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The First Exercise Revisited

The Maximum Segment Sum (mss) Problem

Design an efficient and correct program to compute the maximum
of the sums of all segments of a given sequence of numbers,
positive, negative, or zero.

mss [3,1,—4,1,5,-9,2] =6
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The First Exercise Revisited

The Maximum Segment Sum (mss) Problem

Design an efficient and correct program to compute the maximum
of the sums of all segments of a given sequence of numbers,
positive, negative, or zero.

mss [3,1,—4,1,5,-9,2] =6
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Reference

R.S. Bird: Lecture Notes on Constructive Functional Programming,
Technical Monograph PRG-69, ISBN 0-902928-51-1, 1988.
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Subject

A calculus of functions for deriving programs from their
specifications:
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Subject

A calculus of functions for deriving programs from their
specifications:
@ A range of concepts and notations for defining functions over
various data types (including lists, trees, and arrays);
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Subject

A calculus of functions for deriving programs from their
specifications:
@ A range of concepts and notations for defining functions over
various data types (including lists, trees, and arrays);

@ A set of algebraic laws (rules, lemmas, theorems) for
manipulating functions;
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Subject

A calculus of functions for deriving programs from their
specifications:

@ A range of concepts and notations for defining functions over
various data types (including lists, trees, and arrays);

@ A set of algebraic laws (rules, lemmas, theorems) for
manipulating functions;

@ A framework for constructing new calculation rules to capture
principles of programming.
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Basic Concepts

Review: Notations on Functions
Review: Lists

A Simple Problem

Consider the following simple identity:
(a1 xapxa3)+(axaz)+az+1l=(1xa+1)xa+1)xa3+1

This equation generalizes in the obvious way to n variables
ai, as,...,an and we will refer to it as Horner'e rule.
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Basic Concepts

Review: Notations on Functions
Review: Lists

A Simple Problem

Consider the following simple identity:
(a1 xapxa3)+(axaz)+az+1l=(1xa+1)xa+1)xa3+1

This equation generalizes in the obvious way to n variables
ai, as,...,an and we will refer to it as Horner'e rule.

@ How many X are used in each side?
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Basic Concepts

Review: Notations on Functions
Review: Lists

A Simple Problem

Consider the following simple identity:
(a1 xapxa3)+(axaz)+az+1l=(1xa+1)xa+1)xa3+1

This equation generalizes in the obvious way to n variables
ai, as,...,an and we will refer to it as Horner'e rule.

@ How many X are used in each side?

o Can we generalize X to ®, + to &7 What are the essential
constraints for ® and @7
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Basic Concepts

Review: Notations on Functions
Review: Lists

A Simple Problem

Consider the following simple identity:
(a1 xapxa3)+(axaz)+az+1l=(1xa+1)xa+1)xa3+1

This equation generalizes in the obvious way to n variables
ai, as,...,an and we will refer to it as Horner'e rule.

@ How many X are used in each side?

o Can we generalize X to ®, + to &7 What are the essential
constraints for ® and ®7

@ Do you have suitable notation for expressing the Horner's rule
concisely?
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Notations on Functions

@ A function f that has source type « and target type [ is

denoted by

f:ra—f
We shall say that f takes arguments in « and returns results
in 3.
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Notations on Functions

@ A function f that has source type « and target type [ is

denoted by
f:ra—f

We shall say that f takes arguments in « and returns results
in 3.

@ Function application is written without brackets; thus f a
means f(a). Function application is more binding than any
other operation, so f a® b means (f a) ® b.
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Notations on Functions

@ A function f that has source type « and target type [ is

denoted by

f:ra—f
We shall say that f takes arguments in « and returns results
in 3.

@ Function application is written without brackets; thus f a
means f(a). Function application is more binding than any
other operation, so f a® b means (f a) ® b.

@ Functions are curried and applications associates to the left,
so f a b means (f a) b (sometimes written as f, b.)
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Notations on Functions

@ A function f that has source type « and target type [ is

denoted by

f:ra—f
We shall say that f takes arguments in « and returns results
in 3.

