
Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

構成的アルゴリズム論の基本概念

胡 振江

東京大学 計数工学科

2007年 12月 10日、17日

Copyright c© 2007 Zhenjiang Hu, All Right Reserved.

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

The First Exercise Revisited

The Maximum Segment Sum (mss) Problem

Design an efficient and correct program to compute the maximum
of the sums of all segments of a given sequence of numbers,
positive, negative, or zero.

mss [3, 1,−4, 1, 5,−9, 2] = 6

mss [3, 1,−4, 1, 5,−9, 2] = 6

mss [3, 1,−4, 1, 5,−9, 2] = 6

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Reference

R.S. Bird: Lecture Notes on Constructive Functional Programming,
Technical Monograph PRG-69, ISBN 0-902928-51-1, 1988.

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Subject

A calculus of functions for deriving programs from their
specifications:

A range of concepts and notations for defining functions over
various data types (including lists, trees, and arrays);

A set of algebraic laws (rules, lemmas, theorems) for
manipulating functions;

A framework for constructing new calculation rules to capture
principles of programming.

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Review: Notations on Functions
Review: Lists

Outline

1 Basic Concepts
Review: Notations on Functions
Review: Lists

2 List Functions as Homomorphisms

3 Directed Reductions

4 Accumulations

5 Horner’s Rule

6 Application: Maximum Segment Sum Problem

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Review: Notations on Functions
Review: Lists

A Simple Problem

Consider the following simple identity:

(a1 × a2 × a3) + (a2 × a3) + a3 + 1 = ((1 × a1 + 1)× a2 + 1)× a3 + 1

This equation generalizes in the obvious way to n variables
a1, a2, . . . , an, and we will refer to it as Horner’e rule.

How many × are used in each side?

Can we generalize × to ⊗, + to ⊕? What are the essential
constraints for ⊗ and ⊕?

Do you have suitable notation for expressing the Horner’s rule
concisely?

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Review: Notations on Functions
Review: Lists

Review: Notations on Functions

A function f that has source type α and target type β is
denoted by

f : α→ β

We shall say that f takes arguments in α and returns results
in β.

Function application is written without brackets; thus f a

means f (a). Function application is more binding than any
other operation, so f a ⊗ b means (f a)⊗ b.

Functions are curried and applications associates to the left,
so f a b means (f a) b (sometimes written as fa b.)

Function composition is denoted by a centralized dot (·). We
have

(f · g) x = f (g x)

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Review: Notations on Functions
Review: Lists

Review: Notations on Functions

Binary operators will be denoted by ⊕, ⊗, ⊙, etc. Binary
operators can be sectioned. This means that (⊕), (a⊕) and
(⊕a) all denote functions. The definitions are:

(⊕) a b = a ⊕ b

(a⊕) b = a ⊕ b

(⊕b) a = a ⊕ b

Exercise: Given (⊕) : α→ β → γ, give the types for (a⊕) and
(⊕b)?
Exercise: Show that the following equation states that functional
compositon is associative.

(f ·) · (g ·) = ((f · g)·)

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Review: Notations on Functions
Review: Lists

Review: Notations on Functions

The identity element of ⊕ : α× α→ α, if it exists, will be
denoted by id⊕. Thus,

a ⊕ id⊕ = id⊕ ⊕ a = a

Exericise: What is the identity element of functional
composition?

The constant values function K : α→ β → α is defined by
the equation

K a b = a

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Review: Notations on Functions
Review: Lists

Review: Lists

Lists are finite sequence of values of the same type. We use [α] to
denote the type of lists whose elements have type α, and [α]+ to
denote the type of non-empty lists whose elements have type α.

Examples:
[1, 2, 1] : [Int]
[[1], [1, 2], [1, 2, 1]] : [[Int]]
[] : [α]

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Review: Notations on Functions
Review: Lists

Review: Lists

[.] : α→ [α] maps elements of α into singleton lists.

[.] a = [a]

The primitive operator on lists is concatenation, denoted by
++ .

[1] ++ [2] ++ [1] = [1, 2, 1]

Concatenation is associative:

x ++ (y ++ z) = (x ++ y) ++ z

Exercise: What is the identity for concatenation?

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Review: Notations on Functions
Review: Lists

Algebraic View of Lists

([α],++ , []) is a monoid.

([α],++ , []) is a free monoid generated by α under the
assignment [.] : α→ [α].

([α]+,++) is a semigroup.

