構成的アルゴリズム論 Homomorphisms

胡 振江

東京大学 計数工学科

2008年1月21日

Copyright © 2008 Zhenjiang Hu, All Right Reserved.

Outline

- Definition of Homomorphism
- Examples of Homomorphisms
- Algorithm Calculation

A Problem

Maximum *p*-Segment Problem

Given is a sequence x and a predicate p. Required is an efficient algorithm for computing a longest segment of x, all of whose elements satisfy p.

$$lsp\ even\ [3,1,4,1,5,9,2,6,5]=[2,6]$$

Homomorphisms

定義

A homomorphism from a monoid $(\alpha, \oplus, id_{\oplus})$ to a monoid $(\beta, \otimes, id_{\otimes})$ is a function h satisfying the two equations:

$$h id_{\oplus} = id_{\otimes}$$

 $h (x \oplus y) = h x \otimes h y$

Exercise: Prove that *h* is a homomorphism iff the following holds.

$$h \cdot \oplus / = \otimes / \cdot h * \tag{1}$$

Hint:

 \Rightarrow : prove Equation (1) by induction.

 \Leftarrow : apply the both sides of Equation (1) to [] and [x, y] gives two equations h should satisfy.

Examples

• Since f* is a homomorphism from ([α], #, []) to ([β], #, []) whenever $f: \alpha \to \beta$, we have

$$f * \cdot ++ / = ++ / \cdot f * *$$

which is the map promotion rule of the previous lecture.

• Since \oplus / is a homomorphism from ([α], \oplus , []) to (R, \oplus , id_{\oplus}) whenever (\oplus) : $R \to R \to R$, we have

$$\oplus / \cdot ++ / = \oplus / \cdot (\oplus /) *$$

which is the reduce promotion rule of the previous lecture.

Uniqueness Property

We have the fact that $([\alpha], +, [])$ is a free monoid, that is for each monoid $(\beta, \oplus, id_{\oplus})$ there is a unique homomorphism h from $([\alpha], +, [])$ to $(\beta, \oplus, id_{\oplus})$.

This homomorphism is determined by the values of h on singletons. That is, for each $f: \alpha \to \beta$, the additional equation

$$h[a] = f a$$

fixes h completely.

Characterization of Homomorphisms

Lemma (Homomorphism Lemma)

Every homomorphism from ($[\alpha]$, ++, []) can be expressed as the conposition of a reduction with a map, and every such combination is a homomorphism.

More precisely, suppose

$$\begin{array}{lll} h & = & id_{\oplus} \\ h & [a] & = & f & a \\ h & (x ++ y) & = & h & x \oplus h & y \end{array}$$

then, $h = \oplus / \cdot f *$. Conversely, if h has this form, then h is a homomorphism.

Proof of Homomorphism Lemma

 $\oplus / \cdot f *$

```
Proof. \Rightarrow:
                         { definition of id }
                     h · id
                = { identity lemma (can you prove it?) }
                     h \cdot ++ / \cdot [\cdot] *
                = { h is a homomorphism, Equation (1) }
                     \oplus / \cdot h * \cdot [\cdot] *
                = { map distributivity }
                     \oplus / \cdot (h \cdot [\cdot]) *
```

= { definition of h on singletons }

Proof of Homomorphism Lemma (Cont.)

 \Leftarrow : We reason that $h = \oplus / \cdot f *$ is a homomorphism by proving

$$h \cdot ++ / = \oplus / \cdot h *$$

Outline

- Definition of Homomorphism
- 2 Examples of Homomorphisms
- Algorithm Calculation

Examples of Homomorphisms

• #: compute the length of a list.

$$\# = +/\cdot K_1*$$

• reverse: reverses the order of the elements in a list.

$$reverse = \tilde{+} / \cdot [\cdot] *$$

Here,
$$x \tilde{\oplus} y = y \oplus x$$
.

• sort: reorders the elements of a list into ascending order.

$$sort = \wedge \wedge / \cdot [\cdot] *$$

Here, $\wedge \wedge$ (pronounced *merge*) is defined by the equations:

$$x \wedge []$$
 = x
 $[] \wedge y$ = y
 $([a] ++ x) \wedge ([b] ++ y)$ = $[a] ++ (x \wedge ([b] ++ y))$, if $a \leq b$
= $[b] ++ (([a] ++ x) \wedge y)$, otherwise

• all p: returns True if every element of the input list satisfies the predicate p.

all
$$p = \wedge / \cdot p*$$

• *some p*: returns True if at least one element of the input list satisfies the predicate *p*.

