

強双模倣性(Strong Bisimulation)

 $(P_1, P_2) \subseteq \mathbb{R}$ が強双模倣とは任意のアクション α に対して、次の2条件が成立すること

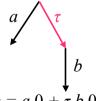
- 任意のP₁' に対して P₁ → P₁' ならば、
 あるP₂' が存在してP₂ → P₂' かつ (P₁', P₂') ⊆ R
- 任意のP₂' に対して P₂ → P₂' ならば、
 あるP₁' が存在してP₁ → P₁' かつ (P₁', P₂') ⊆ R

 $(P_1, P_2) \subseteq \mathbb{R}$ となる \mathbb{R} が存在するとき、 $P_1 \succeq P_2$ が双模倣関係と呼び、 $P_1 \sim P_2$ と書く

Ichiro Satok

制测透過性

外部から観測不能かつ制御不能なアクションを内部的に実行できるプロセスの等価性とは



 $P8 = a.0 + \tau.b.0$

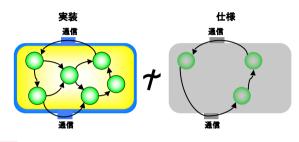
Q8 = a.0 + b.0

内部アクションτを無視すればいいというものではない

Ichiro Satoh

観測性

外部との相互作用に着目→内部計算を無視



仕様では内部実装はふれず、外部との通信に特化

Ichiro Satoh

一観測可能性

内部アクション (τ) の抽象化

$$q \stackrel{\varepsilon}{\Rightarrow} q': q = q_0 \stackrel{\tau}{\rightarrow} q_1 \stackrel{\tau}{\rightarrow} \dots \stackrel{\tau}{\rightarrow} q_n = q, n \ge 0$$
$$q \stackrel{\alpha}{\Rightarrow} q': q \stackrel{\varepsilon}{\Rightarrow} q_1 \stackrel{\alpha}{\rightarrow} q_2 \stackrel{\varepsilon}{\Rightarrow} q'$$

 $\alpha = \tau$ のとき $^{\alpha} = \epsilon$, それ以外のとき $^{\alpha} = \alpha$

Ichiro Satoh

→弱双模倣性(Weak Bisimulation)

 $(P_1, P_2) \subseteq \mathbb{R}$ が弱双模倣とは任意のアクション α に対して、次の2条件が成立すること

- 任意の P_1 ' に対して $P_1 \stackrel{\hookrightarrow}{\to} P_1$ ' ならば、 ある P_2 ' が存在して $P_2 \stackrel{\cap}{\to} P_2$ ' かつ $(P_1', P_2') \subseteq \mathbb{R}$
- 任意の P_2 ' に対して $P_2 \stackrel{\triangle}{\to} P_2$ ' ならば、 ある P_1 ' が存在して $P_1 \stackrel{\triangle}{\to} P_1$ ' かつ $(P_1', P_2') \subseteq \mathbb{R}$

 $(P_1, P_2) \subseteq R$ となるRが存在するとき、 $P_1 \ge P_2$ が双模倣関係と呼び、 $P_1 \sim P_2$ と書く

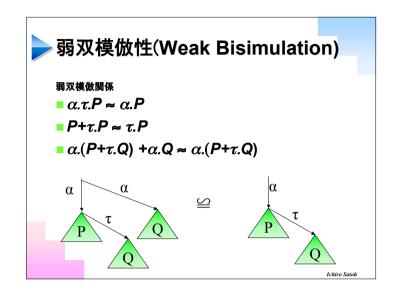
Ichiro Satoh

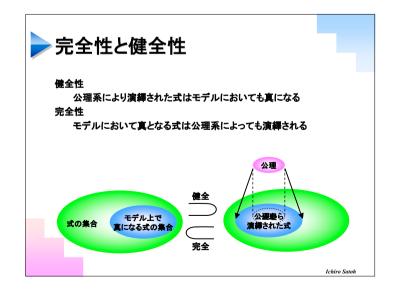
▶強双模倣性と弱双模倣性

τ 遷移を考慮して相互に模倣するならば、τ 遷移を無視しても相互に模倣する

 $P \sim Q$ ならば、 $P \approx Q$

Ichiro Satoh





公理化

プロセス式

 $P := 0 \mid \alpha.P \mid P+Q$

公理系A(等価式)

(A) P+Q=Q+P P+(Q+R)=(P+Q)+R P+P=P P+0=P

健全性

A ⊢ P=Q ならば P ~ Q

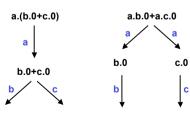
完全性

 $P \sim Q \Leftrightarrow A \vdash P = Q$

プロセス論理

論理学手法を利用したプロセスの仕様記述と証明

例: a.(b.0+c.0) ≠ a.b.0+a.c.0



Ichiro Satoh

一公理化

+ に関する公理

P+(Q+R) = (P+Q)+R P+Q = Q+P P+P = P P+0 = P

|に関する公理

P|(Q|R) = (P|Q)|R P|Q = Q|P P|0 = P

観測性を考慮した公理

$$\alpha.\tau.P = \alpha.P$$
 $P+\tau.P = \tau.P$ $\alpha.(P+\tau.Q) + \alpha.Q = \alpha.(P+\tau.Q)$

Ichiro Satoh

プロセス論理

Hennessy-Milner論理

構文:

P ::= true | false | P \land Q | \neg P | <a> | [a]

非形式的意味

[a]

真を表す true 偽を表す false PΛQ PかつQ Pの否定 アクションaに関する可能様相演算子 <a> アクションaに関する必然様相演算子

Ichiro Satoh

