構成的アルゴリズム論の基本概念

胡 振江

東京大学 計数工学科

2007年12月10日、17日

Copyright © 2007 Zhenjiang Hu, All Right Reserved.

The First Exercise Revisited

The Maximum Segment Sum (mss) Problem

Design an efficient and correct program to compute the maximum of the sums of all segments of a given sequence of numbers, positive, negative, or zero.

$$mss [3, 1, -4, 1, 5, -9, 2] = 6$$

$$mss [3, 1, -4, 1, 5, -9, 2] = 6$$

$$mss \ [\underline{3, 1, -4, 1, 5}, -9, 2] = 6$$

R.S. Bird: Lecture Notes on Constructive Functional Programming, *Technical Monograph PRG-69*, ISBN 0-902928-51-1, 1988.

A calculus of functions for deriving programs from their specifications:

- A range of concepts and notations for defining functions over various data types (including lists, trees, and arrays);
- A set of algebraic laws (rules, lemmas, theorems) for manipulating functions;
- A framework for constructing new calculation rules to capture principles of programming.

Basic Concepts

List Functions as Homomorphisms Directed Reductions Accumulations Horner's Rule Application: Maximum Segment Sum Problem

Outline

- Review: Notations on Functions
- Review: Lists

2 List Functions as Homomorphisms

- 3 Directed Reductions
- 4 Accumulations
- 5 Horner's Rule

Application: Maximum Segment Sum Problem

Review: Notations on Functions Review: Lists

A Simple Problem

Consider the following simple identity:

 $(a_1 \times a_2 \times a_3) + (a_2 \times a_3) + a_3 + 1 = ((1 \times a_1 + 1) \times a_2 + 1) \times a_3 + 1$

This equation generalizes in the obvious way to *n* variables a_1, a_2, \ldots, a_n , and we will refer to it as Horner'e rule.

- How many × are used in each side?
- Can we generalize × to ⊗, + to ⊕? What are the essential constraints for ⊗ and ⊕?
- Do you have suitable notation for expressing the Horner's rule concisely?

Review: Notations on Functions Review: Lists

Review: Notations on Functions

• A function f that has source type α and target type β is denoted by

$$f: \alpha \to \beta$$

We shall say that f takes arguments in α and returns results in β .

- Function application is written without brackets; thus f a means f(a). Function application is more binding than any other operation, so f a ⊗ b means (f a) ⊗ b.
- Functions are curried and applications associates to the left, so f a b means (f a) b (sometimes written as f_a b.)
- \bullet Function composition is denoted by a centralized dot ($\cdot).$ We have

$$(f \cdot g) x = f(g x)$$

Review: Notations on Functions Review: Lists

Review: Notations on Functions

Binary operators will be denoted by ⊕, ⊗, ⊙, etc. Binary operators can be sectioned. This means that (⊕), (a⊕) and (⊕a) all denote functions. The definitions are:

$$(\oplus) a b = a \oplus b \ (a \oplus) b = a \oplus b \ (\oplus b) a = a \oplus b$$

Exercise: Given $(\oplus) : \alpha \to \beta \to \gamma$, give the types for $(a\oplus)$ and $(\oplus b)$?

Exercise: Show that the following equation states that functional compositon is associative.

$$(f \cdot) \cdot (g \cdot) = ((f \cdot g) \cdot)$$

Basic Concepts

List Functions as Homomorphisms Directed Reductions Accumulations Horner's Rule Application: Maximum Segment Sum Problem

Review: Notations on Functions Review: Lists

Review: Notations on Functions

 The identity element of ⊕ : α × α → α, if it exists, will be denoted by *id*_⊕. Thus,

$$\mathsf{a} \oplus \mathsf{id}_\oplus = \mathsf{id}_\oplus \oplus \mathsf{a} = \mathsf{a}$$

Exericise: What is the identity element of functional composition?

