
Constructive Algorithmics (Part III) 1'

&

$

%

Constructive Algorithmics (Part III)

Zhenjiang HU

University of Tokyo

Copyright c© 2006 Zhenjiang Hu, All Right Reserved.

Constructive Algorithmics (Part III) 2'

&

$

%

Review

Part I: Basic Concepts

• Notations on Functions

• Algebraic View of Lists

• List functions as Compositions of Homomorphisms

• Basic Calculation Rules for Derivation of Homomorphisms: Promotion
Rules

• Horner’s Rule

• Maximum Segment Sum Problem

Constructive Algorithmics (Part III) 3'

&

$

%

Part II: Homomorphisms

• Formalization of Homomorphism: Reduce after Map

• Program specification with Homomorphisms

• Point-free calculation rules for manipulating homomorphisms

• Longest All-P Segment Problem

Left Reductions 4'

&

$

%

Today’s Lesson: Left Reductions

• General homomorphic equations and well-defined functions

• Left reduction: a sequential computation pattern

• Loops: implementation of left reduction

• Left-zeros

• The Minimax problem

Left Reductions 5'

&

$

%

A Problem

Given is a list of lists of numbers. Required is an efficient algorithm for
computing the minimum of the maximum numbers in each list. More
succinctly, we want to compute

minimax = ↓ /· ↑ /∗

as efficiently as possible.

Left Reductions 6'

&

$

%

General Equations

So far we have mainly seen examples of homomorphisms. It is instructive to
determine the conditions under which a general set of equations

h [] = e

h [a] = f a

h (x ++ y) = H(x, y, h x, h y)

determines a unique function h, not necessarily a homomorphism.

Left Reductions 7'

&

$

%

Consider the equations

h′ [] = ([], e)
h′ [a] = ([a], f a)
h′ (x ++ y) = h′ x ⊕ h′ y

where (x, u) ⊕ (y, v) = (x ++ y,H(x, y, u, v))

If h′ is a well-defined function (a well-defined homomorphism), then so is h,
because we have

h = π2 · h′

What is the condition for h′ to be well-defined homomorphism?

Left Reductions 8'

&

$

%

Fact: h′ defined by equations

h′ [] = ([], e)
h′ [a] = ([a], f a)
h′ (x ++ y) = h′ x ⊕ h′ y

where (x, u) ⊕ (y, v) = (x ++ y,H(x, y, u, v))

is well-defined if (R,⊕, ([], e)) forms a monoid:

1. ([], e) is the unit of ⊕;

2. ⊕ is associative.

Left Reductions 9'

&

$

%

Translating the monoid condition into conditions on e and H gives the
following three conditions.

1. H(x, [], u, e) = u

2. H([], y, e, v) = v

3. H(x ++ y, z,H(x, y, u, v), w) = H(x, y ++ z, u,H(y, z, v, w))

Left Reductions 10'

&

$

%

An Example: Longest All-Even Initial Segment

laei [] = []
laei [a] = if even a then [a] else []
laei (x ++ y) = if laei x = x then laei x ++ laei y else laei x

In this example,

e = []
H(x, y, u, v) = if u = x then u ++ v else u

Exercise: Prove that ∀x. #(laei x) ≤ #x.

Exercise: Prove that laei is well-defined.
[Hint: Use the fact that #u ≤ #x and #v ≤ #y.]

Left Reductions 11'

&

$

%

Lemma. laei is not a homomorphism

Proof. Suppose
laei(x ++ y) = laei x ⊕ laei y

for some operator ⊕. Since laei[2, 1] = 2, laei[4] = [4] and laei[2] = [2], we have

laei [2, 1, 4] = laei [2, 1] ⊕ laei [4]
= [2] ⊕ [4]
= laei [2] ⊕ laei [4]
= laei [2, 4]

This is a contridition, since laei [2, 1, 4] = [2] and laei [2, 4] = [2, 4].

Left Reductions 12'

&

$

%

Left Reduction

⊕→/ e [x1, x2, . . . , xn] = (((e ⊕ x1) ⊕ x2) ⊕ · · ·) ⊕ xn

In the monoid view of lists, the formal definition of ⊕→/ e is as follows.

⊕→/ e[] = e

⊕→/ e[a] = e ⊕ a

⊕→/ e(x ++ y) = ⊕→/ e′y where e′ = ⊕→/ ex

Exercise: Prove that ⊕→/ e is a well-defined function.

