
Software Testing for Ubiquitous Computing Devices
Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

E-mail: ichiro@nii.ac.jp

Abstract

We describe an approach for building and testing soft-
ware for ubiquitous computing. The approach provides
application-level emulators of ubiquitous devices. Since
each emulator is implemented as a mobile agent, it can
dynamically deploy its target software at each of the sub-
networks that its device may be connected to and permits
the software to interact with other devices and servers in
its current sub-network. Therefore, the approach can test
software designed to run a ubiquitous device in the same
way as if the software was moved with and executed on
the device when attached to the sub-network. This paper
also presents some experiences with the development of
ubiquitous computing software by using the framework.

KEY WORDS
mobile computing, ubiuquitous computing, mobile agent

1 Introduction

Current work on ubiquitous computing often focuses on the
creation of small and low-powered devices, user interfaces,
and context-aware systems. On the other hand, the tasks
of building and testing software for ubiquitous computing
have received little attention so far and many existing soft-
ware for ubiquitous computing have been still developed
in an ad-hoc manner. This is a serious impediment to the
growth of ubiquitous computing beyond mere laboratory
prototypes. To solve this problem, a software development
approach suitable to ubiquitous computing is needed. In-
deed we introduced a framework, called Flying Emulator,
for developing software running on portable (but not ubiq-
uitous) devices in our earlier paper [13]. Although the ini-
tial goal of the framework is not to support any ubiquitous
devices, this paper proves that the framework is still practi-
cal in ubiquitous computing settings and describes lessons
learned from exploiting the framework in the development
of typical ubiquitous computing devices.

In the remainder of this short paper we describe our
design goals (Section 2), an approach for building and test-
ing ubiquitous computing software, our experience with
several applications (Section 3), conclusions and future is-
sues (Section 4).

2 Background

A typical ubiquitous computing device has a less powerful
processor with less memory and limited user interface such
as cramped keyboard and small screen. Therefore, it is dif-
ficult to build and debug software for such a device within
the device itself. A popular and practical solution to this
problem is to offer a software-based emulator of the target
ubiquitous device. However, it is not always available in
the development of network-enabled devices because of the
following characteristics of ubiquitous computing as dis-
cussed in [3, 6].

Network-dependency and Interoperability: Coopera-
tion among ubiquitous devices and servers within a domes-
tic or office network is an indispensable feature that com-
plements some missing parts in a device. As a result, the
correctness of software running on a device depends not
only on the internal execution environment of the device,
but also the external environments provided from the net-
work that the device may connect to. Moreover, testing
of interoperability among various devices often tends to be
tedious, since devices, with which the target device may
cooperate, are various and innumerable. However, it is al-
most impossible for an emulator running on a standalone
computer to simulate the whole context that its target de-
vice can interact with through networks.

Mobility and Disconnection: Devices may be discon-
nected from the network of the current location and then
reconnected to that of another location. Changing the net-
work and location may imply movement away from the
servers currently in use, toward new ones. Even while a
device is disconnected from the network, the device may
perform its own task independently of other devices for the
reason of availability. A precise solution to solve this prob-
lem is that the developer actually carries a workstation run-
ning an emulator of the target device (or the device itself)
for performing an application and attaches it to local net-
works in the current location. However, this is extremely
cumbersome troublesome for the developer and thus should
be resorted in only the final phase of software development.

Spontaneous and Plug-and-Play Management: An-
other solution is enable target software to run on a local
workstation and link up with remote devices and servers

1



through networks. On the other hand, a ubiquitous com-
puting environment requires zero user configuration and
administration. Several middleware systems, such as Jini
[2] and Universal Plug and Play (UPnP) [10], have been
proposed and used as the part of coordination architectures
that ensure device interaction with the ultimate aim of sim-
ple and spontaneous device management in a plug-and-play
manner. These middleware systems are design for man-
aging devices by using multicast communications, where
management messages may be transmitted to only the hosts
within specified sub-networks, instead of any remote net-
works. As a result, such a networked emulator cannot re-
motely access all the multicast-based services supported
through by middleware systems. Also, it is inappropriate
because of responsiveness and security protection such as
firewalls.

In the remainder of this section we briefly survey re-
lated work. There have been a few researches to improve
the task of building and testing software for ubiquitous de-
vices. Among them, most of them provide middleware
and toolkits for building context-aware software suitable
to ubiquitous computing, for example, see [14, 9]. To
our knowledge, no existing attempts to apply mobile agent
technology [4, 7], including mobile code approach, to the
development of ubiquitous and mobile computing except
for our previous paper [13]. There have been a variety ap-
proaches for building and testing software for ubiquitous
devices, including standalone emulation approach and field
testing approach as stated in this section. The goal of the
approach presented in this paper is to complement other ex-
isting approaches so that the approach should be properly
combined with the existing approaches.

