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The First Exercise Revisited

The Maximum Segment Sum (mss) Problem

Design an efficient and correct program to compute the maximum
of the sums of all segments of a given sequence of numbers,
positive, negative, or zero.

mss [3, 1,−4, 1, 5,−9, 2] = 6

mss [3, 1,−4, 1, 5,−9, 2] = 6

mss [3, 1,−4, 1, 5,−9, 2] = 6
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Subject

A calculus of functions for deriving programs from their
specifications:

A range of concepts and notations for defining functions over
various data types (including lists, trees, and arrays);

A set of algebraic laws (rules, lemmas, theorems) for
manipulating functions;

A framework for constructing new calculation rules to capture
principles of programming.
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A Simple Problem

Consider the following simple identity:

(a1 × a2 × a3) + (a2 × a3) + a3 + 1 = ((1 × a1 + 1)× a2 + 1)× a3 + 1

This equation generalizes in the obvious way to n variables
a1, a2, . . . , an, and we will refer to it as Horner’e rule.

How many × are used in each side?

Can we generalize × to ⊗, + to ⊕? What are the essential
constraints for ⊗ and ⊕?

Do you have suitable notation for expressing the Horner’s rule
concisely?
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Review: Notations on Functions

A function f that has source type α and target type β is
denoted by

f : α→ β

We shall say that f takes arguments in α and returns results
in β.

Function application is written without brackets; thus f a

means f (a). Function application is more binding than any
other operation, so f a ⊗ b means (f a)⊗ b.

Functions are curried and applications associates to the left,
so f a b means (f a) b (sometimes written as fa b.)

Function composition is denoted by a centralized dot (·). We
have

(f · g) x = f (g x)
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Review: Notations on Functions

Binary operators will be denoted by ⊕, ⊗, ⊙, etc. Binary
operators can be sectioned. This means that (⊕), (a⊕) and
(⊕a) all denote functions. The definitions are:

(⊕) a b = a ⊕ b

(a⊕) b = a ⊕ b

(⊕b) a = a ⊕ b

Exercise: Given (⊕) : α→ β → γ, give the types for (a⊕) and
(⊕b)?
Exercise: Show that the following equation states that functional
compositon is associative.

(f ·) · (g ·) = ((f · g)·)
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Review: Notations on Functions

The identity element of ⊕ : α× α→ α, if it exists, will be
denoted by id⊕. Thus,

a ⊕ id⊕ = id⊕ ⊕ a = a

Exericise: What is the identity element of functional
composition?

The constant values function K : α→ β → α is defined by
the equation

K a b = a
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Review: Lists

Lists are finite sequence of values of the same type. We use [α] to
denote the type of lists whose elements have type α, and [α]+ to
denote the type of non-empty lists whose elements have type α.

Examples:
[1, 2, 1] : [Int]
[[1], [1, 2], [1, 2, 1]] : [[Int]]
[ ] : [α]
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Review: Lists

[.] : α→ [α] maps elements of α into singleton lists.

[.] a = [a]

The primitive operator on lists is concatenation, denoted by
++ .

[1] ++ [2] ++ [1] = [1, 2, 1]

Concatenation is associative:

x ++ (y ++ z) = (x ++ y) ++ z

Exercise: What is the identity for concatenation?
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Algebraic View of Lists

([α],++ , [ ]) is a monoid.

([α],++ , [ ]) is a free monoid generated by α under the
assignment [.] : α→ [α].

([α]+,++ ) is a semigroup.
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Bags and Sets

A bag is a list in which the order of the elements is ignored.
Bags are constructed by adding the rule that ++ is
commutative (as well as associative):

x ++ y = y ++ x

A set is a bag in which repetitions of elements are ignored.
Sets are constructed by adding the rule that ++ is idempotent
(as well as commutative and associative):

x ++ x = x
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List Functions as Homomorphisms

A function h defined in the following form is called homomorphism:

h [ ] = id⊕
h [a] = f a

h (x ++ y) = h x ⊕ h y

It defines a structure-preserving map from the monoid ([α],++ , [ ])
to the monoid (β,⊕: β → β → β, id⊕: β).

