Constructive Algorithmics (Part III)

Zhenjiang HU
University of Tokyo

Copyright © 2006 Zhenjiang Hu, All Right Reserved.

Review

Part I: Basic Concepts

- Notations on Functions
- Algebraic View of Lists
- List functions as Compositions of Homomorphisms
- Basic Calculation Rules for Derivation of Homomorphisms: Promotion Rules
- Horner's Rule
- Maximum Segment Sum Problem

Part II: Homomorphisms

- Formalization of Homomorphism: Reduce after Map
- Program specification with Homomorphisms
- Point-free calculation rules for manipulating homomorphisms
- Longest All-P Segment Problem

Today's Lesson: Left Reductions

- General homomorphic equations and well-defined functions
- Left reduction: a sequential computation pattern
- Loops: implementation of left reduction
- Left-zeros
- The Minimax problem

A Problem

Given is a list of lists of numbers. Required is an efficient algorithm for computing the minimum of the maximum numbers in each list. More succinctly, we want to compute

$$
\operatorname{minimax}=\downarrow / \cdot \uparrow / *
$$

as efficiently as possible.

General Equations

So far we have mainly seen examples of homomorphisms. It is instructive to determine the conditions under which a general set of equations

$$
\begin{array}{ll}
h[] & =e \\
h[a] & =f a \\
h(x+y) & =H(x, y, h x, h y)
\end{array}
$$

determines a unique function h, not necessarily a homomorphism.

Consider the equations

$$
\begin{aligned}
& h^{\prime}[]= \\
& h^{\prime}[[], e) \\
& h^{\prime}[a]([a], f a) \\
& h^{\prime}(x+y)= h^{\prime} x \oplus h^{\prime} y \\
& \text { where }(x, u) \oplus(y, v)=(x+y, H(x, y, u, v))
\end{aligned}
$$

If h^{\prime} is a well-defined function (a well-defined homomorphism), then so is h, because we have

$$
h=\pi_{2} \cdot h^{\prime}
$$

What is the condition for h^{\prime} to be well-defined homomorphism?

Fact: h^{\prime} defined by equations

$$
\begin{aligned}
& h^{\prime}[]= \\
& h^{\prime}[[], e) \\
& h^{\prime}[a]([a], f a) \\
& h^{\prime}(x+y)= h^{\prime} x \oplus h^{\prime} y \\
& \text { where }(x, u) \oplus(y, v)=(x+y, H(x, y, u, v))
\end{aligned}
$$

is well-defined if $(R, \oplus,([], e))$ forms a monoid:

1. $([], e)$ is the unit of \oplus;
2. \oplus is associative.

Translating the monoid condition into conditions on e and H gives the following three conditions.

1. $H(x,[], u, e)=u$
2. $H([], y, e, v)=v$
3. $H(x+y, z, H(x, y, u, v), w)=H(x, y+z, u, H(y, z, v, w))$

An Example: Longest All-Even Initial Segment

$$
\begin{array}{ll}
\text { laei }[] & =[] \\
\text { laei }[a] & =\text { if } \text { even } a \text { then }[a] \text { else }[] \\
\text { laei }(x+y) & =\text { if laei } x=x \text { then laei } x+\text { laei } y \text { else laei } x
\end{array}
$$

In this example,

$$
\begin{array}{ll}
e & =[] \\
H(x, y, u, v) & =\text { if } u=x \text { then } u+v \text { else } u
\end{array}
$$

Exercise: Prove that $\forall x . \#($ laei $x) \leq \# x$.
Exercise: Prove that laei is well-defined.
[Hint: Use the fact that $\# u \leq \# x$ and $\# v \leq \# y$.]

Lemma. laei is not a homomorphism
Proof. Suppose

$$
\text { laei }(x+y)=\text { laei } x \oplus \text { laei } y
$$

for some operator \oplus. Since laei $[2,1]=2$, laei $[4]=[4]$ and laei $[2]=[2]$, we have

$$
\begin{aligned}
\text { laei }[2,1,4] & =\text { laei }[2,1] \oplus \text { laei }[4] \\
& =[2] \oplus[4] \\
& =\text { laei }[2] \oplus \text { laei }[4] \\
& =\text { laei }[2,4]
\end{aligned}
$$

This is a contridition, since laei $[2,1,4]=[2]$ and laei $[2,4]=[2,4]$.

Left Reduction

$$
\oplus \nrightarrow e\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\left(\left(\left(e \oplus x_{1}\right) \oplus x_{2}\right) \oplus \cdots\right) \oplus x_{n}
$$

In the monoid view of lists, the formal definition of $\oplus \not \psi_{e}$ is as follows.

$$
\begin{array}{ll}
\oplus \not_{e}[] & =e \\
\oplus \not_{e}[a] & =e \oplus a \\
\oplus \not_{e}(x+y) & =\oplus \not \not_{e^{\prime}} y \text { where } e^{\prime}=\oplus \not \not_{e} x
\end{array}
$$

Exercise: Prove that $\oplus \not_{e}$ is a well-defined function.

