Part II)

Zhenjiang HU
University of Tokyo

Copyright © 2006 Zhenjiang Hu, All Right Reserved.

Homomorphisms

Points in this lesson:

- Formalization of homomorphism
- Program specification in homomorphism
- Point-free calculation rules for manipulating homomorphism
- Equational reasoning without induction

A Problem

Given is a sequence x and a predicate p. Required is an efficient algorithm for computing some longest segment of x, all of whose elements satisfy p.

$$
\text { lsp even }[3,1,4,1,5,9,2,6,5]=[2,6]
$$

Homomorphisms

A homomorphism from a monoid $\left(\alpha, \oplus, i d_{\oplus}\right)$ to a monoid $\left(\beta, \otimes, i d_{\otimes}\right)$ is a function h satisfying the two equations:

$$
\begin{array}{ll}
h i d_{\oplus} & =i d_{\otimes} \\
h(x \oplus y) & =h x \otimes h y
\end{array}
$$

Exercise: Prove that h is a homomorphism iff the following holds.

$$
h \cdot \oplus /=\otimes / \cdot h *
$$

Examples

- Since $f *$ is a homomorphism from $([\alpha], \#,[])$ to $([\beta], \#,[])$ whenever $f: \alpha \rightarrow \beta$, we have

$$
f * \cdot+/=+/ \cdot f * *
$$

which is the map promotion rule of the previous lecture.

- Since \oplus / is a homomorphism from $([\alpha],+,[])$ to $\left(R, \oplus, i d_{\oplus}\right)$ whenever $(\oplus): R \rightarrow R \rightarrow R$, we have

$$
\oplus / \cdot+/=\oplus / \cdot(\oplus /) *
$$

which is the reduce promotion rule of the previous lecture.

Uniqueness Property

We have the fact that $([\alpha], H,[])$ is a free monoid, that is for each monoid $\left(\beta, \oplus, i d_{\oplus}\right)$ there is a unique homomorphism h from $([\alpha],+,[])$ to $\left(\beta, \oplus, i d_{\oplus}\right)$.

This homomorphism is determined by the values of h on singletons. That is, for each $f: \alpha \rightarrow \beta$, the additional equation

$$
h[a]=f a
$$

fixes h completely.

Characterization of Homomorphisms

Lemma 1 Every homomorphism on lists can be expressed as the conposition of a reduction with a map, and every such combination is a homomorphisms.

More precisely, suppose

$$
\begin{array}{ll}
h[] & \\
h\left[a d_{\oplus}\right. \\
h[a] & =f a \\
h(x+H y) & =h x \oplus h y
\end{array}
$$

then, $h=\oplus / \cdot f *$. Conversely, if h has this form, then h is a homomorphism.

Proof
 $$
\Rightarrow:
$$

$$
\begin{aligned}
& h \\
& =\quad\{\text { definition of } i d\} \\
& h \cdot i d \\
& =\quad\{\text { identity lemma (can you prove it?) }\} \\
& h \cdot+/ \cdot[\cdot] * \\
& =\quad\{h \text { is a homomorphism }\} \\
& \oplus / \cdot h * \cdot[\cdot] * \\
& =\{\text { map distributivity }\} \\
& \oplus / \cdot(h \cdot[\cdot]) * \\
& =\quad\{\text { definition of } h \text { on singleton }\} \\
& \oplus / \cdot f *
\end{aligned}
$$

\Leftarrow : We reason that $h=\oplus / \cdot f *$ is a homomorphism by calculating

$$
\begin{aligned}
& h \cdot+/ \\
= & \{\text { given form for } h\} \\
& \oplus / \cdot f * \cdot+/ \\
= & \{\text { map and reduce promotion }\} \\
= & \oplus / \cdot(\oplus / \cdot f *) * \\
= & \{\text { hypothesis }\} \\
& \oplus / \cdot h *
\end{aligned}
$$

Examples of Homomorphisms

- \#: compute the length of a list.

$$
\#=+/ \cdot K_{1} *
$$

- reverse: reverses the order of the elements in a list.

$$
\text { reverse }=\tilde{\mathbb{H}} / \cdot[\cdot] *
$$

Here, $x \tilde{\oplus} y=y \oplus x$.

- sort: reorders the elements of a list into ascending order.

$$
\text { sort }=M / \cdot[\cdot] *
$$

Here, M (pronounced merge) is defined by the equations:

$$
\begin{array}{lll}
x \mathcal{M}[] & =x & \\
{[] M y} & =y & \\
([a]+x) \mathcal{M}([b]+y) & =[a]+(x M([b]+y)), & \text { if } a \leq b \\
& =[b]+(([a]+x) M y), & \\
\text { otherwise }
\end{array}
$$

- all p : returns True if every element of the input list satisfies the predicate p.

$$
\text { all } p=\wedge / \cdot p *
$$

- some p : returns True if at least one element of the input list satisfies the predicate p.

$$
\text { some } p=\mathrm{V} / \cdot p *
$$

- split: splits a non-empty list into its last element and the remainder.

$$
\begin{aligned}
\operatorname{split}[a]= & ([], a) \\
\operatorname{split}(x+y)= & \text { split } x \oplus \text { split } y \\
& \text { where }(x, a) \oplus(y, b)=(x+[a]+y, b)
\end{aligned}
$$

Exercise: Let init $=\pi_{1} \cdot$ split and last $=\pi_{2} \cdot$ split where $\pi_{1}(a, b)=a$ and $\pi_{2}(a, b)=b$. Show that init is not a homomorphism, but last is.