Property: h is uniquely determined by f and ⊕.
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List Functions as Homomorphisms

An Example: the function returning the length of a list.

# [ ] = 0
# [a] = 1
# (x ++ y) = # x + # y

It is a structure-preserving map from the monoid ([α],++ , [ ]) the
monoid (Int,+, 0).
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Map

The operator ∗ (pronounced map) takes a function on lts left and
a list on its right. Informally, we have

f ∗ [a1, a2, . . . , an] = [f a1, f a2, . . . , f an]

Formally, (f ∗) (or sometimes simply written as f ∗) is a
homomorphism:

f ∗ [ ] = [ ]
f ∗ [a] = [f a]
f ∗ (x ++ y) = (f ∗ x) ++ (f ∗ y)

Map Distributivity: (f · g)∗ = (f ∗) · (g∗)
Old Exercise: Prove the map distributivity.
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Reduce

The operator / (pronounced reduce) takes an associative binary
operator on lts left and a list on its right. Informally, we have

⊕/[a1, a2, . . . , an] = a1 ⊕ a2 ⊕ · · · ⊕ an

Formally, ⊕/ is a homomorphism:

⊕/[ ] = id⊕
⊕/[a] = a

⊕/(x ++ y) = (⊕/x)⊕ (⊕/y)

If ⊕ is commutative as well as associative, then ⊕/ can be applied
to bags; and if ⊕ is also idempotent, then ⊕/ can be applied to
sets.
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Reduce

Examples:

max : [Int]→ Int

max = ↑ /
where a ↑ b = if a ≤ b then b else a

sum : [Int]→ Int

sum = +/

head : [α]+ → α
head = ⋖/ where a ⋖ b = a

last : [α]+ → α
last = ⋗/ where a ⋗ b = b
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The Homomorphism Lemma

The Homomorphism Lemma

A list function h : [A]→ B is a homomorphism if and only if there
exist f and ⊕ such that the following holds.

h = ⊕/ · f ∗

Proof
It suffices to prove that ⊕/ · f ∗ is a homomorphism to (B ,⊕, id⊕)
with f on a singleton list, because of the uniqueness property of
homomorphisms.
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Promotion Rules

The equations defining f ∗ and ⊕/ can be expressed as identities
between functions.

Empty Rules
f ∗ ·K [ ] = K [ ]
⊕/ · K [ ] = id⊕

One-Point Rules
f ∗ ·[·] = [·] · f
⊕/ · [·] = id

Join Rules
f ∗ ·++ / = ++ / · (f ∗)∗
⊕/ ·++ / = ⊕/.(⊕/)∗

Exercise: Prove the join rules.
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An Example of Calculation

A composition of two specific homomorphisms is a homomorphism.

⊕/ · f ∗ ·++ / · g∗
= { map promotion }

⊕/ ·++ / · f ∗ ∗ · g∗
= { reduce promotion }

⊕/ · (⊕/) ∗ ·f ∗ ∗ · g∗
= { map distribution }

⊕/ · (⊕/ · f ∗ ·g)∗

胡 振江 構成的アルゴリズム論の基本概念



Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Outline

1 Basic Concepts

2 List Functions as Homomorphisms

3 Directed Reductions

4 Accumulations

5 Horner’s Rule

6 Application: Maximum Segment Sum Problem

胡 振江 構成的アルゴリズム論の基本概念



Basic Concepts
List Functions as Homomorphisms

Directed Reductions
Accumulations
Horner’s Rule

Application: Maximum Segment Sum Problem

Directed Reductions (Folds)

We introduce two more computation patterns→/ (pronounced
left-to-right reduce, or simply left reduce) and←/ (right-to-left
reduce, or simply right reduce) which are closely related to /.
Informally, we have

⊕→/ e [a1, a2, . . . , an] = (((e ⊕ a1)⊕ · · · )⊕ an−1)⊕ an

⊕←/ e [a1, a2, . . . , an] = a1 ⊕ (a2 ⊕ (· · · ⊕ (an ⊕ e)))

Formally, we can define them as follows.