3 Architecture

To satisfy the above requirements, we construct an ap-
proach for building and testing software for ubiquitous de-
vices based on the Flying Emulator framework.

3.1 Flying Emulator Framework

We outline the Flying Emulator framework, which is a ba-
sis of the approach and presented in a previous paper [13].1

The goal of the original framework is to test network-
dependent software running on a portable computing de-
vice in the sense that the software may often access servers
on the network that the device is currently connected to
either through wired or wireless networks. As the device
moves across networks, their environments may change.
That is, some new servers become available, whereas oth-
ers may no longer be relevant. Such software must be tested
in the environments of all the networks that the device can
be moved into and attached to.

1Details of the Flying Emulator framework can be found in our previ-
ous paper [11].

The key idea of the framework is to emulate the phys-
ical mobility of a portable computing device by using the
logical mobility of the targeted software. The framework
provides a software-based emulator of portable computing
devices. Each emulator is constructed as a Java-based mo-
bile agent. It can carry target software across networks on
behalf of a device and allows the software to connect to lo-
cal servers in its current network in the same way as if the
software was moved with and executed on the device when
attached to the sub-network.Figure 1 illustrates the correla-
tion between the physical mobility of a running device and
the logical mobility of an emulator of the device.
Each mobile agent is just a logical entity and thus must be
executed on a computer. Therefore, the framework assumes
that each of the networks, into which the device may be
moved and attached to, has a special stationary host, called
an access point host. The host offers a runtime system for
executing and migrating mobile agent-based emulators and
allows the software carried by an emulator to connect with
various servers running on the network. That is, the phys-
ical movement of a portable computing device from one
network and attachment to another network is simulated by
the logical mobility of a mobile agent-based emulator with
the target software from an access point computer in the
source network to another access point computer in the des-
tination network. Each mobile agent-based emulator can
carry not only the code but also the states of its software to
the destination. As a result, the carried software can con-
tinue their processes after arriving at another host as if it
was moved with its targeted device. Also, the framework
allows the software tested successfully in a mobile agent-
based emulator to be executed on its target portable device
without modifying or recompiling the application. An im-
plementation of the framework is available in the JDK 1.1
or 1.2-compatible Java virtual machine, including Personal
Java.

3.2 Software Testing for Ubiquitous Devices

Although the Flying Emulator framework was initially in-
spired for the development of portable computing devices,
the framework is available in ubiquitous computing set-
ting. An emulator of the framework performs application-
transparent emulation of its target device for application
software written in the Java language. Since each emula-
tor is implemented as a mobile agent, it can carry its target
software to an access point host, which can be treated as
a peep of the devices and servers provided from its vis-
iting emulator. The carried software can keep its previ-
ous processes and interact with other devices and servers
provided on the current sub-network via the access point
host. Therefore, the developer can test his/her target soft-
ware designed to run on its target device to an access point
host in the sub-network that the device may be moved and
connected to. This means that the framework can satisfy
the first and second requirements discussed in the previ-
ous section. Moreover, since the carried software is de-



sub-network A

movement

movement

local servers

local servers

local servers

sub-network B

sub-network C

sub-network A

migration

migration

local servers

local servers

local servers

sub-network B

sub-network C

target
software

target
software

target
software

remote
control
server

target
software

target
software

target
software

emulator

emulator

emulator

control message

access point host

access
point
host

A) B)

Figure 1. Corelation between (A) the physical mobility of a device and (B) the logical mobility of an emulator of the device
with its target software

ployed and performed within the domain of the current sub-
network, it can directly receive multicast packets such as
Jini’s and UPnP’s management messages available in the
domain. Therefore, the framework satisfies the third re-
quirement and is useful in the testing of interoperability of
various protocols for ubiquitous computing.

4 Design and Implementation

This section describes our mobile agent-based framework.
The current implementation of this framework is based
on a Java-based mobile agent system called MobileSpaces
[11].2 As shown in Figure 2, the framework consists of the
following three parts:

� The mobile agent-based emulator can carry the tar-
get software to specified access-point hosts on remote
networks on behalf of a target ubiquitous computing
device.

� Access-point hosts are allocated to each network and
allows the software carried by an emulator to connect
with various servers running on the network.

� The remote-control server is a front-end to the whole
system and it allows us to monitor and operate the
moving emulator and its target software by remotely
displaying their graphical user interfaces on its screen.

