Well-defineness of General Equations Definition of Left Reduction Implementation of Left Reduction Application: The Minimax Problem

構成的アルゴリズム論 Left Reductions

胡 振江

東京大学 計数工学科

2008年1月28日

Copyright © 2008 Zhenjiang Hu, All Right Reserved.

A Problem

Min-Max Problem

Given is a list of lists of numbers. Required is an efficient algorithm for computing the minimum of the maximum numbers in each list. More succinctly, we want to compute

$$minimax = \downarrow /\cdot \uparrow /*$$

as efficiently as possible.

Outline

- 1 Well-defineness of General Equations
- 2 Definition of Left Reduction
- 3 Implementation of Left Reduction
- 4 Application: The Minimax Problem

General Equations

So far we have mainly seen examples of homomorphisms. It is instructive to determine the conditions under which a general set of equations

$$h[] = e$$

 $h[a] = f a$
 $h(x++y) = H(x, y, h x, h y)$

determines a unique function h, not necessarily a homomorphism.

Another Representation of h

Consider the equations

$$h'[]$$
 = ([], e)
 $h'[a]$ = ([a], f a)
 $h'(x ++ y)$ = $h' x \oplus h' y$
where $(x, u) \oplus (y, v) = (x ++ y, H(x, y, u, v))$

If h' is a well-defined function (a well-defined homomorphism), then so is h, because we have

$$h = \pi_2 \cdot h'$$

What is the condition for h' to be well-defined homomorphism?

Well-Defineness of Homomorphic Equations

Fact: h' defined by equations

$$h'[]$$
 = ([], e)
 $h'[a]$ = ([a], f a)
 $h'(x ++ y)$ = $h' x \oplus h' y$
where $(x, u) \oplus (y, v) = (x ++ y, H(x, y, u, v))$

is well-defined if $(R, \oplus, ([], e))$ forms a monoid:

- \bullet ([], e) is the unit of \oplus ;
- ⊕ is associative.

Monoid Condition

Translating the monoid condition into conditions on e and H gives the following three conditions.

- **2** H([], y, e, v) = v

An Example

Longest All-Even Initial Segment Problem

$$laei [2, 4, 8, 6, 5, 2, 4] = [2, 3, 8, 6]$$

$$laei[] = []$$

 $laei[a] = if even a then [a] else []$
 $laei(x ++ y) = if laei x = x then laei x ++ laei y else laei x$

In this example,

$$e = []$$

 $H(x, y, u, v) = \text{if } u = x \text{ then } u ++ v \text{ else } u$

Exercise: Prove that $\forall x$. $\#(laei \ x) \leq \#x$. **Exercise**: Prove that laei is well-defined.

[Hint: Use the fact that #u < #v and #u < #v

[Hint: Use the fact that $\#u \leq \#x$ and $\#v \leq \#y$.]

Lemma. laei is not a homomorphism

Proof. Suppose

$$laei(x ++ y) = laei x \oplus laei y$$

for some operator \oplus . Since *laei* [2,1]=[2], *laei* [4]=[4] and *laei* [2]=[2], we have

$$laei [2,1,4] = laei [2,1] \oplus laei [4]$$

= $[2] \oplus [4]$
= $laei [2] \oplus laei [4]$
= $laei [2,4]$

This is a contridition, since laei [2, 1, 4] = [2] and laei [2, 4] = [2, 4].

Outline

- Well-defineness of General Equations
- Definition of Left Reduction
- 3 Implementation of Left Reduction
- 4 Application: The Minimax Problem

Left Reduction

$$\oplus \not\rightarrow_e [x_1, x_2, \dots, x_n] = (((e \oplus x_1) \oplus x_2) \oplus \dots) \oplus x_n$$

In the monoid view of lists, the formal definition of $\oplus \not\rightarrow_e$ is as follows.

$$\begin{array}{rcl}
\oplus \not \rightarrow_{e}[] & = & e \\
\oplus \not \rightarrow_{e}[a] & = & e \oplus a \\
\oplus \not \rightarrow_{e}(x + + y) & = & \oplus \not \rightarrow_{e'} y \text{ where } e' = \oplus \not \rightarrow_{e} x
\end{array}$$