• The constant values function $K : \alpha \to \beta \to \alpha$ is defined by the equation

$$K \ a \ b = a$$

Review: Notations on Functions Review: Lists

Review: Lists

Lists are finite sequence of values of the same type. We use $[\alpha]$ to denote the type of lists whose elements have type α , and $[\alpha]^+$ to denote the type of non-empty lists whose elements have type α .

Examples:

 $\begin{matrix} [1,2,1] : [\textit{Int}] \\ [[1],[1,2],[1,2,1]] : [[\textit{Int}]] \\ [] : [\alpha] \end{matrix}$

 Basic Concepts

 List Functions as Homomorphisms

 Directed Reductions

 Accumulations

 Horner's Rule

 Application: Maximum Segment Sum Problem

Review: Lists

 Review:

• [.] : $\alpha \to [\alpha]$ maps elements of α into singleton lists.

$$[.] a = [a]$$

• The primitive operator on lists is concatenation, denoted by ++ .

$$[1] ++ [2] ++ [1] = [1, 2, 1]$$

Concatenation is associative:

$$x ++ (y ++ z) = (x ++ y) ++ z$$

Exercise: What is the identity for concatenation?

Basic Concepts

List Functions as Homomorphisms Directed Reductions Accumulations Horner's Rule Application: Maximum Segment Sum Problem

Review: Notations on Functions Review: Lists

Algebraic View of Lists

- $([\alpha], ++, [])$ is a monoid.
- ([α], ++, []) is a free monoid generated by α under the assignment [.] : $\alpha \rightarrow [\alpha]$.
- $([\alpha]^+, +)$ is a semigroup.

 Basic Concepts

 List Functions as Homomorphisms

 Directed Reductions

 Accumulations

 Horner's Rule

 Application: Maximum Segment Sum Problem

Bags and Sets

 A bag is a list in which the order of the elements is ignored. Bags are constructed by adding the rule that ++ is commutative (as well as associative):

$$x ++ y = y ++ x$$

• A set is a bag in which repetitions of elements are ignored. Sets are constructed by adding the rule that + is idempotent (as well as commutative and associative):

$$x ++ x = x$$

Basic Concepts List Functions as Homomorphisms Directed Reductions Accumulations Horner's Rule

Outline

(2) List Functions as Homomorphisms

- Homomorphisms
- Map
- Reduce
- The Homomorphism Lemma
- Promotion Rules

Homomorphisms Map Reduce The Homomorphism Lemma Promotion Rules

List Functions as Homomorphisms

A function h defined in the following form is called homomorphism:

It defines a structure-preserving map from the monoid ([α], ++, []) to the monoid (β , \oplus : $\beta \rightarrow \beta \rightarrow \beta$, id_{\oplus} : β).

Property: *h* is **uniquely** determined by *f* and \oplus .

Homomorphisms Map Reduce The Homomorphism Lemma Promotion Rules

List Functions as Homomorphisms

An Example: the function returning the length of a list.

$$\begin{array}{rcl} \# \ [] & = & 0 \\ \# \ [a] & = & 1 \\ \# \ (x + + y) & = & \# \ x + \# \ y \end{array}$$

It is a structure-preserving map from the monoid ([α], ++, []) the monoid (*Int*, +, 0).

Map

The operator * (pronounced map) takes a function on Its left and a list on its right. Informally, we have

$$f * [a_1, a_2, \dots, a_n] = [f a_1, f a_2, \dots, f a_n]$$

Formally, (f*) (or sometimes simply written as f*) is a homomorphism:

$$\begin{array}{l} f * [] &= [] \\ f * [a] &= [f a] \\ f * (x ++ y) &= (f * x) ++ (f * y) \end{array}$$

Map Distributivity: $(f \cdot g)* = (f*) \cdot (g*)$ Old Exercise: Prove the map distributivity.