In addition to the above parts, we provide a runtime sys-
tem to run on a ubiquitous device and support execution

2The framework itself is independent of the MobileSpaces mobile
agent system and can thus work with other Java-based mobile agent sys-
tems.

of the tested software. The framework is constructed in-
dependently of the underlying system and can thus run on
any computer with a JDK 1.1 or 1.2-compatible Java virtual
machine, including Personal Java, and as the MobileSpaces
system.

sub-network A

migration

migration

local servers

local servers

local servers

sub-network B

sub-network C
remote control

server

target

software

emulator

control message

access point host

access

point

host

control message

control message

mobile agent

based emulator

Figure 2. Architecture

4.1 Mobile Agent-based Emulator

The mission of our mobile agent-based emulator is to carry
and test applications that have been designed to run on its
target computing device. Each mobile agent-based emula-
tor is just a hierarchical mobile agent of the MobileSpaces



system. Since every application is provided as a collection
of mobile agent-based components, the emulator can natu-
rally contain more than one mobile agent-based application
inside itself and can migrate itself and its inner applications
to other places. Since such contained applications are still
mobile agents, both the applications running on an emu-
lator and the applications running on the device are mo-
bile agents of the MobileSpaces system and can thus be
executed in the same runtime environment. Actually, this
framework basically offers a common runtime system to
both its target devices and access-point hosts, to minimize
differences between them as much as possible. In addition,
the Java virtual machine can actually shield applications
from most features of the hardware and operating system of
target computing devices. Figure 3 illustrates the structure
of a mobile agent-based emulator running an access-point
host.

Hardware / OS

Java VM

access point host

target software

sub-network

mobile agent-based emulator

mobile agent runtime system local severs

file

system
user

interface

networkexecution

control

event

handler

migration

control

Figure 3. A mobile agent-based emulator running on an
access-point host.

The framework assumes that its target software is a Java
application program. Accordingly, the Java virtual ma-
chine can actually shield such target software from many
features of the hardware and operating system of ubiqui-
tous devices. Each emulator permits its target software to
have access to the standard classes commonly supported by
the Java virtual machine as long as the target device offers
it. In addition, the current implementation of our emulator
supports several typical resources of ubiquitous devices as
follows:

File Storage: Each emulator can maintain a database to
store files. Each file can be stored in the database as a
pair consisting of its file/directory path name pattern and
its content. Each emulator provides basic primitives for file
operation, such as creation, reading, writing, and deletion
and also allows a user to insert files into itself through its

graphical user interface.

User Interface: The user interfaces of most handheld
computers are limited by their screen size, color, and reso-
lution, and they may be not equipped with traditional input
devices such as a keyboard and mouse. Each emulator can
explicitly constrain only the size and color of the user in-
terface available from its inner applications by using a set
of classes for visible content for the MobileSpaces system,
called MobiDoc, developed by the author in [12]. As will
be mentioned later, our framework furthermore enables the
developer to view and operate the user interfaces of appli-
cations in an emulator on the screen of its local computer,
even when the emulator is being deployed at remote hosts.

Network: When anchored at an access-point host, each
emulator can directly inherit most network resources from
the host, such as java.net and java.rmi packages. In
the current implementation, a moving emulator cannot have
its own network identifier, such as an IP address and port
number. However, this is not a serious problem because
most applications on a computing device are provided as
client-side programs, rather than server-side ones. For ex-
ample, Figure 4 shows the emulation of a ubiquitous device
when the device is connected to a sub-network in a plug-
and-play manner and the software running on it is interact-
ing with other devices through multicast-communications.
For example, when arriving at an access-point host, each
emulator can directly exploit most network resources from
the host, such as java.net and java.rmi packages.
Although a moving emulator cannot have its own unique
network identifier, such as an IP address and port number,
it can inherit the identifier of the access-point host that it is
running on.

Serial Port: Each emulator can permit its target software
to be Java’s communication APIs (Java COMM), provided
on the device that the emulator runs. Furthermore, the
framework offers a mechanism for allowing its target soft-
ware to have access to equipment running on remote com-
puters via serial ports. The mechanism consists of prox-
ies whose interface is compatible with Java’s communica-
tion APIs and which can forward the port’s signals between
an emulator and the remote-control server through TCP/IP
channels. In almost all Intranet situations, a firewall pre-
vents users from opening a direct socket connection to a
node across administrative boundaries.