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Review: Notations on Functions
Review: Lists

Bags and Sets

A bag is a list in which the order of the elements is ignored.
Bags are constructed by adding the rule that ++ is
commutative (as well as associative):

x ++ y = y ++ x

A set is a bag in which repetitions of elements are ignored.
Sets are constructed by adding the rule that ++ is idempotent
(as well as commutative and associative):

x ++ x = x

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Homomorphisms
Map
Reduce
The Homomorphism Lemma
Promotion Rules

Outline

1 Basic Concepts

2 List Functions as Homomorphisms
Homomorphisms
Map
Reduce
The Homomorphism Lemma
Promotion Rules

3 Directed Reductions

4 Accumulations

5 Horner’s Rule

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Homomorphisms
Map
Reduce
The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

A function h defined in the following form is called homomorphism:

h [] = id⊕
h [a] = f a

h (x ++ y) = h x ⊕ h y

It defines a structure-preserving map from the monoid ([α],++ , [])
to the monoid (β,⊕: β → β → β, id⊕: β).

Property: h is uniquely determined by f and ⊕.

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Homomorphisms
Map
Reduce
The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

An Example: the function returning the length of a list.

[] = 0
[a] = 1
(x ++ y) = # x + # y

It is a structure-preserving map from the monoid ([α],++ , []) the
monoid (Int,+, 0).

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Homomorphisms
Map
Reduce
The Homomorphism Lemma
Promotion Rules

Map

The operator ∗ (pronounced map) takes a function on lts left and
a list on its right. Informally, we have

f ∗ [a1, a2, . . . , an] = [f a1, f a2, . . . , f an]

Formally, (f ∗) (or sometimes simply written as f ∗) is a
homomorphism:

f ∗ [] = []
f ∗ [a] = [f a]
f ∗ (x ++ y) = (f ∗ x) ++ (f ∗ y)

Map Distributivity: (f · g)∗ = (f ∗) · (g∗)
Old Exercise: Prove the map distributivity.

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Homomorphisms
Map
Reduce
The Homomorphism Lemma
Promotion Rules

Reduce

The operator / (pronounced reduce) takes an associative binary
operator on lts left and a list on its right. Informally, we have

⊕/[a1, a2, . . . , an] = a1 ⊕ a2 ⊕ · · · ⊕ an

Formally, ⊕/ is a homomorphism:

⊕/[] = id⊕
⊕/[a] = a

⊕/(x ++ y) = (⊕/x)⊕ (⊕/y)

If ⊕ is commutative as well as associative, then ⊕/ can be applied
to bags; and if ⊕ is also idempotent, then ⊕/ can be applied to
sets.

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Homomorphisms
Map
Reduce
The Homomorphism Lemma
Promotion Rules

Reduce

Examples:

max : [Int]→ Int

max = ↑ /
where a ↑ b = if a ≤ b then b else a

sum : [Int]→ Int

sum = +/

head : [α]+ → α
head = ⋖/ where a ⋖ b = a

last : [α]+ → α
last = ⋗/ where a ⋗ b = b

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Homomorphisms
Map
Reduce
The Homomorphism Lemma
Promotion Rules

The Homomorphism Lemma

The Homomorphism Lemma

A list function h : [A]→ B is a homomorphism if and only if there
exist f and ⊕ such that the following holds.

h = ⊕/ · f ∗

Proof
It suffices to prove that ⊕/ · f ∗ is a homomorphism to (B ,⊕, id⊕)
with f on a singleton list, because of the uniqueness property of
homomorphisms.

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Homomorphisms
Map
Reduce
The Homomorphism Lemma
Promotion Rules

Promotion Rules

The equations defining f ∗ and ⊕/ can be expressed as identities
between functions.

Empty Rules
f ∗ ·K [] = K []
⊕/ · K [] = id⊕

One-Point Rules
f ∗ ·[·] = [·] · f
⊕/ · [·] = id

Join Rules
f ∗ ·++ / = ++ / · (f ∗)∗
⊕/ ·++ / = ⊕/.(⊕/)∗

Exercise: Prove the join rules.

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Homomorphisms
Map
Reduce
The Homomorphism Lemma
Promotion Rules

An Example of Calculation

A composition of two specific homomorphisms is a homomorphism.