- tails: returns all the tail (final) segments of a list.

$$
\text { tails }=\oplus / \cdot f *
$$

where

$$
\begin{array}{ll}
f a & =[[],[a]] \\
x s \oplus y s & =\text { init } x s+(\text { last } x s+H) * y s .
\end{array}
$$

All applied to

The operator ${ }^{\circ}$ (pronounced all applied to) takes a sequence of functions and a value and returns the result of applying each function to the value.

$$
\left[f_{1}, f_{2}, \ldots, f_{n}\right]^{o} a=\left[f_{1} a, f_{2} a, \ldots, f_{n} a\right]
$$

Formally, ($\left.{ }^{\circ} a\right)$ is a homomorphism:

$$
\begin{aligned}
& {[]^{o} a }=[] \\
& {[f]^{o} a } \\
&(f s+g s)^{o} a=(f a] \\
&\left(f s^{\circ} a\right)+\left(g s^{o} a\right)
\end{aligned}
$$

Exercise: Show that $[\cdot]=[i d]^{0}$.
Exercise: Show that we can redefine tails to be tails $\left.=\oplus / \cdot[]^{o},[i d]^{o}\right]^{o} *$.

Conditional Expressions

The conditional notation

$$
\begin{aligned}
h x & =f x, \quad \text { if } p x \\
& =g x, \\
& \text { otherwise }
\end{aligned}
$$

will be written by the McCarthy conditional form:

$$
h=(p \rightarrow f, g)
$$

Laws on Conditional Forms

$$
\begin{aligned}
h \cdot(p \rightarrow f, g) & =(p \rightarrow h \cdot f, h \cdot g) \\
(p \rightarrow f, g) \cdot h & =(p \cdot h \rightarrow f \cdot h, g \cdot h) \\
(p \rightarrow f, f) & =f
\end{aligned}
$$

Filter

The operator \triangleleft (pronounced filter) takes a predicate p and a list x and returns the sublist of x consisting, in order, of all those elements of x that satisfy p.

$$
p \triangleleft=+/ \cdot\left(p \rightarrow[i d]^{o},[]^{o}\right) *
$$

Exercise: Prove that the filter satisfies the filter promotion property:

$$
(p \triangleleft) \cdot+/=+/ \cdot(p \triangleleft) *
$$

Exercise: Prove that the filter satisfies the map-filter swap property:

$$
(p \triangleleft) \cdot f *=f * \cdot(p \cdot f) \triangleleft
$$

Cross-product

X_{\oplus} is a binary operator that takes two lists x and y and returns a list of values of the form $a \oplus b$ for all a in x and b in y.

$$
[a, b] X_{\oplus}[c, d, e]=[a \oplus c, b \oplus c, a \oplus d, b \oplus d, a \oplus e, b \oplus e]
$$

Formally, we define X_{\oplus} by three equations:

$$
\begin{array}{ll}
x X_{\oplus}[] & =[] \\
x X_{\oplus}[a] & =(\oplus a) * x \\
x X_{\oplus}(y+z) & =\left(x X_{\oplus} y\right)+\left(x X_{\oplus} z\right)
\end{array}
$$

Thus $\left(x X_{\oplus}\right)$ is a homomorphism.

Properties

[] is the zero element of X_{\oplus} :

$$
[] X_{\oplus} x=x X_{\oplus}[]=[]
$$

We have cross promotion rules:

$$
\begin{aligned}
f * * \cdot X_{+} / & =X_{+} / \cdot f * * * \\
\oplus / * \cdot X_{+} / & =X_{\oplus} / \cdot\left(X_{\oplus} /\right) *
\end{aligned}
$$

And, if \otimes distributes through \oplus, then we have the following general promotion rule:

$$
\oplus / \cdot X_{\otimes} /=\otimes / \cdot(\oplus /) *
$$

Example Uses of Cross-product

- $c p$: takes a list of lists and returns a list of lists of elements, one from each component.

$$
\begin{aligned}
& c p:[[\alpha]] \rightarrow[[\alpha]] \\
& c p[[a, b],[c],[d, e]]=[[a, c, d],[b, c, d],[a, c, e],[b, c, e]] \\
& c p=X_{+} / \cdot\left([i d]^{o} *\right) *
\end{aligned}
$$

- subs: computes all subsequences of a list.

$$
\begin{gathered}
\text { subs }:[\alpha] \rightarrow[[\alpha]] \\
\text { subs }[a, b, c]=[[],[a],[b],[a, b],[c],[a, c],[b, c],[a, b, c]] \\
\text { subs }=X_{+} / \cdot\left[[]^{o},[i d]^{o}\right]^{o} *
\end{gathered}
$$

- (all p) \triangleleft :

$$
(\text { all } p) \triangleleft=+1 \cdot\left(\operatorname{all} p \rightarrow[i d]^{o},[]^{o}\right) *
$$

Note that all can be eliminated with the following property.

$$
\text { all } p \rightarrow[i d]^{o},[]^{o}=X_{+} / \cdot\left(p \rightarrow\left[[i d]^{o}\right]^{o},[]^{o}\right) *
$$

Exercise: Compute the value of the expression (all even) $\triangleleft[[1,3],[2]]$.