@ Function application is written without brackets; thus f a
means f(a). Function application is more binding than any
other operation, so f a® b means (f a) ® b.

@ Functions are curried and applications associates to the left,
so f a b means (f a) b (sometimes written as f, b.)

@ Function composition is denoted by a centralized dot (-). We
have

(f-g) x="f(g x)
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Notations on Functions

@ Binary operators will be denoted by &, ®, ®, etc. Binary
operators can be sectioned. This means that (), (a®) and
(da) all denote functions. The definitions are:

(®)ab=adb
(a®) b=adb
(Pb)a=ad b
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Notations on Functions

@ Binary operators will be denoted by &, ®, ®, etc. Binary
operators can be sectioned. This means that (), (a®) and
(da) all denote functions. The definitions are:

(®)ab=adb
(a®) b=adb
(Pb)a=ad b

Exercise: Given (@) : a — 3 — v, give the types for (a®) and
(eb)?
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Notations on Functions

@ Binary operators will be denoted by &, ®, ®, etc. Binary
operators can be sectioned. This means that (), (a®) and
(da) all denote functions. The definitions are:

(®)ab=adb
(a®) b=adb
(Pb)a=ad b

Exercise: Given (@) : a — 3 — v, give the types for (a®) and
(eb)?

Exercise: Show that the following equation states that functional
compositon is associative.

(f)-(g)=((f-g))
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Notations on Functions

@ The identity element of & : a X a — «, if it exists, will be
denoted by idg,. Thus,

ad®idg =idg®a=a
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Notations on Functions

@ The identity element of & : a X a — «, if it exists, will be
denoted by idg,. Thus,

ad®idg =idg®a=a

Exericise: What is the identity element of functional
composition?
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Notations on Functions

@ The identity element of & : a X a — «, if it exists, will be
denoted by idg,. Thus,

ad®idg =idg®a=a

Exericise: What is the identity element of functional
composition?
@ The constant values function K : « — 8 — « is defined by

the equation
Kab=a
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Lists

Lists are finite sequence of values of the same type. We use [a] to
denote the type of lists whose elements have type «, and [a]T to
denote the type of non-empty lists whose elements have type a.
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Lists

Lists are finite sequence of values of the same type. We use [a] to
denote the type of lists whose elements have type «, and [a]T to
denote the type of non-empty lists whose elements have type a.

o Examples:
[1,2,1] : [Int]
{[]1],[[1], 2],[1,2,1]] : [[Int]]
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Lists

o []: @ — [a] maps elements of « into singleton lists.

[]a=[a]
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Lists

o []: @ — [a] maps elements of « into singleton lists.

[]a=[a]

@ The primitive operator on lists is concatenation, denoted by
+-.
[1] ++[2] ++[1] = [1,2,1]
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Lists

o []: @ — [a] maps elements of « into singleton lists.

[]a=[a]

@ The primitive operator on lists is concatenation, denoted by
+-.
[1] ++[2] ++[1] = [1,2,1]

Concatenation is associative:

X+ (y+2) = (x+Hy) +2z
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Basic Concepts

Review: Notations on Functions
Review: Lists

Review: Lists

o []: @ — [a] maps elements of « into singleton lists.

[]a=[a]

@ The primitive operator on lists is concatenation, denoted by
+-.
[1] ++[2] ++[1] = [1,2,1]

Concatenation is associative:
x+(y+2z)=(x+y)++z

Exercise: What is the identity for concatenation?
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Basic Concepts

Review: Notations on Functions
Review: Lists

Algebraic View of Lists

o ([a], H,[]) is a monoid.
o ([a],+,[]) is a free monoid generated by a under the
assignment [.] : @ — [a].

o ([a]f,4) is a semigroup.

