Constructive Algorithmics (Part 1)

-

.

Constructive Algorithmics (Part Ill)

Zhenjiang HU
University of Tokyo

Copyright (¢) 2006 Zhenjiang Hu, All Right Reserved.

/

Constructive Algorithmics (Part 1)

-

Review

Part |: Basic Concepts

e Notations on Functions
e Algebraic View of Lists
e List functions as Compositions of Homomorphisms

e Basic Calculation Rules for Derivation of Homomorphisms: Promotion
Rules

e Horner’s Rule

e Maximum Segment Sum Problem

Constructive Algorithmics (Part 1)

-~

Part |l: Homomorphisms

o

e Formalization of Homomorphism: Reduce after Map
e Program specification with Homomorphisms
e Point-free calculation rules for manipulating homomorphisms

e Longest All-P Segment Problem

Left Reductions

-

Today's Lesson: Left Reductions

e General homomorphic equations and well-defined functions
e Left reduction: a sequential computation pattern

e Loops: implementation of left reduction

e Left-zeros

e The Minimax problem

Left Reductions

-

A Problem

Given is a list of lists of numbers. Required is an efficient algorithm for
computing the minimum of the maximum numbers in each list. More
succinctly, we want to compute

minimar = | /-1 /%

as efficiently as possible.

o

Left Reductions

-

General Equations

So far we have mainly seen examples of homomorphisms. It is instructive to
determine the conditions under which a general set of equations

h] = e
h |a] = fa
h(x+vy) = H(x,y,hx, hy)

determines a unique function h, not necessarily a homomorphism.

o

Left Reductions

-~

Consider the equations

A] = (Ul
h' [al = (la], f a)
h (x+Hy) = haxdhy

where (z,u) © (y,v) = (¢ +y, H(z,y,u,v))

If h" is a well-defined function (a well-defined homomorphism), then so is h,

because we have
/
h = mo - h

What is the condition for A’ to be well-defined homomorphism?

o

Left Reductions

-

Fact: h' defined by equations

A] = (e
h' [al = (la], f a)
h (x+Hy) = haxdh'y

where (z,u) © (y,v) = (z ++y, H(z,y,u,v))
is well-defined if (R, ®, ([|,e)) forms a monoid:
1. ([],e) is the unit of @;

2. @ 1s associative.

-

Left Reductions

-

Translating the monoid condition into conditions on e and H gives the
following three conditions.

1. H(z,|],u,e) =u
2. H(|]],y,e,v) =wv
3. Hx +Hy,z, H(x,y,u,v),w) = H(x,y +H z,u, H(y, z,v,w))

-

Left Reductions

10

-~

In this example,

o

An Example: Longest All-Even Initial Segment

laei || = |
laei |al = if even a then [a] else |]
laei (x +Hvy) = if laei x = x then laei ++ laei y else laei x

< = |

H(x,y,u,v) = if u =z then u-+ v else u

Exercise: Prove that Va. #(laei) < #ux.

Exercise: Prove that laer is well-defined.
[Hint: Use the fact that #u < #x and #v < #v.]

Left Reductions 11

4 N

Lemma. laei is not a homomorphism

Proof. Suppose
laei(x +vy) = laei x & laei y

for some operator @. Since laei|2, 1] = 2, laei|4] = [4] and laei]2] = [2], we have
laei [2,1,4] = laei[2,1] @ laei [4]
= 2o 4
= laei 2] @ laei [4]
= laei [2,4]

This is a contridition, since laei [2,1,4] = [2] and laei [2,4] = [2,4].

N /

Left Reductions

12

-

Left Reduction
@7% [$1,$2,-~,$n] — (((€@$1)€B$2)€B°~)€B$n

In the monoid view of lists, the formal definition of & 4. is as follows.

opdl = e
D+ elal = eda
D+e(r+y) = @Peoy wheree =Dhox

Exercise: Prove that @ . is a well-defined function.

