Constructive Algorithmics (Part III)

Zhenjiang HU University of Tokyo

Copyright © 2006 Zhenjiang Hu, All Right Reserved.

Part I: Basic Concepts

- Notations on Functions
- Algebraic View of Lists
- List functions as Compositions of Homomorphisms
- Basic Calculation Rules for Derivation of Homomorphisms: Promotion Rules
- Horner's Rule
- Maximum Segment Sum Problem

Part II: Homomorphisms

- Formalization of Homomorphism: Reduce after Map
- Program specification with Homomorphisms
- Point-free calculation rules for manipulating homomorphisms
- Longest All-P Segment Problem

Today's Lesson: Left Reductions

- General homomorphic equations and well-defined functions
- Left reduction: a sequential computation pattern
- Loops: implementation of left reduction
- Left-zeros
- The Minimax problem

A Problem

Given is a list of lists of numbers. Required is an efficient algorithm for computing the minimum of the maximum numbers in each list. More succinctly, we want to compute

 $minimax = \downarrow / \cdot \uparrow / *$

as efficiently as possible.

General Equations

So far we have mainly seen examples of homomorphisms. It is instructive to determine the conditions under which a general set of equations

$$h [] = e$$

$$h [a] = f a$$

$$h (x ++y) = H(x, y, h x, h y)$$

determines a unique function h, not necessarily a homomorphism.

Consider the equations

If h' is a well-defined function (a well-defined homomorphism), then so is h, because we have

$$h = \pi_2 \cdot h'$$

What is the condition for h' to be well-defined homomorphism?

Fact: h' defined by equations

is well-defined if $(R, \oplus, ([], e))$ forms a monoid:

- 1. ([], e) is the unit of \oplus ;
- 2. \oplus is associative.

Translating the monoid condition into conditions on e and H gives the following three conditions.

- 1. H(x, [], u, e) = u
- 2. H([], y, e, v) = v
- 3. H(x + y, z, H(x, y, u, v), w) = H(x, y + z, u, H(y, z, v, w))

An Example: Longest All-Even Initial Segment

$$laei [] = []$$

$$laei [a] = if even a then [a] else []$$

$$laei (x ++ y) = if laei x = x then laei x ++ laei y else laei x$$

In this example,

$$e = []$$

$$H(x, y, u, v) = \mathbf{if} \ u = x \mathbf{then} \ u + v \mathbf{else} \ u$$

Exercise: Prove that $\forall x. \ \#(laei \ x) \le \#x$. **Exercise**: Prove that *laei* is well-defined. [Hint: Use the fact that $\#u \le \#x$ and $\#v \le \#y$.]

Lemma. *laei* is not a homomorphism

Proof. Suppose

$$laei(x + y) = laei \ x \oplus laei \ y$$

for some operator \oplus . Since laei[2,1] = 2, laei[4] = [4] and laei[2] = [2], we have

This is a contridition, since laei [2, 1, 4] = [2] and laei [2, 4] = [2, 4].

Left Reduction

$$\oplus \not\rightarrow_e [x_1, x_2, \dots, x_n] = (((e \oplus x_1) \oplus x_2) \oplus \cdots) \oplus x_n$$

In the monoid view of lists, the formal definition of $\oplus \not\rightarrow_e$ is as follows.

$$\begin{array}{lll} \oplus \not \rightarrow_{e}[] & = & e \\ \oplus \not \rightarrow_{e}[a] & = & e \oplus a \\ \oplus \not \rightarrow_{e}(x + y) & = & \oplus \not \rightarrow_{e'} y \text{ where } e' = \oplus \not \rightarrow_{e} x \end{array}$$

Exercise: Prove that $\oplus \not\rightarrow_e$ is a well-defined function.

There is an instructive alternative way of seeing that $\oplus\not\rightarrow_e$ is well-defined. Define h by

$$h [] = id$$

$$h [a] = (\oplus a)$$

$$h (x + y) = h y \cdot h x$$

Obviously, h is a homomorphism from ([a], +, []) to $(\beta \to \beta, \cdot, id_{\beta})$. Now we have

$$\oplus \not\rightarrow_e x = h \ x \ e$$

and so $\oplus \not\rightarrow_e$ is well-defined.