⊕/ · f ∗ ·++ / · g∗
= { map promotion }

⊕/ ·++ / · f ∗ ∗ · g∗
= { reduce promotion }

⊕/ · (⊕/) ∗ ·f ∗ ∗ · g∗
= { map distribution }

⊕/ · (⊕/ · f ∗ ·g)∗

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Outline

1 Basic Concepts

2 List Functions as Homomorphisms

3 Directed Reductions

4 Accumulations

5 Horner’s Rule

6 Application: Maximum Segment Sum Problem

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Directed Reductions (Folds)

We introduce two more computation patterns→/ (pronounced
left-to-right reduce, or simply left reduce) and←/ (right-to-left
reduce, or simply right reduce) which are closely related to /.
Informally, we have

⊕→/ e [a1, a2, . . . , an] = (((e ⊕ a1)⊕ · · ·)⊕ an−1)⊕ an

⊕←/ e [a1, a2, . . . , an] = a1 ⊕ (a2 ⊕ (· · · ⊕ (an ⊕ e)))

Formally, we can define them as follows.

⊕→/ e [] = e

⊕→/ e(x ++ [a]) = (⊕→/ ex)⊕ a

⊕←/ e [] = e

⊕←/ e(a : x) = a⊕ (⊕←/ ex)

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Directed Reductions without Seeds

⊕→/ [a1, a2, . . . , an] = ((a1 ⊕ a2)⊕ · · ·)⊕ an

⊕←/ [a1, a2, . . . , an] = a1 ⊕ (a2 ⊕ · · · ⊕ (an−1 ⊕ an))

Properties:
(⊕→/) · ([a] ++) = ⊕→/ a

(⊕←/) · (++ [a]) = ⊕←/ a

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

An Example of Left Reduce

Consider the right-hand side of Horner’s rule:

(((1 × a1 + 1)× a2 + 1)× · · ·+ 1)× an + 1

This expression can be expressed by a left-reduce:

⊙→/ 1[a1, a2, . . . , an]
where a⊙ b = (a × b) + 1

Exercise: Give a definition of ⊖ such that the following holds.

⊖→/ [a1, a2, . . . , an] = (((a1×a2+a2)×a3+a3)×· · ·+an−1)×an+an

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Outline

1 Basic Concepts

2 List Functions as Homomorphisms

3 Directed Reductions

4 Accumulations

5 Horner’s Rule

6 Application: Maximum Segment Sum Problem

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Accumulations (Scans)

With each form of directed reduction over lists there corresponds a
form of computation called an accumulation. These forms are
expressed with the operators →// (pronounced left accumulate) and
←// (right accumulate) and are defined informally by

⊕→// e [a1, a2, . . . , an] = [e, e ⊕ a1, . . . , (((e ⊕ a1)⊕ · · ·)⊕ an]
⊕ ←// e [a1, a2, . . . , an] = [a1 ⊕ (a2 ⊕ (· · · ⊕ (an ⊕ e))), . . . , an ⊕ e, e]

Formally, we can define them as follows.

⊕→// e [] = [e]
⊕→// e(a : x) = e : (⊕→// e⊕ax)

⊕ ←// e [] = [e]
⊕ ←// e (x ++ [a]) = ⊕ ←// a⊕ex ++ [e]

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Efficiency in Accumulations

⊕→// e [a1, a2, . . . , an]: can be evaluated with n− 1 calculations of ⊕.

Exercise: Consider computation of first n + 1 factorial numbers:
[0!, 1!, . . . , n!]. How many calculations of × are required for the
following two programs?

1 ×→// 1[1, 2, . . . , n]

2 fact ∗ [0, 1, 2, · · · , n], where

fact 0 = 1
fact (k + 1) = k × fact k.

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Relation between Reduce and Accumulate

⊕→/ e = last · ⊕→// e

⊕→// e = ⊗→/ [e]

where x ⊗ a = x ++ [last x ⊕ a]

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Segments

A list y is a segment of x if there exists u and v such that

x = u ++ y ++ v .

If u = [], then y is called an initial segment.
If v = [], then y is called an final segment.

segs [1, 2, 3] = [[], [1], [1, 2], [2], [1, 2, 3], [2, 3], [3]]

Exercise: List all initial segments and final segments of [1, 2, 3].
Exercise: How many segments of [a1, a2, . . . , an]?

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

inits

The function inits returns the list of initial segments of a list, in
increasing order of a list.

inits [a1, a2, . . . , an] = [[], [a1], [a1, a2], . . . , [a1, a2, . . . , an]]

inits = (++→// []) · [·]∗

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

tails

The function tails returns the list of final segments of a list, in
decreasing order of a list.

tails [a1, a2, . . . , an] = [[a1, a2, . . . , an], [a2, a2, . . . , an], . . . , []]

tails = (++ ←// []) · [·]∗

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

segs

segs = ++ / · tails ∗ ·inits

Exercise: Show the result of segs [1, 2].