⊕→/ e [ ] = e

⊕→/ e(x ++ [a]) = (⊕→/ ex)⊕ a

⊕←/ e [ ] = e

⊕←/ e(a : x) = a⊕ (⊕←/ ex)

胡 振江 構成的アルゴリズム論の基本概念
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Directed Reductions without Seeds

⊕→/ [a1, a2, . . . , an] = ((a1 ⊕ a2)⊕ · · · )⊕ an

⊕←/ [a1, a2, . . . , an] = a1 ⊕ (a2 ⊕ · · · ⊕ (an−1 ⊕ an))

Properties:
(⊕→/ ) · ([a] ++ ) = ⊕→/ a

(⊕←/ ) · (++ [a]) = ⊕←/ a

胡 振江 構成的アルゴリズム論の基本概念
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An Example of Left Reduce

Consider the right-hand side of Horner’s rule:

(((1 × a1 + 1)× a2 + 1)× · · ·+ 1)× an + 1

This expression can be expressed by a left-reduce:

⊙→/ 1[a1, a2, . . . , an]
where a⊙ b = (a × b) + 1

Exercise: Give a definition of ⊖ such that the following holds.

⊖→/ [a1, a2, . . . , an] = (((a1×a2+a2)×a3+a3)×· · ·+an−1)×an+an

胡 振江 構成的アルゴリズム論の基本概念
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Accumulations (Scans)

With each form of directed reduction over lists there corresponds a
form of computation called an accumulation. These forms are
expressed with the operators →// (pronounced left accumulate) and
←// (right accumulate) and are defined informally by

⊕→// e [a1, a2, . . . , an] = [e, e ⊕ a1, . . . , (((e ⊕ a1)⊕ · · · )⊕ an]
⊕ ←// e [a1, a2, . . . , an] = [a1 ⊕ (a2 ⊕ (· · · ⊕ (an ⊕ e))), . . . , an ⊕ e, e]

Formally, we can define them as follows.

⊕→// e [ ] = [e]
⊕→// e(a : x) = e : (⊕→// e⊕ax)

⊕ ←// e [ ] = [e]
⊕ ←// e (x ++ [a]) = ⊕ ←// a⊕ex ++ [e]

胡 振江 構成的アルゴリズム論の基本概念
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Efficiency in Accumulations

⊕→// e [a1, a2, . . . , an]: can be evaluated with n− 1 calculations of ⊕.

Exercise: Consider computation of first n + 1 factorial numbers:
[0!, 1!, . . . , n!]. How many calculations of × are required for the
following two programs?

1 ×→// 1[1, 2, . . . , n]

2 fact ∗ [0, 1, 2, · · · , n], where

fact 0 = 1
fact (k + 1) = k × fact k.

胡 振江 構成的アルゴリズム論の基本概念
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Relation between Reduce and Accumulate

⊕→/ e = last · ⊕→// e

⊕→// e = ⊗→/ [e]

where x ⊗ a = x ++ [last x ⊕ a]
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Segments

A list y is a segment of x if there exists u and v such that

x = u ++ y ++ v .

If u = [], then y is called an initial segment.
If v = [], then y is called an final segment.

segs [1, 2, 3] = [[], [1], [1, 2], [2], [1, 2, 3], [2, 3], [3]]

Exercise: List all initial segments and final segments of [1, 2, 3].
Exercise: How many segments of [a1, a2, . . . , an]?
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inits

The function inits returns the list of initial segments of a list, in
increasing order of a list.

inits [a1, a2, . . . , an] = [[ ], [a1], [a1, a2], . . . , [a1, a2, . . . , an]]

inits = (++→// []) · [·]∗

胡 振江 構成的アルゴリズム論の基本概念
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tails

The function tails returns the list of final segments of a list, in
decreasing order of a list.

tails [a1, a2, . . . , an] = [[a1, a2, . . . , an], [a2, a2, . . . , an], . . . , [ ]]

tails = (++ ←// []) · [·]∗

胡 振江 構成的アルゴリズム論の基本概念
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segs

segs = ++ / · tails ∗ ·inits

Exercise: Show the result of segs [1, 2].
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Accumulation Lemma