There is an instructive alternative way of seeing that $\oplus \not_{e}$ is well-defined. Define h by

$$
\begin{array}{ll}
h[] & =i d \\
h[a] & =(\oplus a) \\
h(x+y) & =h y \cdot h x
\end{array}
$$

Obviously, h is a homomorphism from $([a],+,[])$ to $\left(\beta \rightarrow \beta, \cdot, i d_{\beta}\right)$. Now we have

$$
\oplus \not \dashv_{e} x=h x e
$$

and so $\oplus \not_{e}$ is well-defined.

Left Reduction is Important

Every set of equations of the following form

$$
\begin{array}{ll}
f[] & =e \\
f(x+[a]) & =F(a, x, f x)
\end{array}
$$

can be defined in terms of a left reduction:

$$
f=\pi_{2} \cdot \oplus \not \not_{e^{\prime}}
$$

where

$$
\begin{array}{ll}
e^{\prime} & =([], e) \\
(x, u) \oplus a & =(x+[a], F(a, x, u))
\end{array}
$$

Three Views of Lists

- Monoid View: every list is either
(i) the empty list;
(ii) a singleton list; or
(iii) the concatenation of two (non-empty) lists.
- Snoc View: every list is either
(i) the empty list; or
(ii) of the form $x+[a]$ for some list x and value a.
- Cons View: every list is either
(i) the empty list; or
(ii) of the form $[a]+[x]$ for some list x and value a.

Three General Computation Forms

- Monoid View: homomorphism
- Snoc View: left reduction

$$
\begin{array}{ll}
\oplus \not_{e}[] & =e \\
\oplus \not_{e}(x+[a]) & =\left(\oplus \not_{e} x\right) \oplus a
\end{array}
$$

- Cons View: right reduction

Exercise: Give the definition for right reduction.

Loops and Left Reductions

A left reduction $\oplus \not \mu_{e} x$ can be translated into the following program in a conventional imperative language.

```
| [ var r;
    r := e;
    for b in x
        do r := r oplus b;
    return r
]।
```


Left Zeros

Left reductions require that the argument list be traversed in its entirety. Such a traversal can be cut short if we recognize the possibility that an operator may have left-zeros.
ω is a left-zero of \oplus if

$$
\omega \oplus a=\omega
$$

for all a.

Exercise: Prove that if ω is a left-zero of \oplus then

$$
\oplus \nrightarrow \omega x=\omega
$$

for all x. (by induction on snoc list x.)

Implementation of Left Reduction with Left-zero Check

From the fact that $\oplus \not_{e}(x+y)=\oplus \not \psi_{(\oplus \overbrace{e} x)} y$, we have the following program for left-reduction.

```
| [ var r;
    r := e;
    for b in x while not left-zero(r)
        do r := r oplus b;
    return r
]|
```


Specialization Lemma

Every homomorphism on lists can be expressed as a left (or also a right) reduction. More precisely,

$$
\begin{aligned}
& \oplus / \cdot f *=\odot \not \not_{e} \\
& \text { where } \\
& \quad e=i d_{\oplus} \\
& \quad a \odot b=a \oplus f b
\end{aligned}
$$

Exercise: Prove the specialization lemma.

Minimax

Let us return to the problem of computing

$$
\operatorname{minimax}=\downarrow / \cdot \uparrow / *
$$

efficiently. Using the specialization lemma, we can write

$$
\operatorname{minimax}=\odot \nrightarrow \infty
$$

where ∞ is the identity element of $\downarrow /$, and

$$
a \odot x=a \downarrow(\uparrow / x)
$$

Since \downarrow distributes through \uparrow we have

$$
a \odot x=\uparrow /(a \downarrow) * x
$$

Using the specialization lemma a second time, we have

$$
\begin{aligned}
& a \odot x=\oplus_{a} \nrightarrow-\infty x \\
& \quad \text { where } b \oplus_{a} c=b \uparrow(a \downarrow c)
\end{aligned}
$$

Exercise: What are left-zeros for \oplus_{a} and \odot ?

An Efficient Implementation of minimax xs

```
|[ var a; a := infinity;
    for x in xs while a <> -infinity
        do a := a odot x;
    return a
]|
```

where the assignment $\mathrm{a}:=\mathrm{a}$ odot x can be implemented by the loop:

```
|[ var b; b := -infinity;
    for c in x while c <> a
        do b := b max (a min c);
    a := b
]|
```


The alpha-beta Algorithm

We now generalize the minimax problem to trees. Consider the tree data type defined by

$$
\begin{array}{rll}
\text { Tree }::= & \text { Tip Int } \\
& \mid & \text { Fork }[\text { Tree }]
\end{array}
$$

we wish to calculate an efficient algorithm for computing a function

$$
\begin{array}{ll}
\text { eval } & : \text { Tree } \rightarrow \text { Int } \\
\operatorname{eval}(\text { Tip } n) & =n \\
\operatorname{eval}(\text { Forkts }) & =\uparrow /(- \text { eval }) * t s
\end{array}
$$

Exercise: Calculate the value of the following expression.

```
eval (Fork [Fork [Fork [Tip 3, Tip 1, Tip 4], Tip 1], Fork [Tip 5, Tip 9]])
```


Homework

Exercise: Derive an efficient algorithm for computing eval.

Reference: Richard Bird and Jone Hughes, The alpha-beta algorithm: an exercise in program transformation. Information Processing Letters, Vol. 24 (1987). 53-57.