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Accumulation Lemma

(⊕→// e) = (⊕→/ e) ∗ ·inits

(⊕→//) = (⊕→/) ∗ ·inits+

The accumulation lemma is used frequently in the derivation of
efficient algorithms for problems about segments. On lists of
length n, evaluation of the LHS requires O(n) computations
involving ⊕, while the RHS requires O(n2) computations.

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Outline

1 Basic Concepts

2 List Functions as Homomorphisms

3 Directed Reductions

4 Accumulations

5 Horner’s Rule

6 Application: Maximum Segment Sum Problem

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

The Problem: Revisit

Consider the following simple identity:

(a1 × a2 × a3) + (a2 × a3) + a3 + 1 = ((1 × a1 + 1)× a2 + 1)× a3 + 1

This equation generalizes in the obvious way to n variables
a1, a2, . . . , a2, and we will refer to it as Horner’e rule.

Can we generalize × to ⊗, + to ⊕? What are the essential
constraints for ⊗ and ⊕?

Do you have suitable notation for expressing the Horner’s rule
concisely?

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Horner’s Rule

The following equation

⊕/ · ⊗/ ∗ ·tails = ⊙→/ e

where
e = id⊗
a ⊙ b = (a ⊗ b)⊕ e

holds, provided that ⊗ distributes (backwards) over ⊕:

(a ⊕ b)⊗ c = (a ⊗ c)⊕ (b ⊗ c)

for all a, b, and c .

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Proof of Horner’s Rule

The Horner’s rule can be proved by the following two steps.

Show that
(a ⊕ b)⊗ c = (a ⊗ c)⊕ (b ⊗ c)

if and only if
(⊗c) · ⊕/ = ⊕/ · (⊗c) ∗ .

Show that f defined by

f = ⊕/ · ⊗/ ∗ ·tails

satisfies the equations

f [] = e

f (x ++ [a]) = f x ⊙ a.

Exercise: Prove the correctness of the Horner’s rule.
胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Generalizations of Horner’s Rule

Generalization 1:

⊕/ · ⊗/ ∗ ·tails+ = ⊙→/
where

a ⊙ b = (a ⊗ b)⊕ b

Generalization 2:

⊕/ · (⊗/ · f ∗) ∗ ·tails = ⊙→/ e

where
e = id⊗
a ⊙ b = (a ⊗ f b)⊕ e

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Outline

1 Basic Concepts

2 List Functions as Homomorphisms

3 Directed Reductions

4 Accumulations

5 Horner’s Rule

6 Application: Maximum Segment Sum Problem

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Application: MSS

The Maximum Segment Sum (mss) Problem

Compute the maximum of the sums of all segments of a given
sequence of numbers, positive, negative, or zero.

mss [3, 1,−4, 1, 5,−9, 2] = 6

A Direct Solution
mss =↑ / ·+/ ∗ ·segs

Exercise: How many steps are required in the above direct
solution?

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Calculating a Linear Algorithm

mss

= { definition of mss }

↑ / ·+/ ∗ ·segs
= { definition of segs }

↑ / ·+/ ∗ ·++ / · tails ∗ ·inits

= { map and reduce promotion }

↑ / · (↑ / ·+/ ∗ ·tails) ∗ ·inits

= { Horner’s rule with a⊙ b = (a + b) ↑ 0 }

↑ / · ⊙→/ 0 ∗ ·inits

= { accumulation lemma }

↑ / · ⊙→// 0

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

A Program in Haskell

mss = foldl1 (max) . scanl odot 0

where a ‘odot‘ b = (a + b) ‘max‘ 0

Exercise: Code the derived linear algorithm for mss in your
favorite programming language.

胡 振江 構成的アルゴリズム論の基本概念

Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Segment Decomposition Theorem

The sequence of calculation steps given in the derivation of the
mss problem arises grequently. The essential idea can be
summarized as a general theorem.

Segment Decomposition Theorem

Suppose S and T are defined by

S = ⊕/ · f ∗ ·segs
T = ⊕/ · f ∗ ·tails

If T can be expressed in the form T = h · ⊙→/ e , then we have

S = ⊕/ · h ∗ ·⊙→// e

Exercise: Prove the segment decomposition theorem.

胡 振江 構成的アルゴリズム論の基本概念

	Basic Concepts
	Review: Notations on Functions
	Review: Lists

	List Functions as Homomorphisms
	Homomorphisms
	Map
	Reduce
	The Homomorphism Lemma
	Promotion Rules

	Directed Reductions
	Accumulations
	Horner's Rule
	Application: Maximum Segment Sum Problem