Left Reductions 13'

&

$

%

There is an instructive alternative way of seeing that ⊕→/ e is well-defined.
Define h by

h [] = id

h [a] = (⊕a)
h (x ++ y) = h y · h x

Obviously, h is a homomorphism from ([a],++ , []) to (β → β, ·, idβ). Now we
have

⊕→/ ex = h x e

and so ⊕→/ e is well-defined.

Left Reductions 14'

&

$

%

Left Reduction is Important

Every set of equations of the following form

f [] = e

f (x ++ [a]) = F (a, x, f x)

can be defined in terms of a left reduction:

f = π2 · ⊕→/ e′

where
e′ = ([], e)
(x, u) ⊕ a = (x ++ [a], F (a, x, u))

Left Reductions 15'

&

$

%

Three Views of Lists

• Monoid View: every list is either

(i) the empty list;

(ii) a singleton list; or

(iii) the concatenation of two (non-empty) lists.

• Snoc View: every list is either

(i) the empty list; or

(ii) of the form x ++ [a] for some list x and value a.

• Cons View: every list is either

(i) the empty list; or

(ii) of the form [a] ++ [x] for some list x and value a.

Left Reductions 16'

&

$

%

Three General Computation Forms

• Monoid View: homomorphism

• Snoc View: left reduction

⊕→/ e[] = e

⊕→/ e(x ++ [a]) = (⊕→/ ex) ⊕ a

• Cons View: right reduction

Exercise: Give the definition for right reduction.

Left Reductions 17'

&

$

%

Loops and Left Reductions

A left reduction ⊕→/ ex can be translated into the following program in a
conventional imperative language.

|[var r;

r := e;

for b in x

do r := r oplus b;

return r

]|

Left Reductions 18'

&

$

%

Left Zeros

Left reductions require that the argument list be traversed in its entirety.
Such a traversal can be cut short if we recognize the possibility that an
operator may have left-zeros.

ω is a left-zero of ⊕ if
ω ⊕ a = ω

for all a.

Exercise: Prove that if ω is a left-zero of ⊕ then

⊕→/ ωx = ω

for all x. (by induction on snoc list x.)

Left Reductions 19'

&

$

%

Implementation of Left Reduction with Left-zero Check

From the fact that ⊕→/ e(x ++ y) = ⊕→/ (⊕→/ ex) y, we have the following
program for left-reduction.

|[var r;

r := e;

for b in x while not left-zero(r)

do r := r oplus b;

return r

]|

Left Reductions 20'

&

$

%

Specialization Lemma

Every homomorphism on lists can be expressed as a left (or also a right)
reduction. More precisely,

⊕/ · f ∗ = ¯→/ e

where
e = id⊕
a ¯ b = a ⊕ f b

Exercise: Prove the specialization lemma.

Left Reductions 21'

&

$

%

Minimax

Let us return to the problem of computing

minimax = ↓ /· ↑ /∗

efficiently. Using the specialization lemma, we can write

minimax = ¯→/ ∞

where ∞ is the identity element of ↓ /, and

a ¯ x = a ↓ (↑ /x)

Left Reductions 22'

&

$

%

Since ↓ distributes through ↑ we have

a ¯ x = ↑ /(a ↓) ∗ x

Using the specialization lemma a second time, we have

a ¯ x = ⊕a→/ −∞x

where b ⊕a c = b ↑ (a ↓ c)

Exercise: What are left-zeros for ⊕a and ¯?

Left Reductions 23'

&

$

%

An Efficient Implementation of minimax xs

|[var a; a := infinity;

for x in xs while a <> -infinity

do a := a odot x;

return a

]|

where the assignment a := a odot x can be implemented by the loop:

|[var b; b := -infinity;

for c in x while c <> a

do b := b max (a min c);

a := b

]|

Left Reductions 24'

&

$

%

The alpha-beta Algorithm

We now generalize the minimax problem to trees. Consider the tree data type
defined by

Tree ::= Tip Int
| Fork [Tree]

we wish to calculate an efficient algorithm for computing a function

eval : Tree → Int
eval (Tip n) = n

eval (Fork ts) = ↑ /(−eval) ∗ ts

Exercise: Calculate the value of the following expression.

eval (Fork [Fork [Fork [Tip 3,Tip 1,Tip 4],Tip 1],Fork [Tip 5,Tip 9]])

Left Reductions 25'

&

$

%

Homework

Exercise: Derive an efficient algorithm for computing eval.

Reference: Richard Bird and Jone Hughes, The alpha-beta algorithm: an
exercise in program transformation. Information Processing Letters, Vol.24
(1987). 53–57.