some
$$p = \lor / \cdot p*$$

 split: splits a non-empty list into its last element and the remainder.

$$\begin{array}{lll} \textit{split} \ [a] & = & ([\,], a) \\ \textit{split} \ (x +\!\!\!\!+ y) & = & \textit{split} \ x \oplus \textit{split} \ y \\ & & \text{where} \ (x, a) \oplus (y, b) = (x +\!\!\!\!+ [a] +\!\!\!\!+ y, b) \end{array}$$

Exercise: Let $init = \pi_1 \cdot split$ and $last = \pi_2 \cdot split$ where $\pi_1(a,b) = a$ and $\pi_2(a,b) = b$. Show that init is not a homomorphism, but last is.

Hint:

$$init(x + + y) = init x \oplus init y$$
 を満たすような \oplus が存在しないことを示せばよい. (init $[1, 2, 3] = init ([1, 2] + + [3]) = [1] \oplus [] \neq [1, 2]$.)

• tails: returns all the tail (final) segments of a list.

$$tails = \oplus / \cdot f *$$

where

$$f a = [[a], []]$$

 $xs \oplus ys = (++ head ys) * xs ++ ys$

All applied to

The operator o (pronounced all applied to) takes a sequence of functions and a value and returns the result of applying each function to the value.

$$[f_1, f_2, \dots, f_n]^o a = [f_1 \ a, f_2 \ a, \dots, f_n \ a]$$

Formally, $({}^{o} a)$ is a homomorphism:

$$[]^{\circ} a = []$$

 $[f]^{\circ} a = [f a]$
 $(fs ++ gs)^{\circ} a = (fs^{\circ} a) ++ (gs^{\circ} a)$

Exercise: Show that $[\cdot] = [id]^{\circ}$.

Exercise: Show that we can redefine *tails* to be

$$tails = \oplus / \cdot [[id]^o, []^o]^o *.$$

Conditional Expressions

The conditional notation

$$h x = f x$$
, if $p x$
= $g x$, otherwise

will be written by the McCarthy conditional form:

$$h = (p \rightarrow f, g)$$

Laws on Conditional Forms

$$h \cdot (p \to f, g) = (p \to h \cdot f, h \cdot g)$$

$$(p \to f, g) \cdot h = (p \cdot h \to f \cdot h, g \cdot h)$$

$$(p \to f, f) = f$$

Filter

The operator \triangleleft (pronounced *filter*) takes a predicate p and a list x and returns the sublist of x consisting, in order, of all those elements of x that satisfy p.

$$p \triangleleft = ++ / \cdot (p \rightarrow [id]^o, []^o) *$$

Exercise: Prove that the filter satisfies the *filter promotion* property:

$$(p\triangleleft)\cdot ++/=++/\cdot (p\triangleleft)*$$

Exercise: Prove that the filter satisfies the *map-filter swap* property:

$$(p \triangleleft) \cdot f * = f * \cdot (p \cdot f) \triangleleft$$

Cross-product

 X_{\oplus} is a binary operator that takes two lists x and y and returns a list of values of the form $a \oplus b$ for all a in x and b in y.

$$[a,b]X_{\oplus}[c,d,e] = [a \oplus c, b \oplus c, a \oplus d, b \oplus d, a \oplus e, b \oplus e]$$

Formally, we define X_{\oplus} by three equations:

$$\begin{array}{rcl} xX_{\oplus}[\,] & = & [\,] \\ xX_{\oplus}[a] & = & (\oplus a) * x \\ xX_{\oplus}(y +\!\!\!+ z) & = & (xX_{\oplus}y) +\!\!\!\!+ (xX_{\oplus}z) \end{array}$$

Thus (xX_{\oplus}) is a homomorphism.

Properties

[] is the zero element of X_{\oplus} :

$$[]X_{\oplus}x = xX_{\oplus}[] = []$$

We have cross promotion rules:

$$f * * \cdot X_{++} / = X_{++} / \cdot f * * *$$

$$\oplus / * \cdot X_{++} / = X_{\oplus} / \cdot (X_{\oplus} /) *$$

And, if \otimes distributes through \oplus , then we have the following general promotion rule:

$$\oplus / \cdot X_{\otimes} / = \otimes / \cdot (\oplus /) *$$

Example Uses of Cross-product

 cp: takes a list of lists and returns a list of lists of elements, one from each component.

$$cp : [[\alpha]] \to [[\alpha]]$$

 $cp : [[a,b],[c],[d,e]] = [[a,c,d],[b,c,d],[a,c,e],[b,c,e]]$
 $cp = X_{++} / \cdot ([id]^o *) *$