Selection Operators

Suppose f is a numeric valued function. We want to define the operator \uparrow_{f} by

$$
\begin{aligned}
x \uparrow_{f} y & =x, \quad f x \geq f y \\
& =y, \quad \text { otherwise }
\end{aligned}
$$

Properties:

1. \uparrow_{f} is associative and idempotent;
2. \uparrow_{f} is selective in that

$$
x \uparrow_{f} y=x \quad \text { or } \quad x \uparrow_{f} y=y
$$

3. \uparrow_{f} is maximizing in that

$$
f\left(x \uparrow_{f} y\right)=f x \uparrow f y
$$

An Example: $\uparrow_{\#}$
Distributivity of \uparrow \#:

$$
\begin{aligned}
& x+\left(y \uparrow_{\# z)}=(x+y) \uparrow_{\#}(x+z)\right. \\
& \left(y \uparrow_{\#} z\right)+x=(y+x) \uparrow_{\#}=(y+z)
\end{aligned}
$$

That is,

$$
\begin{aligned}
(x++) \cdot \uparrow_{\#} / & =\uparrow_{\#} / \cdot(x+)^{*} \\
(++x) \cdot \uparrow_{\#} / & =\uparrow_{\#} / \cdot(++x) *
\end{aligned}
$$

We assume $\omega=\uparrow$ \# /[].

A short calculation

$$
\begin{aligned}
& \uparrow_{\#} / \cdot(\text { all } p) \triangleleft \\
& =\quad\{\text { definition before }\} \\
& \uparrow_{\#} / \cdot+/ \cdot\left(X_{\#} / \cdot\left(p \rightarrow\left[[i d]^{o}\right]^{o},[]^{o}\right) *\right) * \\
& =\quad\{\text { reduce promotion }\} \\
& \uparrow_{\#} / \cdot\left(\uparrow_{\#} / \cdot X_{\#} / \cdot\left(p \rightarrow\left[[i d]^{o}\right]^{o},[]^{o}\right) *\right) * \\
& =\{\text { cross distributivity }\} \\
& \uparrow_{\#} / \cdot\left(+/ \cdot \uparrow_{\#} / * \cdot\left(p \rightarrow\left[[i d]^{o}\right]^{o},[]^{o}\right) *\right) * \\
& =\{\text { map distributivity }\} \\
& \uparrow_{\# /} / \cdot\left(+/ \cdot\left(\uparrow_{\#} / \cdot\left(p \rightarrow\left[[i d]^{o}\right]^{o},[]^{o}\right)\right) *\right) * \\
& =\{\text { conditionals }\} \\
& \uparrow_{\#} / \cdot\left(++/ \cdot\left(p \rightarrow \uparrow_{\#} / \cdot\left[[i d]^{o}\right]^{o}, \uparrow_{\#} / \cdot[]^{o}\right) *\right) * \\
& =\quad\{\text { empty and one-point rules }\} \\
& \uparrow_{\#} / \cdot\left(++/ \cdot\left(p \rightarrow[i d]^{o}, K_{\omega}\right) *\right) *
\end{aligned}
$$

Solution to the Problem

Recall the problem of computing the longest segment of a list, all of whose elements satisfied some given property p.

$$
\begin{aligned}
& \uparrow_{\#} / \cdot(\text { all } p) \triangleleft \cdot \operatorname{seg} s \\
& =\quad\{\text { segment decomposition }\} \\
& \uparrow_{\#} / \cdot\left(\uparrow_{\#} / \cdot(\text { all } p) \triangleleft \cdot \text { tails }\right) * \cdot \text { inits } \\
& =\quad\{\text { result before }\} \\
& \uparrow_{\#} / \cdot\left(\uparrow_{\#} / \cdot\left(++/ \cdot\left(p \rightarrow[i d]^{o}, K_{\omega}\right) *\right) * \cdot t a i l s\right) * \cdot \text { inits } \\
& =\quad\{\text { Horner's rule with } x \odot a=(x+(p a \rightarrow[a], \omega) \uparrow \#[]\} \\
& \uparrow_{\#} \cdot \odot \not \overbrace{[]} * \cdot \text { inits } \\
& =\{\text { accumulation lemma }\} \\
& \left.\uparrow_{\#} \cdot \odot H_{[}\right]
\end{aligned}
$$

Exercise: Show that the definition of \odot can be simplified to

$$
x \odot a=p a \rightarrow x+[a],[] .
$$

Exercise: Show the final program is linear in the number of calculation of p. Exercise: Code the final algorithm in Haskell.

