構成的アルゴリズム論 Homomorphisms

胡 振江

東京大学 計数工学科

2009年1月26日

Copyright © 2009 Zhenjiang Hu, All Right Reserved.

A Problem

Maximum *p*-Segment Problem

Given is a sequence x and a predicate p. Required is an efficient algorithm for computing a longest segment of x, all of whose elements satisfy p.

lsp even [3, 1, 4, 1, 5, 9, 2, 6, 5] = [2, 6]

Homomorphisms

定義

A homomorphism from a monoid $(\alpha, \oplus, id_{\oplus})$ to a monoid $(\beta, \otimes, id_{\otimes})$ is a function *h* satisfying the two equations:

$$h id_{\oplus} = id_{\otimes}$$

 $h (x \oplus y) = h x \otimes h y$

Exercise: Prove that h is a homomorphism iff the following holds.

$$h \cdot \oplus / = \otimes / \cdot h * \tag{1}$$

Hint:

 \Rightarrow : prove Equation (1) by induction.

 \Leftarrow : apply the both sides of Equation (1) to [] and [x, y] gives two equations h should satisfy.

Examples

Since f* is a homomorphism from ([α], ++, []) to ([β], ++, []) whenever f : α → β, we have

$$f * \cdot ++ / = ++ / \cdot f * *$$

which is the map promotion rule of the previous lecture.

Since ⊕/ is a homomorphism from ([α], ++, []) to (R, ⊕, id_⊕) whenever (⊕) : R → R → R, we have

$$\oplus/\cdot++/=\oplus/\cdot(\oplus/)*$$

which is the *reduce promotion* rule of the previous lecture.

Uniqueness Property

We have the fact that $([\alpha], +, [])$ is a free monoid, that is for each monoid $(\beta, \oplus, id_{\oplus})$ there is a unique homomorphism *h* from $([\alpha], +, [])$ to $(\beta, \oplus, id_{\oplus})$.

This homomorphism is determined by the values of h on singletons. That is, for each $f : \alpha \to \beta$, the additional equation

$$h[a] = f a$$

fixes *h* completely.

Characterization of Homomorphisms

Lemma (Homomorphism Lemma)

Every homomorphism from $([\alpha], +, [])$ can be expressed as the composition of a reduction with a map, and every such combination is a homomorphism.

More precisely, suppose

then, $h = \oplus / \cdot f *$. Conversely, if h has this form, then h is a homomorphism.

Proof of Homomorphism Lemma

 $\mathsf{Proof.} \ \Rightarrow:$

	h
=	{ definition of <i>id</i> }
	h · id
=	$\{ \text{ identity lemma (can you prove it?) } \}$
	$h \cdot ++ / \cdot [\cdot] *$
=	$\{h \text{ is a homomorphism, Equation }(1)\}$
	$\oplus / \cdot h * \cdot [\cdot] *$
=	{ map distributivity }
	$\oplus / \cdot (h \cdot [\cdot]) *$
=	$\{ definition of h on singletons \}$
	$\oplus / \cdot f *$

Proof of Homomorphism Lemma (Cont.)

 \Leftarrow : We reason that $h = \oplus / \cdot f *$ is a homomorphism by proving

$$h \cdot ++ / = \oplus / \cdot h *$$

$$\begin{array}{rcl} h \cdot + + \ / \\ = & \{ \text{ given form for } h \} \\ \oplus / \cdot f * \cdot + + \ / \\ = & \{ \text{ map and reduce promotion } \} \\ \oplus / \cdot (\oplus / \cdot f *) * \\ = & \{ \text{ hypothesis } \} \\ \oplus / \cdot h * \end{array}$$

Examples of Homomorphisms

• #: compute the length of a list.

$$\# = +/\cdot K_1 *$$

• reverse: reverses the order of the elements in a list.

$$\textit{reverse} = \tilde{+} / \cdot [\cdot] \ast$$

Here, $x \oplus y = y \oplus x$.

• sort: reorders the elements of a list into ascending order.

sort =
$$\land \land \land \cdot [\cdot]*$$

Here, $\wedge \wedge$ (pronounced *merge*) is defined by the equations:

• *all p*: returns True if every element of the input list satisfies the predicate *p*.

all
$$p = \wedge / \cdot p *$$

• *some p*: returns True if at least one element of the input list satisfies the predicate *p*.

some
$$p = \vee / \cdot p *$$

• *split*: splits a non-empty list into its last element and the remainder.

$$\begin{array}{ll} \textit{split} [a] &= ([], a) \\ \textit{split} (x ++ y) &= \textit{split} x \oplus \textit{split} y \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$$

Exercise: Let $init = \pi_1 \cdot split$ and $last = \pi_2 \cdot split$ where $\pi_1(a, b) = a$ and $\pi_2(a, b) = b$. Show that *init* is not a homomorphism, but *last* is.