Reduce

The operator / (pronounced reduce) takes an associative binary operator on Its left and a list on its right. Informally, we have

$$\oplus/[a_1,a_2,\ldots,a_n]=a_1\oplus a_2\oplus\cdots\oplus a_n$$

Formally, \oplus / is a homomorphism:

$$\begin{array}{lll} \oplus/[] &= id_{\oplus} \\ \oplus/[a] &= a \\ \oplus/(x + y) &= (\oplus/x) \oplus (\oplus/y) \end{array}$$

If \oplus is commutative as well as associative, then \oplus / can be applied to bags; and if \oplus is also idempotent, then \oplus / can be applied to sets.

Reduce

Examples:

$$max : [Int] \rightarrow Int$$

$$max = \uparrow /$$
where $a \uparrow b = \text{if } a \leq b$ then b else a

$$sum$$
 : $[Int] \rightarrow Int$
 sum = $+/$

$$\begin{array}{rll} \textit{head} & : & [\alpha]^+ \to \alpha \\ \textit{head} & = & \lessdot/ & \textit{where } a \lessdot b = a \end{array}$$

$$\begin{array}{lll} \textit{last} & : & [\alpha]^+ \to \alpha \\ \textit{last} & = & >/ & \text{where } \textit{a} > \textit{b} = \textit{b} \\ \end{array}$$

Homomorphisms Map Reduce **The Homomorphism Lemma** Promotion Rules

The Homomorphism Lemma

The Homomorphism Lemma

A list function $h : [A] \to B$ is a homomorphism if and only if there exist f and \oplus such that the following holds.

$$h = \oplus / \cdot f *$$

Proof

It suffices to prove that $\oplus / \cdot f *$ is a homomorphism to (B, \oplus, id_{\oplus}) with f on a singleton list, because of the uniqueness property of homomorphisms.

Promotion Rules

The equations defining f * and \oplus / can be expressed as identities between functions.

Empty Rules

$$\begin{array}{rcl} f * \cdot K \left[\right] & = & K \left[\right] \\ \oplus / \cdot K \left[\right] & = & id_{\oplus} \end{array}$$

One-Point Rules

$$\begin{array}{rcl} f * \cdot [\cdot] & = & [\cdot] \cdot f \\ \oplus / \cdot [\cdot] & = & id \end{array}$$

Join Rules

$$\begin{array}{rcl} f \ast \cdot ++ / &=& ++ / \cdot (f \ast) \ast \\ \oplus / \cdot ++ / &=& \oplus / . (\oplus /) \ast \end{array}$$

Exercise: Prove the join rules.

Homomorphisms Map Reduce The Homomorphism Lemma Promotion Rules

An Example of Calculation

A composition of two specific homomorphisms is a homomorphism.

$$\begin{array}{rcl} \oplus/\cdot f * \cdot + + /\cdot g * \\ = & \{ \text{ map promotion } \} \\ \oplus/\cdot + + /\cdot f * * \cdot g * \\ = & \{ \text{ reduce promotion } \} \\ \oplus/\cdot (\oplus/) * \cdot f * * \cdot g * \\ = & \{ \text{ map distribution } \} \\ \oplus/\cdot (\oplus/\cdot f * \cdot g) * \end{array}$$

Outline

Basic Concepts

- 2 List Functions as Homomorphisms
- Oirected Reductions
- 4 Accumulations
- 6 Horner's Rule

Application: Maximum Segment Sum Problem

Directed Reductions (Folds)

We introduce two more computation patterns $\not\rightarrow$ (pronounced left-to-right reduce, or simply left reduce) and $\not\leftarrow$ (right-to-left reduce, or simply right reduce) which are closely related to /. Informally, we have

$$\begin{array}{rcl} \oplus \not\rightarrow_{e}[a_{1},a_{2},\ldots,a_{n}] &=& (((e \oplus a_{1}) \oplus \cdots) \oplus a_{n-1}) \oplus a_{n} \\ \oplus \not\leftarrow_{e}[a_{1},a_{2},\ldots,a_{n}] &=& a_{1} \oplus (a_{2} \oplus (\cdots \oplus (a_{n} \oplus e))) \end{array}$$

Formally, we can define them as follows.