4.2 Access-point Host

As mentioned previously, the framework presented in this
paper is built on the MobileSpaces mobile agent system.
Each access-point host offers a MobileSpaces runtime sys-
tem for executing and migrating the mobile agent-based
emulator to another access-point host. When an agent is
transferred over a network, the runtime system stores the



plug-and-play
connection

sub-network
(multicast domain)

target
software

target
software

emulator

sub-network
(multicast domain)

multicast-based
management

multicast-based
management

access point
host

access point
host

target
software

emulator

A) B)

agent
migration

Figure 4. Emulation of (A) the plug-and-play operation of a ubiquitous device by (B) the migration of the emulator for the
device between access-point hosts

state and codes of the agent, including software, in a bit-
stream defined by Java’s JAR file format that can support
digital signatures for authentication. The MobileSpaces
runtime system supports a built-in mechanism for trans-
mitting the bitstream over networks by using an extension
of the HTTP protocol. In almost all Intranet situations
there is a firewall that prevents users from opening a direct
socket connection to a node across administrative bound-
aries. Since the mechanism is based on a technique called
HTTP tunneling, it enables agents to be sent outside a fire-
wall as HTTP POST requests, and responses to be retrieved
as HTTP responses.

Also, each access-point host is treated as a peep of
the resources and services provided in its network from
the applications in a visiting emulator. This framework as-
sumes more than one access-point host to be allocated in
each network, to which the target computing device may
be attached. Each access-point host is constructed based
on a common runtime system that can be used for targeted
devices and run on a standard workstation without any cus-
tom hardware. Many applications have their own graphical
user interfaces. To test such applications, our framework
should offer a mechanism for remotely viewing and oper-
ating these user interfaces on the screen of the remote con-
trol server, instead of on the screen of their current hosts.
The mechanism is built on the Remote Abstract Window
Toolkit (RAWT) developed by IBM [5]. This toolkit al-
lows Java programs that run on a remote host to display
GUI data on a local host and receive GUI data from it. Each
access-point host can be incorporated with the toolkit, thus
allowing all the windows of applications in a visiting em-
ulator to be displayed on the screen of the control server
and operated using the keyboard and mouse of the server.
Therefore, no access-point host has to offer any graphics
services.

4.3 Remote-control Server

This server is a control entity responsible for managing the
whole system. It can run on a standard workstation that

supports the Java language. It can always track the loca-
tions of all the emulators, because each access-point host
sends certain messages to the control server whenever the
moving emulators arrive or leave. Moreover, the server acts
as a graphical front end for the system and thus allows the
developer to freely instruct moving emulators to migrate
to other locations and terminate, through its own graphical
user interface. Moreover, by incorporating with a server
of the RAWT toolkit, it enables us to view and operate the
graphical user interfaces of targeted applications on behalf
of their moving emulators. Also, it can monitor the status
of all the access-point hosts by periodically multicasting
query messages to them.

5 Experiences

To demonstrate the utility of our framework, we have tested
two typical systems in ubiquitous computing settings.

UPnP-based Management System: In our previous
project [8], we implemented a subset of the UPnP proto-
col written in the Java language. Using this framework, we
tested the interoperability between our UPnP implemen-
tation and other UPnP-aware devices. UPnP is an infras-
tructure for managing various devices such as smart appli-
ances, embedded computers, and PCs. It uses a multicast-
based management protocol, called Simple Service Dis-
covery Protocol (SSDP), for announcing a device’s pres-
ence to others as well as discovering other devices or ser-
vices. For example, a joining device sends out an ad-
vertisement multicast message to advertise its services to
UPnP’s control points. Since UPnP’s multicast messages
are available within the domain of specified sub-networks,
our UPnP aware-software designed to run on a device must
be performed within the domain to receive the messages.
Therefore, we constructed a mobile agent-based emulator
as just a carrier of the software. When the emulator ar-
rives at an access point host within the domain, the soft-
ware carried by the emulator can send out an advertisement



multicast message and receive search multicast messages
from other devices in the domain as if the emulator’s tar-
get joined to the domain. In addition, the software tested
successfully in the emulator can still be performed in the
same way without modifying or recompiling the software.
As a result, this example shows that our framework can
provide a powerful methodology for testing the interoper-
ability of protocols limited within specified sub-networks
for the reasons of security protection and the reduction of
network traffics.