Hint:

 $init(x ++ y) = init x \oplus init y$ を満たすような \oplus が存在しないことを 示せばよい. (init [1,2,3] = init ([1,2] ++ [3]) = [1] \oplus [] \neq [1,2].)

• tails: returns all the tail (final) segments of a list.

$$tails = \oplus / \cdot f *$$

where

$$f a = [[a], []]$$

$$xs \oplus ys = (++ head ys) * xs ++ ys$$

All applied to

The operator ^o (pronounced *all applied to*) takes a sequence of functions and a value and returns the result of applying each function to the value.

$$[f_1, f_2, \ldots, f_n]^o a = [f_1 a, f_2 a, \ldots, f_n a]$$

Formally, $(^{o} a)$ is a homomorphism:

$$[]^{o} a = [] \\ [f]^{o} a = [f a] \\ (fs ++ gs)^{o} a = (fs^{o} a) ++ (gs^{o} a)$$

Exercise: Show that $[\cdot] = [id]^o$. **Exercise**: Show that we can redefine *tails* to be *tails* = $\oplus / \cdot [[id]^o, []^o]^o *$.

Conditional Expressions

The conditional notation

$$h x = f x$$
, if $p x$
= $g x$, otherwise

will be written by the McCarthy conditional form:

$$h = (p \rightarrow f, g)$$

Laws on Conditional Forms

$$\begin{array}{rcl} h \cdot (p \rightarrow f,g) &=& (p \rightarrow h \cdot f, h \cdot g) \\ (p \rightarrow f,g) \cdot h &=& (p \cdot h \rightarrow f \cdot h, g \cdot h) \\ (p \rightarrow f,f) &=& f \end{array}$$

Filter

The operator \triangleleft (pronounced *filter*) takes a predicate *p* and a list *x* and returns the sublist of *x* consisting, in order, of all those elements of *x* that satisfy *p*.

$$p \triangleleft = ++ / \cdot (p \rightarrow [id]^o, []^o) *$$

Exercise: Prove that the filter satisfies the *filter promotion* property:

$$(p \triangleleft) \cdot ++ / = ++ / \cdot (p \triangleleft) *$$

Exercise: Prove that the filter satisfies the *map-filter swap* property:

$$(p \triangleleft) \cdot f * = f * \cdot (p \cdot f) \triangleleft$$

Cross-product

 X_{\oplus} is a binary operator that takes two lists x and y and returns a list of values of the form $a \oplus b$ for all a in x and b in y.

$$[a,b]X_{\oplus}[c,d,e] = [a \oplus c, b \oplus c, a \oplus d, b \oplus d, a \oplus e, b \oplus e]$$

Formally, we define X_{\oplus} by three equations:

$$\begin{array}{lll} xX_{\oplus}[] & = & [] \\ xX_{\oplus}[a] & = & (\oplus a) * x \\ xX_{\oplus}(y + z) & = & (xX_{\oplus}y) + + (xX_{\oplus}z) \end{array}$$

Thus (xX_{\oplus}) is a homomorphism.

Properties

[] is the *zero element* of X_{\oplus} :

$$[]X_{\oplus}x = xX_{\oplus}[] = []$$

We have cross promotion rules:

$$\begin{array}{rcl}f \ast \ast \cdot X_{+\!\!+} / &=& X_{+\!\!+} / \cdot f \ast \ast \ast \\ \oplus / \ast \cdot X_{+\!\!+} / &=& X_{\oplus} / \cdot (X_{\oplus} /) \ast \end{array}$$

And, if \otimes distributes through \oplus , then we have the following general promotion rule:

$$\oplus / \cdot X_{\otimes} / = \otimes / \cdot (\oplus /) *$$

Example Uses of Cross-product

• *cp*: takes a list of lists and returns a list of lists of elements, one from each component.

$$cp : [[\alpha]] \to [[\alpha]]$$

$$cp [[a, b], [c], [d, e]] = [[a, c, d], [b, c, d], [a, c, e], [b, c, e]]$$

$$cp = X_{++} / \cdot ([id]^o *) *$$

• subs: computes all subsequences of a list.