Left Reduction is Important

Every set of equations of the following form

 $\begin{array}{rcl} f \ [] & = & e \\ f \ (x + [a]) & = & F(a, x, f \ x) \end{array}$

can be defined in terms of a left reduction:

$$f = \pi_2 \cdot \oplus \not\to_{e'}$$

where

$$e' = ([], e)$$

 $(x, u) \oplus a = (x ++ [a], F(a, x, u))$

Three Views of Lists

- Monoid View: every list is either
 - (i) the empty list;
 - (ii) a singleton list; or
- (iii) the concatenation of two (non-empty) lists.
- Snoc View: every list is either
 - (i) the empty list; or
 - (ii) of the form x + [a] for some list x and value a.
- Cons View: every list is either
 - (i) the empty list; or
 - (ii) of the form [a] + [x] for some list x and value a.

Three General Computation Forms

- Monoid View: homomorphism
- Snoc View: left reduction

$$\begin{array}{lll} \oplus \not \rightarrow_{e}[] & = & e \\ \oplus \not \rightarrow_{e}(x + [a]) & = & (\oplus \not \rightarrow_{e} x) \oplus a \end{array}$$

• Cons View: right reduction

Exercise: Give the definition for right reduction.

Loops and Left Reductions

A left reduction $\oplus \not\rightarrow_e x$ can be translated into the following program in a conventional *imperative* language.

```
|[ var r;
r := e;
for b in x
do r := r oplus b;
return r
]|
```

Left Zeros

Left reductions require that the argument list be traversed in its entirety. Such a traversal can be cut short if we recognize the possibility that an operator may have *left-zeros*.

 ω is a left-zero of \oplus if

 $\omega \oplus a = \omega$

for all *a*.

Exercise: Prove that if ω is a left-zero of \oplus then

 $\oplus \not\rightarrow_{\omega} x = \omega$

for all x. (by induction on snoc list x.)

Implementation of Left Reduction with Left-zero Check

From the fact that $\oplus \not\rightarrow_e(x \leftrightarrow y) = \oplus \not\rightarrow_{(\oplus \not\rightarrow_e x)} y$, we have the following program for left-reduction.

```
|[ var r;
r := e;
for b in x while not left-zero(r)
      do r := r oplus b;
return r
]|
```

Specialization Lemma

Every homomorphism on lists can be expressed as a left (or also a right) reduction. More precisely,

$$\begin{array}{l} \oplus/\cdot f * = \odot \not\rightarrow_e \\ \text{where} \\ e = id_{\oplus} \\ a \odot b = a \oplus f b \end{array}$$

Exercise: Prove the specialization lemma.

Minimax

Let us return to the problem of computing

 $minimax = \downarrow / \cdot \uparrow / *$

efficiently. Using the specialization lemma, we can write

 $minimax = \odot \not\rightarrow_{\infty}$

where ∞ is the identity element of $\downarrow /$, and

 $a \odot x = a \downarrow (\uparrow / x)$

Since \downarrow distributes through \uparrow we have

$$a \odot x = \uparrow / (a \downarrow) * x$$

Using the specialization lemma a second time, we have

$$a \odot x = \bigoplus_a \not\to_{-\infty} x$$

where $b \oplus_a c = b \uparrow (a \downarrow c)$

Exercise: What are left-zeros for \oplus_a and \odot ?

```
An Efficient Implementation of minimax xs
```

```
|[ var a; a := infinity;
for x in xs while a <> -infinity
    do a := a odot x;
    return a
]|
```

where the assignment a := a odot x can be implemented by the loop:

The alpha-beta Algorithm

We now generalize the minimax problem to trees. Consider the tree data type defined by

Tree ::= Tip Int| Fork [Tree]

we wish to calculate an efficient algorithm for computing a function

eval : $Tree \rightarrow Int$ eval (Tip n) = n $eval (Fork ts) = \uparrow / (-eval) * ts$

Exercise: Calculate the value of the following expression.

eval (Fork [Fork [Tip 3, Tip 1, Tip 4], Tip 1], Fork [Tip 5, Tip 9]])

Homework

Exercise: Derive an efficient algorithm for computing *eval*.

Reference: Richard Bird and Jone Hughes, The alpha-beta algorithm: an exercise in program transformation. *Information Processing Letters*, Vol.24 (1987). 53–57.