(⊕→// e) = (⊕→/ e) ∗ ·inits

(⊕→// ) = (⊕→/ ) ∗ ·inits+

The accumulation lemma is used frequently in the derivation of
efficient algorithms for problems about segments. On lists of
length n, evaluation of the LHS requires O(n) computations
involving ⊕, while the RHS requires O(n2) computations.
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The Problem: Revisit

Consider the following simple identity:

(a1 × a2 × a3) + (a2 × a3) + a3 + 1 = ((1 × a1 + 1)× a2 + 1)× a3 + 1

This equation generalizes in the obvious way to n variables
a1, a2, . . . , a2, and we will refer to it as Horner’e rule.

Can we generalize × to ⊗, + to ⊕? What are the essential
constraints for ⊗ and ⊕?

Do you have suitable notation for expressing the Horner’s rule
concisely?
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Horner’s Rule

The following equation

⊕/ · ⊗/ ∗ ·tails = ⊙→/ e

where
e = id⊗
a ⊙ b = (a ⊗ b)⊕ e

holds, provided that ⊗ distributes (backwards) over ⊕:

(a ⊕ b)⊗ c = (a ⊗ c)⊕ (b ⊗ c)

for all a, b, and c .

胡 振江 構成的アルゴリズム論の基本概念
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Proof of Horner’s Rule

The Horner’s rule can be proved by the following two steps.

Show that
(a ⊕ b)⊗ c = (a ⊗ c)⊕ (b ⊗ c)

if and only if
(⊗c) · ⊕/ = ⊕/ · (⊗c) ∗ .

Show that f defined by

f = ⊕/ · ⊗/ ∗ ·tails

satisfies the equations

f [ ] = e

f (x ++ [a]) = f x ⊙ a.

Exercise: Prove the correctness of the Horner’s rule.
胡 振江 構成的アルゴリズム論の基本概念
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Generalizations of Horner’s Rule

Generalization 1:

⊕/ · ⊗/ ∗ ·tails+ = ⊙→/
where

a ⊙ b = (a ⊗ b)⊕ b

Generalization 2:

⊕/ · (⊗/ · f ∗) ∗ ·tails = ⊙→/ e

where
e = id⊗
a ⊙ b = (a ⊗ f b)⊕ e

胡 振江 構成的アルゴリズム論の基本概念
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Application: MSS

The Maximum Segment Sum (mss) Problem

Compute the maximum of the sums of all segments of a given
sequence of numbers, positive, negative, or zero.

mss [3, 1,−4, 1, 5,−9, 2] = 6

A Direct Solution
mss =↑ / ·+/ ∗ ·segs

Exercise: How many steps are required in the above direct
solution?
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Calculating a Linear Algorithm

mss

= { definition of mss }

↑ / ·+/ ∗ ·segs
= { definition of segs }

↑ / ·+/ ∗ ·++ / · tails ∗ ·inits

= { map and reduce promotion }

↑ / · (↑ / ·+/ ∗ ·tails) ∗ ·inits

= { Horner’s rule with a⊙ b = (a + b) ↑ 0 }

↑ / · ⊙→/ 0 ∗ ·inits

= { accumulation lemma }

↑ / · ⊙→// 0
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A Program in Haskell

mss = foldl1 (max) . scanl odot 0

where a ‘odot‘ b = (a + b) ‘max‘ 0

Exercise: Code the derived linear algorithm for mss in your
favorite programming language.
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Segment Decomposition Theorem

The sequence of calculation steps given in the derivation of the
mss problem arises grequently. The essential idea can be
summarized as a general theorem.

Segment Decomposition Theorem

Suppose S and T are defined by

S = ⊕/ · f ∗ ·segs
T = ⊕/ · f ∗ ·tails

If T can be expressed in the form T = h · ⊙→/ e , then we have

S = ⊕/ · h ∗ ·⊙→// e

Exercise: Prove the segment decomposition theorem.
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