A IRT BRI T IL T XLROERER



Basic Concepts

Review: Notations on Functions
Review: Lists

Bags and Sets

@ A bag is a list in which the order of the elements is ignored.
Bags are constructed by adding the rule that +- is
commutative (as well as associative):

Xt+Hy=y++x
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Basic Concepts

Review: Notations on Functions
Review: Lists

Bags and Sets

@ A bag is a list in which the order of the elements is ignored.
Bags are constructed by adding the rule that +- is
commutative (as well as associative):

Xt+Hy=y++x

@ A set is a bag in which repetitions of elements are ignored.
Sets are constructed by adding the rule that + is idempotent
(as well as commutative and associative):

X+ X=X
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Homomorphisms

Map

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

List Functions as Homomorphisms

A function h defined in the following form is called homomorphism:

hl = idg
h [a] = fa
h(x++y) = hx@hy

It defines a structure-preserving map from the monoid ([«], +,[])
to the monoid (8,®: 7 — (0 — [, idg: /7).
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Homomorphisms

Map

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

List Functions as Homomorphisms

A function h defined in the following form is called homomorphism:

hl = idg
h [a] = fa
h(x++y) = hx@hy

It defines a structure-preserving map from the monoid ([«], +,[])
to the monoid (8,®: 7 — (0 — [, idg: /7).

Property: h is uniquely determined by f and &.
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Homomorphisms

Map

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

List Functions as Homomorphisms

An Example: the function returning the length of a list.

# ] = 0
# [a] 1
#(x+y) = #x+H#y

It is a structure-preserving map from the monoid ([a], 4, []) the
monoid (/nt,+,0).
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Homomorphisms

Map

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

The operator * (pronounced map) takes a function on lts left and
a list on its right. Informally, we have

fx[a1,az,...,ap] = [f a1,f ap,...,f ap)
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Homomorphisms

Map

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

The operator * (pronounced map) takes a function on lts left and
a list on its right. Informally, we have

fx[a1,az,...,ap] = [f a1,f ap,...,f ap)

Formally, (fx) (or sometimes simply written as fx) is a
homomorphism:

frll = [l

f* [a] [f a]
fx(x+ty) = (Fxx)+-(fxy)
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Homomorphisms

Map

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

The operator * (pronounced map) takes a function on lts left and
a list on its right. Informally, we have

fx[a1,az,...,ap] = [f a1,f ap,...,f ap)

Formally, (fx) (or sometimes simply written as fx) is a
homomorphism:

fx] = ]
f* [a] = [f 4]
fx(x+ty) = (Fxx)+-(fxy)

Map Distributivity: (f - g)* = (f%) - (g*)
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Homomorphisms

Map

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

The operator * (pronounced map) takes a function on lts left and
a list on its right. Informally, we have

fx[a1,az,...,ap] = [f a1,f ap,...,f ap)

Formally, (fx) (or sometimes simply written as fx) is a
homomorphism:

fx] = ]
f* [a] = [f 4]
fx(x+ty) = (Fxx)+-(fxy)

Map Distributivity: (f - g)* = (f%) - (g*)
Old Exercise: Prove the map distributivity.
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

The operator / (pronounced reduce) takes an associative binary
operator on lIts left and a list on its right. Informally, we have

®/la1,a2,...,an] = a1 D a2 B - D ap
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

The operator / (pronounced reduce) takes an associative binary
operator on lIts left and a list on its right. Informally, we have

©/la,a2,...,a] =a1 @ a2 ®--- @ ap
Formally, 69/ is a homomorphism:
/(] = idg

@/la] =
o/(x+ty) = (@/x)a(D/y)
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

The operator / (pronounced reduce) takes an associative binary
operator on lIts left and a list on its right. Informally, we have

©/la,a2,...,a] =a1 @ a2 ®--- @ ap
Formally, 69/ is a homomorphism:

®/[] = idg
®/[al =
®/(x+y) = (®/x) @ (D/y)

If & is commutative as well as associative, then @&/ can be applied
to bags; and if @ is also idempotent, then @&/ can be applied to
sets.
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

Examples:

max : [Int] — Int
max = 1/
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

Examples:

max : [Int] — Int
max = 1/
where a T b =if a < b then b else a
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

Examples:
max : [Int] — Int
max = 1/
where a T b =if a < b then b else a
sum : [Int] — Int
sum = +/
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

