
Constructive Algorithmics (Part IV) 1'

&

$

%

Constructive Algorithmics (Part IV)

Zhenjiang HU

University of Tokyo

Copyright c© 2006 Zhenjiang Hu, All Right Reserved.

Arrays 2'

&

$

%

Arrays

• Formalization of arrays as a binoid

• Formalization of well-defined functions on arrays as homomorphisms

• General rules: promotion/fusiton

• Special rules: Horner’s rule

• Program derivation by calculation

Though you do not need to understand the details in this part, you should get
feeling of how the theory of lists can be naturally extended to other data
structures such as arrays and trees.

Arrays 3'

&

$

%

A Problem

Given is an array x with elements in the set {0, 1}. Required is an efficient
algorithm for computing the area of the largest rectangle (i.e., contiguous
subarray) of x, all of whose elements are 1.

Arrays 4'

&

$

%

Binoid

Suppose α is a set of values closed under two partial operations + and × such
that:

(i) + and × are associative, in the sense that each of the equations

(a + b) + c = a + (b + c)
(a × b) × c = a × (b × c)

holds whenever both sides of the equation are defined;

(ii) + and × satisfy the further equation

(a + b) × (c + d) = (a × c) + (b × d)

whenever both sides are defined. (we shall refer to this property by saying
that + abides with ×.)

Arrays 5'

&

$

%

Examples

• Let ⊕ be associative and commutative. Then (α,⊕,⊕) is a binoid.

• (α, l, l) is a binoid.

• (α, m, m) is a binoid.

• (α, m, l) is a binoid.

Exercise: Let ⊕ is some associative operator, and • is a partial operator
defined by the equation:

a • b = a provided a = b

Prove that (α,⊕, •) is a binoid.

Arrays 6'

&

$

%

Arrays

The type of arrays with elements from α will be denoted by |α|.

• | · | maps elements of α to singleton arrays.

• ◦| (pronounced beside) puts two arrays with the same height one beside
the other.

• ◦− (pronounced above) puts two arrays with the same width one above
the other.

(|α|, ◦| , ◦−) forms a binoid.

(x ◦| y) ◦− (u ◦| v) = (x ◦− u) ◦| (y ◦− v)

Arrays 7'

&

$

%

For instance, the array  1 2 3
4 5 6
7 8 9

 .

is described by the formula

(|1| ◦| |2| ◦| |3|) ◦− (|4| ◦| |5| ◦| |6|) ◦− (|7| ◦| |8| ◦| |9|)

as well as many others.

Exercise: Give another formula for the above array.

Arrays 8'

&

$

%

Two Functions: height and width

height |a| = 1
height (x ◦− y) = height x + height y

height (x ◦| y) = height x • height y

width |a| = 1
width (x ◦− y) = width x • width y

height (x ◦| y) = width x + width y

Arrays 9'

&

$

%

Map

We shall use the same symbol ∗ for mapping over arrrays as for mapping over
lists.

f ∗ |a| = |f a|
f ∗ (x ◦− y) = (f ∗ x) ◦− (f ∗ y)
f ∗ (x ◦| y) = (f ∗ x) ◦| (f ∗ y)

Map Distributivity
(f · g) ∗ = f ∗ ·g∗

Exercise: Prove the above map distributivity.

Arrays 10'

&

$

%

Reduce

Given two operators ⊕,⊗ : α → α → α, we can define a reduction operator
(⊕,⊗)/ for arrays by three equations:

(⊕,⊗)/|a| = a

(⊕,⊗)/(x ◦− y) = ((⊕,⊗)/x) ◦− ((⊕,⊗)/y)
(⊕,⊗)/(x ◦| y) = ((⊕,⊗)/x) ◦| ((⊕,⊗)/y)

For these equation to be consistent, we require that (α,⊕,⊗) forms a binoid.

Arrays 11'

&

$

%

Examples

• (+,+)/: sums the elements in an array of numbers.

• (∧,∧)/: determines whether there exists an entry in an array of booleans.

• height = (+, •)/ · K1∗

• width = (•,+)/ · K1∗

• area = (+,+)/ · K1∗

• topleft = (l, l)/

• id = (◦− , ◦|)/ · | · |∗

• tr = (◦| , ◦−)/ · | · |∗

Exercise: Define topright and bottomleft.

Arrays 12'

&

$

%

Promotion

The one-point and join rules for lists have counterparts in the theory of arrays.

One-point Rules:
f ∗ ·| · | = | · | · f
(⊕,⊗)/ · | · | = id

Join Rules:

f ∗ ·(◦− , ◦|)/ = (◦− , ◦|)/ · f ∗ ∗
(⊕,⊗)/ · (◦− , ◦|)/ = (⊕,⊗)/ · (⊕,⊗)/∗

Transpose Rules:

f ∗ ·(◦| , ◦−)/ = (◦| , ◦−) · f ∗ ∗
(⊕,⊗)/ · (◦| , ◦−) = (⊗,⊕)/ · (⊕,⊗)/∗

Arrays 13'

&

$

%

Exercise: Prove the transpose rules.

Exercise: Prove that tr · tr = id.