$$\begin{array}{lll} \oplus \not \rightarrow_{e}[] & = & e \\ \oplus \not \rightarrow_{e}(x + + [a]) & = & (\oplus \not \rightarrow_{e}x) \oplus a \\ \oplus \not \rightarrow_{e}(x + + [a]) & = & (\oplus \not \rightarrow_{e}x) \\ \oplus \not \rightarrow_{e}(a : x) & = & a \oplus (\oplus \not \rightarrow_{e}x) \end{array}$$

Directed Reductions without Seeds

$$\begin{array}{rcl} \oplus \not \rightarrow [a_1, a_2, \dots, a_n] & = & ((a_1 \oplus a_2) \oplus \cdots) \oplus a_n \\ \oplus \not \leftarrow [a_1, a_2, \dots, a_n] & = & a_1 \oplus (a_2 \oplus \cdots \oplus (a_{n-1} \oplus a_n)) \end{array}$$

Properties:

$$(\oplus \not\rightarrow) \cdot ([a] ++) = \oplus \not\rightarrow_a (\oplus \not\leftarrow) \cdot (++ [a]) = \oplus \not\leftarrow_a$$

An Example of Left Reduce

Consider the right-hand side of Horner's rule:

$$(((1 \times a_1 + 1) \times a_2 + 1) \times \cdots + 1) \times a_n + 1$$

This expression can be expressed by a left-reduce:

$$\odot \neq_1[a_1, a_2, \dots, a_n]$$

where $a \odot b = (a \times b) + 1$

Exercise: Give a definition of \ominus such that the following holds.

$$\ominus \not\rightarrow [a_1, a_2, \ldots, a_n] = (((a_1 \times a_2 + a_2) \times a_3 + a_3) \times \cdots + a_{n-1}) \times a_n + a_n$$

Outline

Basic Concepts

- 2 List Functions as Homomorphisms
- 3 Directed Reductions

4 Accumulations

5 Horner's Rule

Application: Maximum Segment Sum Problem

Accumulations (Scans)

With each form of directed reduction over lists there corresponds a form of computation called an accumulation. These forms are expressed with the operators # (pronounced left accumulate) and # (right accumulate) and are defined informally by

Formally, we can define them as follows.

$$\begin{array}{rcl} \oplus \ \not\#_{e}[] & = & [e] \\ \oplus \ \not\#_{e}(x + [a]) & = & \oplus \ \not\#_{a \oplus e} x + [e] \end{array}$$

Efficiency in Accumulations

 $\oplus \#_e[a_1, a_2, \dots, a_n]$: can be evaluated with n-1 calculations of \oplus .

Exercise: Consider computation of first n + 1 factorial numbers: [0!, 1!, ..., n!]. How many calculations of \times are required for the following two programs?

$$\textcircled{0} \times \#_1[1, 2, \ldots, n]$$

2 *fact* * [0, 1, 2, \cdots , *n*], where

$$\begin{array}{rcl} fact \ 0 & = & 1 \\ fact \ (k+1) & = & k \times fact \ k. \end{array}$$

Relation between Reduce and Accumulate

$$\oplus \not\rightarrow_e = last \cdot \oplus \not \gg_e$$

A list y is a segment of x if there exists u and v such that

$$x = u + y + v.$$

If u = [], then y is called an initial segment. If v = [], then y is called an final segment.

segs [1, 2, 3] = [[], [1], [1, 2], [2], [1, 2, 3], [2, 3], [3]]

Exercise: List all initial segments and final segments of [1, 2, 3]. **Exercise**: How many segments of $[a_1, a_2, \ldots, a_n]$?

	Basic Concepts List Functions as Homomorphisms Directed Reductions Accumulations Horner's Rule Application: Maximum Segment Sum Problem	
inits		

The function inits returns the list of initial segments of a list, in increasing order of a list.

inits
$$[a_1, a_2, \dots, a_n] = [[], [a_1], [a_1, a_2], \dots, [a_1, a_2, \dots, a_n]]$$

$$inits = (\# \#_{[]}) \cdot [\cdot] *$$

The function tails returns the list of final segments of a list, in decreasing order of a list.

$$tails [a_1, a_2, \dots, a_n] = [[a_1, a_2, \dots, a_n], [a_2, a_2, \dots, a_n], \dots, []]$$

$$tails = (+ \# []) \cdot [\cdot] *$$

 $segs = ++ / \cdot tails * \cdot inits$

Exercise: Show the result of *segs* [1, 2].