Examples:
max : [Int] — Int
max = 1/
where a T b =if a < b then b else a

sum : [Int] — Int

sum = +/

head : [a]t — «

head = </
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

Examples:
max : [Int] — Int
max = 1/
where a T b =if a < b then b else a
sum : [Int] — Int
sum = +/
head : [a]t — «
head = </ wherea<b=a
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

Examples:
max : [Int] — Int
max = 1/
where a T b =if a < b then b else a
sum : [Int] — Int
sum = +/
head : [a]t — «
head = </ wherea<b=a
last  : [a]t — «
last = >/
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

Examples:
max : [Int] — Int
max = 1/
where a T b =if a < b then b else a
sum : [Int] — Int
sum = +/
head : [a]t — «
head = </ wherea<b=a
last  : [a]t — «
last = >/ wherea>b=0>b
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

The Homomorphism Lemma

The Homomorphism Lemma

A list function h : [A] — B is a homomorphism if and only if there
exist f and & such that the following holds.

h=a&/ - fx
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

The Homomorphism Lemma

The Homomorphism Lemma

A list function h : [A] — B is a homomorphism if and only if there
exist f and & such that the following holds.

h=a&/ - fx

Proof

It suffices to prove that @/ - f* is a homomorphism to (B, ®, ids)
with f on a singleton list, because of the uniqueness property of
homomorphisms.
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

Promotion Rules

The equations defining f* and @&/ can be expressed as identities
between functions.

Empty Rules
fxK[] = KI]
@/ K1l idgy
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

Promotion Rules

The equations defining f* and @&/ can be expressed as identities
between functions.

Empty Rules
fxK[] = KI]
@/ K1l idgy

One-Point Rules
fef] = [1-f
®/-[1 = id
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

Promotion Rules

The equations defining f* and @&/ can be expressed as identities
between functions.

Empty Rules
Fek[] = KI]
&/ K[| = ids
One-Point Rules
Fell = [
®/-[] = id
Join Rules
fx-+/ = +H / (Fx)x
o/ -+ / = &/(®))x
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

Promotion Rules

The equations defining f* and @&/ can be expressed as identities
between functions.

Empty Rules
fxK[] = KI]
@/ K1l idgy

One-Point Rules
Fel] = []f
®/-[] = id
Join Rules
fx-+/ = +H / (Fx)x
o/ -+ / = &/(®))x

Exercise: Prove the join rules.
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

An Example of Calculation

A composition of two specific homomorphisms is a homomorphism.
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

An Example of Calculation

A composition of two specific homomorphisms is a homomorphism.

®f - ++/ g*
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

An Example of Calculation

A composition of two specific homomorphisms is a homomorphism.

®f - ++/ g*
= { map promotion }
@) 4+ [ Fxx-gx
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

An Example of Calculation

A composition of two specific homomorphisms is a homomorphism.

®f - ++/ g*
= { map promotion }
@) 4+ [ Fxx-gx
= { reduce promotion }
@) (B)) *-f xx-gx
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Homomorphisms

\ET)

Reduce

The Homomorphism Lemma
Promotion Rules

List Functions as Homomorphisms

An Example of Calculation

A composition of two specific homomorphisms is a homomorphism.

®f - ++/ g*
= { map promotion }
@) 4+ [ Fxx-gx
= { reduce promotion }
@) (B)) *-f xx-gx
= { map distribution }
/() fx-g)
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Directed Reductions

Directed Reductions (Folds)

We introduce two more computation patterns -~ (pronounced
left-to-right reduce, or simply left reduce) and <+ (right-to-left

reduce, or simply right reduce) which are closely related to /.
Informally, we have

697L>e[‘317‘327"'7‘317] = (((e®al)@"')@an—l)@an
BDelar,ar,...,a0] = @D (2B(---®(a,De)))
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Directed Reductions

Directed Reductions (Folds)

We introduce two more computation patterns -~ (pronounced
left-to-right reduce, or simply left reduce) and <+ (right-to-left

reduce, or simply right reduce) which are closely related to /.
Informally, we have

B +belar,ar,...,a0] = ((e®a)d )@ an_1)Dan
©felar, a3 = aa@ (2@ (- d(a,De)))
Formally, we can define them as follows.
©Pell = ¢

Dpelx+ta]) = (DFex)Oa
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Directed Reductions

Directed Reductions (Folds)

We introduce two more computation patterns -~ (pronounced
left-to-right reduce, or simply left reduce) and <+ (right-to-left
reduce, or simply right reduce) which are closely related to /.
Informally, we have

@7&6[31,32,...73,7] = (((ee;al)@”')@a"_l)@a"
©felar, a3 = aa@ (2@ (- d(a,De)))
Formally, we can define them as follows.