Arrays 14'

&

$

%

Zip

Zip on Lists

We define a partial operator Υ⊕ (pronounced zip with ⊕) informally by the
equation:

[a1, a2, . . . , an] Υ⊕ [b1, b2, . . . , bn] = [a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn]

or formally by

[]Υ⊕ [] = []
[a] Υ⊕ [b] = [a ⊕ b]
(x ++ y)Υ⊕ (u ++ v) = (xΥ⊕ u) ++ (y Υ⊕ v)

The third equation is asserted only under the conditions that #x = #u and
#y = #v.

Arrays 15'

&

$

%

Zip on Arrays

The same zip operator can be defined on arrays.

|a|Υ⊕ |b| = |a ⊕ b|
(x ◦− y)Υ⊕ (u ◦− v) = (xΥ⊕ u) ◦− (y Υ⊕ v)
(x ◦| y)Υ⊕ (u ◦| v) = (xΥ⊕ u) ◦| (y Υ⊕ v)

Arrays 16'

&

$

%

Examples

The function
rows = (◦− , Υ⊗)/ · | · |∗

converts an array ointo a column vector whose entries are rwo vectors.

rows

 1 2 3
4 5 6
7 8 9

 =

 (1 2 3)
(4 5 6)
(7 8 9)


Exercise: Define the function cols which converts an array into a row vector
whose entries are column vectors.

Arrays 17'

&

$

%

Array to List of Lists

The function listrows turns an array into a list of rows, each row being a list
of entries from a row of the array. The function listcols turns an array into a
list of columns.

listrows = (++ , Υ++)/ · [[·]]∗
listcols = (Υ++ ,++)/ · [[·]]∗

Arrays 18'

&

$

%

Properties:
height = # · listrows
length = # · listcols

listcols = listrows · tr
listrows = listcol · tr

(⊕,⊗)/ = ⊕/ · ⊗/ ∗ ·listrows
(⊕,⊗)/ = ⊗/ · ⊕/ ∗ ·listcols

Arrays 19'

&

$

%

Directed Reductions

• Top Reductions:

⊕−↓

 1 2 3
4 5 6
7 8 9

 =
(

(1 ⊕ 4) ⊕ 7 (2 ⊕ 5) ⊕ 8 (3 ⊕ 6) ⊕ 9
)

• Left Reductions:

⊕ →|

 1 2 3
4 5 6
7 8 9

 =

 (1 ⊕ 2) ⊕ 3
(4 ⊕ 5) ⊕ 6
(7 ⊕ 8) ⊕ 9



Arrays 20'

&

$

%

Identities

rows = ◦| →| · | · |∗
cols = ◦− −↓ ·| · |∗

(⊕.⊗)/ = the · (⊕−↓) · (⊗ →|)
(⊕.⊗)/ = the · (⊗ →|) · (⊕−↓)

Note the function the is to extract the value from a singleton matrix.

the |a| = a

Arrays 21'

&

$

%

Accumulations

• Top Accumulation:

⊕ =↓

 1 2 3
4 5 6
7 8 9

 =

 1 2 3
1 ⊕ 4 2 ⊕ 5 3 ⊕ 6
(1 ⊕ 4) ⊕ 7 (2 ⊕ 5) ⊕ 8 (3 ⊕ 6) ⊕ 9


• Left Reductions:

⊕ →||

 1 2 3
4 5 6
7 8 9

 =

 1 1 ⊕ 2 (1 ⊕ 2) ⊕ 3
4 4 ⊕ 5 (4 ⊕ 5) ⊕ 6
7 7 ⊕ 8 (7 ⊕ 8) ⊕ 9



Arrays 22'

&

$

%

Tops and Bottoms

There are four reasonable way to dissecting an array: we shall call them tops,
bottoms, lefts, and rights.

lefts

 1 2 3
4 5 6
7 8 9

 =


 1

4
7


 1 2

4 5
7 8


 1 2 3

4 5 6
7 8 9




lefts = (◦| →||) · cols

Exercise: Give definitions for tops, bottoms, and rights.

Arrays 23'

&

$

%

Properties
(⊕−↓) ∗ ·lefts = lefts · (⊕−↓)
(⊕ =↓) ∗ ·lefts = lefts · (⊕ =↓)

Accumulation Lemmas

(⊕−↓) ∗ ·tops = rows · (⊕ =↓)
(⊕ →|) ∗ ·lefts = cols · (⊕ →||)

Arrays 24'

&

$

%

Horner’s Rule

The equation

(⊕,⊕)/ · (⊗,¯)/ ∗ ·bottoms = (¯,¯)/ · ~−↓
where a ~ b = (a ⊗ b) ⊕ b

holds, provided that (i) ⊗ distributes (backwards) through ⊕; and (ii) ⊕
abides with ¯.

Exercise: Prove the Horner’s rule.

Arrays 25'

&

$

%

Rectangles

A rectangle of an array x is a contiguous subarray of x.

topls = (◦− , ◦|)/ · tops ∗ ·lefts
botrs = (◦− , ◦|)/ · bottoms ∗ ·rights
rects = (◦− , ◦|)/ · botrs ∗ ·topls

Exercise: What is the result of the following expression?

tops

 1 2 3
4 5 6
7 8 9



Arrays 26'

&

$

%

Solving Our Problem

We can solve our problem (largest rectangle area) by

lra = ↑ / · area ∗ ·filled / ·a2l · rects

where
a2l = (++ ,++)/ · [·]
filled = (∧,∧)/ · (= 1)∗

Exercise (Challenge): Calculate an efficient algorithm for the largest
rectangle area problem from the above naive solution.