$\oplus \rightarrow_e$: A Well-Defined Function

There is an instructive alternative way of seeing that $\oplus \not\rightarrow_e$ is well-defined. Define h by

$$h \begin{bmatrix} & & = & id \\ h \begin{bmatrix} a \end{bmatrix} & = & (\oplus a) \\ h (x ++ y) & = & h y \cdot h x \end{bmatrix}$$

Obviously, h is a homomorphism from ([a], +, []) to $(\beta \to \beta, \cdot, id_{\beta})$. Now we have

$$\oplus \not\rightarrow_e x = h \times e$$

and so $\oplus \not\rightarrow_e$ is well-defined.

Left Reduction is Important

Every set of equations of the following form

$$f [] = e$$

$$f (x +++ [a]) = F(a, x, f x)$$

can be defined in terms of a left reduction:

$$f = \pi_2 \cdot \oplus \not\rightarrow_{e'}$$

where

$$e' = ([], e)$$

 $(x, u) \oplus a = (x ++ [a], F(a, x, u))$

Specialization Lemma

Every homomorphism on lists can be expressed as a left (or also a right) reduction. More precisely,

$$\oplus / \cdot f * = \odot \not\rightarrow_e$$
where
 $e = id_{\oplus}$
 $a \odot b = a \oplus f b$

Exercise: Prove the specialization lemma.

Outline

- Well-defineness of General Equations
- 2 Definition of Left Reduction
- 3 Implementation of Left Reduction
- 4 Application: The Minimax Problem

Left Reductions and Loops

A left reduction $\oplus \not\rightarrow_e x$ can be translated into the following program in a conventional *imperative* language.

```
|[ var r;
    r := e;
    for b in x
        do r := r oplus b;
    return r
]|
```

Left Zeros

Left reductions require that the argument list be traversed in its entirety. Such a traversal can be cut short if we recognize the possibility that an operator may have *left-zeros*.

Definition: Left Zero

 ω is a left-zero of \oplus if for all a the following holds.

$$\omega \oplus a = \omega$$

Exercise: Prove that if ω is a left-zero of \oplus then

$$\oplus \not\rightarrow_{\omega} x = \omega$$

for all x. (by induction on snoc list x.)

Implementation of Left Reduction with Left-zero Check

From the fact that $\oplus \not\rightarrow_e(x++y) = \oplus \not\rightarrow_{(\oplus/ex)} y$, we have the following program for left-reduction.

```
|[ var r;
    r := e;
    for b in x while not left-zero(r)
        do r := r oplus b;
    return r
]|
```

Outline

- Well-defineness of General Equations
- 2 Definition of Left Reduction
- 3 Implementation of Left Reduction
- 4 Application: The Minimax Problem

Minimax

Let us return to the problem of computing

$$minimax = \downarrow / \cdot \uparrow / *$$

efficiently. Using the specialization lemma, we can write

$$minimax = \odot \rightarrow \infty$$

where ∞ is the identity element of \downarrow /, and

$$a \odot x = a \downarrow (\uparrow /x).$$

Exercise: Prove that $-\infty$ is the left-zero of \odot .

Since ↓ distributes through ↑ we have

$$a \odot x = a \downarrow (\uparrow /x) = \uparrow /(a \downarrow) *x$$

Using the specialization lemma a second time, we have

$$a \odot x = \bigoplus_{a} \not \to_{-\infty} x$$

where $b \oplus_{a} c = b \uparrow (a \downarrow c)$

Exercise: Prove that a is the left-zero of \bigoplus_a .

An Efficient Implementation of minimax xs

```
|[ var a; a := infinity;
       for x in xs while a <> -infinity
           do a := a \text{ odot } x;
       return a
    ] [
where the assignment a := a odot x can be implemented by the
loop:
    |[ var b; b := -infinity;
       for c in x while c <> a
           do b := b \max (a \min c);
       a := b
    ] [
```

About the Final Examination

• 時間:2月4日8:30-10:00

● 場所:6号館63号室

教科書、講義資料など持ち込み可

● 成績:全体の70%

ご協力ありがとうございました。