EB7L>e[] = €
Stex++[a]) = (@+ex)Oa

S ell = €
Dfe(a:ix) = ad(Dsex)
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Directed Reductions

Directed Reductions without Seeds

@74[317327"'7‘3”] = ((31@32)@”’)@3,1
@O lar,a2,...,an = a1® (2@ B (an-1D an))
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Directed Reductions

Directed Reductions without Seeds

©+la,a,....a)] = (1@ a)® ) Day,
@O lar,a2,...,an = a1® (2@ B (an-1D an))
Properties:

(04)- () = o+,
(@) (+ @) = o
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Directed Reductions

An Example of Left Reduce

Consider the right-hand side of Horner's rule:
(Ixar+1)xa+1)x---+1)xa,+1
This expression can be expressed by a left-reduce:

©—+1lar, a2, ..., an]
where a® b= (ax b)+1
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Directed Reductions

An Example of Left Reduce

Consider the right-hand side of Horner's rule:
(Ixar+1)xa+1)x---+1)xa,+1
This expression can be expressed by a left-reduce:

©—+1lar, a2, ..., an]
where a® b= (ax b)+1

Exercise: Give a definition of & such that the following holds.

©—la1,a2,...,an = (((a1 X ax+az) X az+a3) X+ - -+ap—1)Xan+an
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Accumulations

Accumulations (Scans)

With each form of directed reduction over lists there corresponds a
form of computation called an accumulation. These forms are
expressed with the operators > (pronounced left accumulate) and
<} (right accumulate) and are defined informally by

Gfelar,az, ... an] = [e,eDar,....((e®a1)d ) D an]
® Helar,an,...van] = [a1D (2@ (- D(anDe))),...,anDe, €]
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Accumulations

Accumulations (Scans)

With each form of directed reduction over lists there corresponds a
form of computation called an accumulation. These forms are
expressed with the operators > (pronounced left accumulate) and
<} (right accumulate) and are defined informally by

©ppelar, az, ... an) = [e,e@ar,..., ((e®a1)®---) @ ay
@ Helar,az,...;an) = [a@ (2@ (- -®(an®e))),...,an D e €]
Formally, we can define them as follows.

@%e[] = [e]

Drpe(a: x) = e (Brresax)
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Accumulations

Accumulations (Scans)

With each form of directed reduction over lists there corresponds a
form of computation called an accumulation. These forms are
expressed with the operators > (pronounced left accumulate) and
<} (right accumulate) and are defined informally by

Gfelar,az, ... an] = [e,eDar,....((e®a1)d ) D an]
® Helar,an,...van] = [a1D (2@ (- D(anDe))),...,anDe, €]

Formally, we can define them as follows.

@%e[] = [e]
Sbe(a: x) = e (Dpesax)

@ el = [e]

O fe(x+ta]) = © Fapex ++[e]
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Accumulations

Efficiency in Accumulations

@#pela1, a2, ..., an]: can be evaluated with n— 1 calculations of &.

Exercise: Consider computation of first n + 1 factorial numbers:

[01,11) ..., n!]. How many calculations of x are required for the
following two programs?

Q x41[1,2,...,n]
Q factx[0,1,2,--- ,n|, where

fact 0 =1
fact (k+1) = k x fact k.

BRI T IL T XLROERER



Accumulations

Relation between Reduce and Accumulate

D+ e = last- Dppe
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Accumulations

Relation between Reduce and Accumulate

D+ e = last- Dppe

Srbe = @F[e]

where x ® a = x + [last x @ a]
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Accumulations

Segments

A list y is a segment of x if there exists v and v such that
X=U+t+y+t+v.