subs : [
$$\alpha$$
] → [[α]]
subs [a, b, c] = [[], [a], [b], [a, b], [c], [a, c], [b, c], [a, b, c]]
subs = X₊₊ / · [[]^o, [id]^o]^o*

● (all p)⊲:

$$(all p) \triangleleft = ++ / \cdot (all p \rightarrow [id]^o, []^o) *$$

Note that all can be eliminated with the following property.

all
$$p \rightarrow [id]^o, []^o = X_{+\!+} / \cdot (p \rightarrow [[id]^o]^o, []^o) *$$

Exercise: Compute the value of the expression $(all even) \triangleleft [[1, 3], [2]].$

Selection Operators

Suppose f is a numeric valued function. We want to define the operator \uparrow_f by

$$x \uparrow_f y = x, \quad f \ x \ge f \ y$$

= y, otherwise

Properties:

- \uparrow_f is associative and idempotent;
- **2** \uparrow_f is *selective* in that

$$x \uparrow_f y = x$$
 or $x \uparrow_f y = y$

\bigcirc \uparrow_f is *maximizing* in that

$$f(x\uparrow_f y)=f\ x\uparrow f\ y$$

An Example: 1#

Distributivity of $\uparrow_{\#}$:

That is,

$$\begin{array}{rcl} (x ++) \cdot \uparrow_{\#} / &=& \uparrow_{\#} / \cdot (x ++) * \\ (++x) \cdot \uparrow_{\#} / &=& \uparrow_{\#} / \cdot (++x) * \end{array}$$

We assume $\omega = \uparrow_{\#} / []$.

A short calculation: $\uparrow_{\#} / \cdot (all \ p) \triangleleft$ is a homomorphism

$$\begin{array}{l} \uparrow_{\#} / \cdot (all \ p) \triangleleft \\ &= \{ \text{ definition before } \} \\ \uparrow_{\#} / \cdot + + / \cdot (X_{+} / \cdot (p \rightarrow [[id]^o]^o, []^o) \ast) \ast \\ &= \{ \text{ reduce promotion } \} \\ \uparrow_{\#} / \cdot (\uparrow_{\#} / \cdot X_{+} / \cdot (p \rightarrow [[id]^o]^o, []^o) \ast) \ast \\ &= \{ \text{ cross distributivity } \} \\ \uparrow_{\#} / \cdot (+ + / \cdot \uparrow_{\#} / \ast \cdot (p \rightarrow [[id]^o]^o, []^o) \ast) \ast \\ &= \{ \text{ map distributivity } \} \\ \uparrow_{\#} / \cdot (+ + / \cdot (\uparrow_{\#} / \cdot (p \rightarrow [[id]^o]^o, []^o)) \ast) \ast \\ &= \{ \text{ conditionals } \} \\ \uparrow_{\#} / \cdot (+ + / \cdot (p \rightarrow \uparrow_{\#} / \cdot [[id]^o]^o, \uparrow_{\#} / \cdot []^o) \ast) \ast \\ &= \{ \text{ empty and one-point rules } \} \\ \uparrow_{\#} / \cdot (+ + / \cdot (p \rightarrow [id]^o, \mathcal{K}_{\omega}) \ast) \ast \end{array}$$

Solution to the Problem

Recall the problem of computing the longest segment of a list, all of whose elements satisfied some given property p.

$$\begin{array}{l} \uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot segs \\ = & \{ \text{ segment decomposition (can you show the derivation?) } \} \\ \uparrow_{\#} / \cdot (\uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot tails) \ast \cdot inits \\ = & \{ \text{ result before } \} \\ \uparrow_{\#} / \cdot (\uparrow_{\#} / \cdot (++ / \cdot (p \rightarrow [id]^{\circ}, K_{\omega}) \ast) \ast \cdot tails) \ast \cdot inits \\ = & \{ \text{ Horner's rule with } x \odot a = (x + (p \ a \rightarrow [a], \omega) \uparrow_{\#} [] \} \\ \uparrow_{\#} \cdot \odot \not\rightarrow_{[]} \ast \cdot inits \\ = & \{ \text{ accumulation lemma } \} \\ \uparrow_{\#} \cdot \odot \not\#_{[]} \end{array}$$

Exercise: Show that the definition of \odot can be simplified to

$$x \odot a = p \ a \to x ++ [a], [].$$

Exercise: Show the final program is linear in the number of calculation of p.

Exercise: Code the final algorithm in Haskell.

Exercise: Can you improve the algorithm by adding computation of # in \odot .