-

Left Reductions 13

4 N

There is an instructive alternative way of seeing that @ -4, is well-defined.
Define h by

h] = id
h [a] = (®a)
h(x++y) = hy-hx

Obviously, A is a homomorphism from ([a], #,[]) to (8 — 3,-,idg). Now we
have

®pb.xr=hzxe
and so @ . is well-defined.

N /

Left Reductions

14

-

Left Reduction is Important

Every set of equations of the following form

al = ¢
fz+tla) = Fla,, [)

can be defined in terms of a left reduction:

f:7T2'@7L>e’
where
e’ = ([l,e)
(r,u)®a = (xr++lal,F(a,x,u))

L

eft Reductions

15

-

o

Three Views of Lists

e Monoid View: every list is either
(i) the empty list;
(ii) a singleton list; or
(iii) the concatenation of two (non-empty) lists.
e Snoc View: every list is either
(i) the empty list; or
(ii) of the form x ++ |a] for some list = and value a.

e Cons View: every list is either

(i) the empty list; or

(ii) of the form [a] 4+ [z] for some list and value a.

L

eft Reductions

16

-

Three General Computation Forms

e Monoid View: homomorphism

e Snoc View: left reduction

@746[] — €
Spe(r+ta]) = (BFex)®a

e (Cons View: right reduction

Exercise: Give the definition for right reduction.

-

Left Reductions

17

-

A left reduction & .z can be translated into the following program in a

Loops and Left Reductions

conventional imperative language.

-

| [var r;

11

r = e;

for b in x

do r :

return r

r oplus b;

Left Reductions 18

4 N

L eft Zeros

Left reductions require that the argument list be traversed in its entirety.
Such a traversal can be cut short if we recognize the possibility that an
operator may have left-zeros.

w 1s a left-zero of @ if

for all a.

Exercise: Prove that if w is a left-zero of @ then

DFor=w

for all x. (by induction on snoc list x.)

N /

Left Reductions

19

-

Implementation of Left Reduction with Left-zero Check

From the fact that ©/.(z +y) = © - (¢p.2) ¥, We have the following
program for left-reduction.

| [var r;
r := e;
for b in x while not left-zero(r)
do r := r oplus b;
return r

11

-

Left Reductions

20

-~

Specialization Lemma

Every homomorphism on lists can be expressed as a left (or also a right)
reduction. More precisely,

where
e —= ’I,d@

a®b = a® fb

Exercise: Prove the specialization lemma.

o

Left Reductions

21

-~

Minimax

Let us return to the problem of computing
minimaxr = | /- T /%
efficiently. Using the specialization lemma, we can write
minimar = O
where 0o is the identity element of | /, and

a0z = al(l/z)

o

Left Reductions

22

-

Since | distributes through T we have

aOr = 1 /(a]l)*xx
Using the specialization lemma a second time, we have

aOr = Bg+ ook
where b®,c = b7 (a] ¢

Exercise: What are left-zeros for &, and ©7?

-

Left Reductions

23

-

An Efficient Implementation of minimax xs

|[var a; a := infinity;
for x in xs while a <> -infinity
do a := a odot x;
return a
11
where the assignment a := a odot x can be implemented by the loop:
|[var b; b := -infinity;
for ¢ in x while ¢ <> a
do b := b max (a min c);
a :=b
11

-

Left Reductions

24

/ The alpha-beta Algorithm

~

We now generalize the minimax problem to trees. Consider the tree data type

defined by
Tree ::= Tip Int
| Fork |Tree]

we wish to calculate an efficient algorithm for computing a function

eval . Tree — Int
eval (Tipn) = n
eval (Forkts) = 71 /(—eval)*ts

Exercise: Calculate the value of the following expression.

eval (Fork [Fork [Fork [Tip 3, Tip 1, Tip 4|, Tip 1], Fork [Tip 5, Tip 9]])

.

/

Left Reductions

25

-

Homework

Exercise: Derive an efficient algorithm for computing eval.

Reference: Richard Bird and Jone Hughes, The alpha-beta algorithm: an
exercise in program transformation. Information Processing Letters, Vol.24
(1987). 53-57.

o