If u={], then y is called an initial segment.
If v=1], then y is called an final segment.
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Accumulations

Segments

A list y is a segment of x if there exists v and v such that
X=U+t+y+t+v.

If u={], then y is called an initial segment.
If v=1], then y is called an final segment.

segs [1,2,3] = [[I,[1], [1,2], [2], [1,2, 3], [2, 3], [3]]
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Accumulations

Segments

A list y is a segment of x if there exists v and v such that
X=U+t+y+t+v.

If u=1{], then y is called an initial segment.
If v=1], then y is called an final segment.

segs [1,2,3] = [[I,[1], [1,2], [2], [1,2, 3], [2, 3], [3]]

Exercise: List all initial segments and final segments of [1, 2, 3].
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Accumulations

Segments

A list y is a segment of x if there exists v and v such that
X=U+t+y+t+v.

If u=1{], then y is called an initial segment.
If v=1], then y is called an final segment.

segs [1,2,3] = [[I,[1], [1,2], [2], [1,2, 3], [2, 3], [3]]

Exercise: List all initial segments and final segments of [1, 2, 3].
Exercise: How many segments of [a1, a2, ..., an]?
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Accumulations

The function inits returns the list of initial segments of a list, in
increasing order of a list.

inits a1, a2, ..., an] = [[],[a1], [a1, @2, - - -, [a1, @2, - . ., an]]
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Accumulations

The function inits returns the list of initial segments of a list, in
increasing order of a list.

inits a1, a2, ..., an] = [[],[a1], [a1, @2, - - -, [a1, @2, - . ., an]]

inits = (—H— 7%[]) . []*
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Accumulations

The function tails returns the list of final segments of a list, in
decreasing order of a list.

tails [a1, a2, ... ,an] = [[31,32,...,an],[32, 82, ..., an],...,[]]
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Accumulations

The function tails returns the list of final segments of a list, in
decreasing order of a list.

tails [a1, a2, ... ,an] = [[31,32,...,an],[32, 82, ..., an],...,[]]

tails = (4 %[]) [
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Accumulations

segs = ++ / - tails* -inits
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Accumulations

segs = ++ / - tails* -inits

Exercise: Show the result of segs [1,2].
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Accumulations

Accumulation Lemma

(B#e) = (B +e) * -inits
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Accumulations

Accumulation Lemma

(B#e) = (B +e) * -inits
(&) = (D+) * -initst
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Accumulations

Accumulation Lemma

(B#e) = (B +e) * -inits
(&) = (D+) * -initst

The accumulation lemma is used frequently in the derivation of
efficient algorithms for problems about segments. On lists of
length n, evaluation of the LHS requires O(n) computations
involving @, while the RHS requires O(n?) computations.
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Horner's Rule

The Problem: Revisit

Consider the following simple identity:
(a1 X as ><a3)+(32 ><a3)—|—33+1:((1 ><a1+1) ><a2+1) xaz+1

This equation generalizes in the obvious way to n variables
ai, as,...,az, and we will refer to it as Horner'e rule.
o Can we generalize x to ®, + to @7 What are the essential
constraints for ® and &7

@ Do you have suitable notation for expressing the Horner's rule
concisely?
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Horner's Rule

Horner's Rule

The following equation
B/ ®/ * tails = © e
where
e = Id@
aOb=(a@b)de
holds, provided that @ distributes (backwards) over @:
(adb)®c=(a®c)®(b®c)

for all a, b, and c.
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Horner's Rule

Proof of Horner’s Rule

The Horner's rule can be proved by the following two steps.
@ Show that
(adb)®c=(a®c)®(b®c)
if and only if
(®c) -/ =8/ (®c)*.
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Horner's Rule

Proof of Horner’s Rule

The Horner's rule can be proved by the following two steps.
@ Show that
(adb)®c=(a®c)®(b®c)

if and only if
(®c) -/ =8/ (®c)*.