• subs: computes all subsequences of a list.

subs :
$$[\alpha] \to [[\alpha]]$$

subs $[a, b, c] = [[], [a], [b], [a, b], [c], [a, c], [b, c], [a, b, c]]$
subs $= X_{++} / \cdot [[]^o, [id]^o]^o *$

(all p)<</p>

$$(all \ p) \triangleleft = ++ / \cdot (all \ p \rightarrow [id]^o, []^o) *$$

Note that all can be eliminated with the following property.

all
$$p \to [id]^o, []^o = X_{++} / \cdot (p \to [[id]^o]^o, []^o) *$$

Exercise: Compute the value of the expression (all even) \triangleleft [[1, 3], [2]].

Selection Operators

Suppose f is a numeric valued function. We want to define the operator \uparrow_f by

$$x \uparrow_f y = x, \quad f \ x \ge f \ y$$

= y, otherwise

Properties:

- \bigcirc \uparrow_f is associative and idempotent;
- \bigcirc \uparrow_f is selective in that

$$x \uparrow_f y = x$$
 or $x \uparrow_f y = y$

 \bigcirc \uparrow_f is maximizing in that

$$f(x \uparrow_f y) = f x \uparrow f y$$

An Example: $\uparrow_{\#}$

Distributivity of $\uparrow_{\#}$:

$$x ++ (y \uparrow_{\#} z) = (x ++ y) \uparrow_{\#} (x ++ z)$$

 $(y \uparrow_{\#} z) ++ x = (y ++ x) \uparrow_{\#} (y ++ z)$

That is,

$$(x ++) \cdot \uparrow_{\#} / = \uparrow_{\#} / \cdot (x ++) *$$

 $(++ x) \cdot \uparrow_{\#} / = \uparrow_{\#} / \cdot (++ x) *$

We assume $\omega = \uparrow_{\#} / []$.

Outline

- Definition of Homomorphism
- Examples of Homomorphisms
- Algorithm Calculation

A short calculation: $\uparrow_{\#} / \cdot (all \ p) \triangleleft is a homomorphism$

```
↑<sub>#</sub> / · (all p)⊲
= { definition before }
      \uparrow_{\#}/\cdot ++/\cdot (X_{++}/\cdot (p\rightarrow [[id]^o]^o,[]^o)*)*
= { reduce promotion }
      \uparrow_{\#} / \cdot (\uparrow_{\#} / \cdot X_{++} / \cdot (p \rightarrow [[id]^o]^o, []^o)*)*
= { cross distributivity }
      \uparrow_{\#} / \cdot (++ /\cdot \uparrow_{\#} / * \cdot (p \rightarrow [[id]^o]^o, []^o)*)*
= { map distributivity }
      \uparrow_{\#} / \cdot (++ / \cdot (\uparrow_{\#} / \cdot (p \rightarrow [[id]^o]^o, []^o))*)*
= { conditionals }
      \uparrow_{\#} / \cdot (++ / \cdot (p \rightarrow \uparrow_{\#} / \cdot [[id]^o]^o, \uparrow_{\#} / \cdot []^o)*)*
= { empty and one-point rules }
      \uparrow_{\#} / \cdot (++ / \cdot (p \rightarrow [id]^o, K_{\omega})*)*
```

Solution to the Problem

Recall the problem of computing the longest segment of a list, all of whose elements satisfied some given property p.

```
\uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot segs
= \qquad \{ \text{ segment decomposition (can you show the derivation?) } \}
\uparrow_{\#} / \cdot (\uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot tails) * \cdot inits
= \qquad \{ \text{ result before } \}
\uparrow_{\#} / \cdot (\uparrow_{\#} / \cdot (++ / \cdot (p \rightarrow [id]^o, K_\omega) *) * \cdot tails) * \cdot inits
= \qquad \{ \text{ Horner's rule with } x \odot a = (x ++ (p \ a \rightarrow [a], \omega) \uparrow_{\#} [] \} \}
\uparrow_{\#} \cdot \odot \not \rightarrow_{[]} * \cdot inits
= \qquad \{ \text{ accumulation lemma } \}
\uparrow_{\#} \cdot \odot \not \rightarrow_{[]}
```

Exercise: Show that the definition of \odot can be simplified to

$$x \odot a = p \ a \rightarrow x +++ [a], [].$$

Exercise: Show the final program is linear in the number of calculation of p.

Exercise: Code the final algorithm in Haskell.

Exercise: Can you improve the algorithm by adding computation of # in \odot .