Accumulation Lemma

$$(\oplus \not \not \to_e) = (\oplus \not \to_e) * \cdot inits$$
$$(\oplus \not \not \to) = (\oplus \not \to) * \cdot inits^+$$

The accumulation lemma is used frequently in the derivation of efficient algorithms for problems about segments. On lists of length n, evaluation of the LHS requires O(n) computations involving \oplus , while the RHS requires $O(n^2)$ computations.

Outline

Basic Concepts

- 2 List Functions as Homomorphisms
- 3 Directed Reductions
- Accumulations

5 Horner's Rule

Application: Maximum Segment Sum Problem

The Problem: Revisit

Consider the following simple identity:

$$(a_1 \times a_2 \times a_3) + (a_2 \times a_3) + a_3 + 1 = ((1 \times a_1 + 1) \times a_2 + 1) \times a_3 + 1$$

This equation generalizes in the obvious way to *n* variables a_1, a_2, \ldots, a_2 , and we will refer to it as Horner'e rule.

- Can we generalize × to ⊗, + to ⊕? What are the essential constraints for ⊗ and ⊕?
- Do you have suitable notation for expressing the Horner's rule concisely?

The following equation

$$\begin{array}{l} \oplus / \cdot \otimes / * \cdot tails = \odot \not\rightarrow_{e} \\ \text{where} \\ e = id_{\otimes} \\ a \odot b = (a \otimes b) \oplus e \end{array}$$

holds, provided that \otimes distributes (backwards) over \oplus :

$$(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$$

for all *a*, *b*, and *c*.

Proof of Horner's Rule

The Horner's rule can be proved by the following two steps.

Show that

$$(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$$

if and only if

$$(\otimes c) \cdot \oplus / = \oplus / \cdot (\otimes c) * .$$

• Show that *f* defined by

$$f = \oplus / \cdot \otimes / * \cdot tails$$

satisfies the equations

$$\begin{array}{rcl} f \ [] & = & e \\ f \ (x ++ [a]) & = & f \ x \odot a. \end{array}$$

Exercise: Prove the correctness of the Horner's rule. 胡振江 構成的アルゴリズム論の基本概念

Generalizations of Horner's Rule

Generalization 1:

Generalization 2:

Basic Concepts Directed Reductions Accumulations Horner's Rule Application: Maximum Segment Sum Problem

Outline

6 Application: Maximum Segment Sum Problem

Application: MSS

The Maximum Segment Sum (mss) Problem

Compute the maximum of the sums of all segments of a given sequence of numbers, positive, negative, or zero.

$$mss[3, 1, -4, 1, 5, -9, 2] = 6$$

A Direct Solution

$$mss = \uparrow / \cdot + / * \cdot segs$$

Exercise: How many steps are required in the above direct solution?

Calculating a Linear Algorithm

A Program in Haskell

```
mss = foldl1 (max) . scanl odot 0
where a 'odot' b = (a + b) 'max' 0
```

Exercise: Code the derived linear algorithm for *mss* in your favorite programming language.

Segment Decomposition Theorem

The sequence of calculation steps given in the derivation of the *mss* problem arises grequently. The essential idea can be summarized as a general theorem.

Segment Decomposition Theorem

Suppose S and T are defined by

$$S = \oplus / \cdot f * \cdot segs$$
$$T = \oplus / \cdot f * \cdot tails$$

If T can be expressed in the form $T = h \cdot \odot \not\rightarrow_e$, then we have

$$S = \oplus / \cdot h * \cdot \odot \#_e$$

Exercise: Prove the segment decomposition theorem.