@ Show that f defined by
f=o/ ®/ - tails
satisfies the equations

] = e
f(x+l[a]) = fxoa
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Horner's Rule

Proof of Horner’s Rule

The Horner's rule can be proved by the following two steps.
@ Show that
(adb)®c=(a®c)®(b®c)

if and only if
(®c) -/ =8/ (®c)*.

@ Show that f defined by
f=a/ ®&/x*-tails

satisfies the equations
] = e
f(x+l[a]) = fxoa




Horner's Rule

Generalizations of Horner's Rule

Generalization 1:

@/ - ®/ - tails" = 04
where
aOb=(a®@b)®b
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Horner's Rule

Generalizations of Horner's Rule

Generalization 1:

@/ - ®/ - tails" = 04
where
aOb=(a®@b)®b

Generalization 2:

&/ (®/) - Fx)*-tails = O+
where
e = idg
aOb=(a@f b)de
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Application: Maximum Segment Sum Problem

Application: MSS

The Maximum Segment Sum (mss) Problem

Compute the maximum of the sums of all segments of a given
sequence of numbers, positive, negative, or zero.

mss [3,1,—4,1,5,-9,2] =6
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Application: Maximum Segment Sum Problem

Application: MSS

The Maximum Segment Sum (mss) Problem

Compute the maximum of the sums of all segments of a given
sequence of numbers, positive, negative, or zero.

mss [3,1,—4,1,5,-9,2] =6

A Direct Solution
mss =1 /- +/ x -segs

Exercise: How many steps are required in the above direct
solution?
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Application: Maximum Segment Sum Problem

Calculating a Linear Algorithm
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Application: Maximum Segment Sum Problem

Calculating a Linear Algorithm

mss
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Application: Maximum Segment Sum Problem

Calculating a Linear Algorithm

mss
= { definition of mss }

1 /- 4/ % -segs
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Application: Maximum Segment Sum Problem

Calculating a Linear Algorithm

mss
= { definition of mss }
1/ +/*-segs
= { definition of segs }
1/ -4/ %+ /- tails* -inits
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Application: Maximum Segment Sum Problem

Calculating a Linear Algorithm

mss
= { definition of mss }

1/ +/*-segs
= { definition of segs }

1/ -4/ %+ /- tails* -inits
= { map and reduce promotion }

1 /-(1 /- +/ * -tails) x -inits
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Application: Maximum Segment Sum Problem

Calculating a Linear Algorithm

mss
= { definition of mss }
1/ +/*-segs
= { definition of segs }
1/ -4/ %+ /- tails* -inits
= { map and reduce promotion }
/-1 /- +/ * -tails) * -inits
= { Horner's rule with a©@ b=(a+b) 10 }
T / . @7/->0 * -inits
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Application: Maximum Segment Sum Problem

Calculating a Linear Algorithm

mss
= { definition of mss }
1/ +/*-segs
= { definition of segs }
1/ -4/ %+ /- tails* -inits
= { map and reduce promotion }
/-1 /- +/ * -tails) * -inits
= { Horner's rule with a©@ b=(a+b) 10 }
T / . @7/->0 * -inits
= { accumulation lemma }

T/ 0
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Application: Maximum Segment Sum Problem

A Program in Haskell

mss = foldll (max) . scanl odot O
where a ‘odot‘ b = (a + b) ‘max‘ 0

Exercise: Code the derived linear algorithm for mss in your
favorite programming language.
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Application: Maximum Segment Sum Problem

Segment Decomposition Theorem

The sequence of calculation steps given in the derivation of the
mss problem arises grequently. The essential idea can be
summarized as a general theorem.

Segment Decomposition Theorem

Suppose S and T are defined by

S=@/ fx*- segs
T =@/ fx*-tails

If T can be expressed in the form T = h- ® -, then we have
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Application: Maximum Segment Sum Problem

Segment Decomposition Theorem

The sequence of calculation steps given in the derivation of the
mss problem arises grequently. The essential idea can be
summarized as a general theorem.

Segment Decomposition Theorem

Suppose S and T are defined by

S=@/ fx*- segs
T =@/ fx*-tails

If T can be expressed in the form T = h- ® -, then we have

Exercise: Prove the segment decomposition theorem.
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