Printer Management System: This example illustrates
the development of a location-dependent printing service
system for moving users in a building. In the current im-
plementation of the system, each floor of the building has
one or more printers, which are of various types and man-
aged by the Jini system [2] and is covered by one or more
ranges of IEEE802.11b wireless sub-networks without any
overlap among the ranges. Also, each moving user has
a portable computing device equipped with IEEE802.11b
network interface.3 When moving from floor to floor, the
server allocated in the sub-network can automatically ad-
vertise its printers to the visiting device. To construct Jini
client-side software designed to run on a portable comput-
ing device, the developer needs to carry the device, attach
it to the sub-network of each floor, and then check whether
it can successfully access every printer on the current floor.
This framework could successfully test the system. That is,
we constructed a mobile agent-based emulator for the de-
vice. The emulator can migrate the client-side software to
the sub-network of another floor and then allows the soft-
ware to interact with Jini’s servers to access the printer of
the floor. While it was impossible to measure the frame-
work’s benefit in a quantitative manner, the framework ex-
empts the developer from the task of going up and down
stairs with while carrying a portable device simply to ver-
ify whether the device can successfully print out data by
using networked printers on its current floor or not.

6 Conclusion

In this paper, we have seen a way to use the framework ini-
tially designed for the development of software for portable
computing devices as a novel and practical approach for
testing software for ubiquitous devices. The key idea of the
approach is to construct an emulator of ubiquitous devices
as a mobile agent. The emulator can dynamically deploy
and test software designed to run on its target portable de-
vice with the environment provided from the sub-network
in the same way as if the software was moved with and
executed on the device when attached to the sub-network.
The approach can test most features of ubiquitous devices,
such as network-dependency, mobility, multicasting-based

3The implementation assumes our target device be a PC-based portable
computer because other devices such as PDAs and mobile phones cannot
support Jini currently.

management, and so on. Our early experience with this
approach suggested that our approach could greatly reduce
the time needed to develop software for ubiquitous devices.

Finally, we would like to point out further issues to
be resolved. Security is one of the most essential issues
in mobile agent technology. Actually, since our approach
should be used in the development phase instead of any op-
eration phases, this issue is not serious, compared to other
mobile agent-based applications. However, we plan to de-
sign scheme to perform security and access control, since
the current implementation relies on the JDK 1.1 security
manager. Also, our approach should be used to comple-
ment other existing software development methodologies
for ubiquitous computing. Therefore, we are interested in
making a tool for integrating between our approach and
other methodologies.

References

[1] G.D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and
M. Pinkerton, “Cyberguide: A Mobile Context-Aware Tour Guide”.
ACM Wireless Networks 3, pp.421–433. 1997.

[2] K. Arnold, A. Wollrath, R. Scheifler, and J.Waldo, “The Jini Speci-
fication”. Addison-Wesley, 1999.

[3] W. K. Edwards and R. E. Grinter “At Home with Ubiquitous Com-
puting: Seven Challenges”, Proceedings of Ubiquitous Computing
(Ubicomp’2001), pp.256-272, LNCS, Vol. 2201, Springer, 2001.

[4] A. Fuggetta, G. P. Picco, and G. Vigna, Understanding Code Mobil-
ity, IEEE Transactions on Software Engineering, 24(5), 1998.

[5] International Business Machines Corporation, “Remote Abstract
Window Toolkit for Java”, http://www.alphaworks.ibm.com/, 1998.

[6] T. Kindberg and A. Fox, “System Software for Ubiquitous Comput-
ing”, Pervasive Computing, Vol.1, No.1, pp.70-81, IEEE Computer
Society, 2002.

[7] B. D. Lange and M. Oshima, “Programming and Deploying Java
Mobile Agents with Aglets”, Addison-Wesley, 1998.

[8] T. Nakajima, I. Satoh, and H. Aizu, “A Virtual Overlay Network for
Integrating Home Appliances”, Proceedings of International Sym-
posium on Applications and the Internet (SAINT’2002), pp.246-
253, IEEE Computer Society, January, 2002.

[9] D. Salber, A. K. Dey, and G. D. Abowd, “The context toolkit: Aid-
ing the development of context-enabled applications” Proceedings
of Conference on Human Factors in Computing Systems (CHI’99),
pp.434-441, ACM Press, 1999.

[10] Microsoft Corporation, “Universal Plug and Play
Device Architecture Version 1.0” June, 2000.
http://www.upnp.org/UpnPDevice Architecutre 1.0.htm

[11] I. Satoh, “MobileSpaces: A Framework for Building Adaptive Dis-
tributed Applications Using a Hierarchical Mobile Agent System”,
Proceedings of International Conference on Distributed Comput-
ing Systems (ICDCS’2000), pp.161-168, IEEE Computer Society,
April, 2000.

[12] I. Satoh, “MobiDoc: A Framework for Building Mobile Com-
pound Documents from Hierarchical Mobile Agents”, Proceedings
of Symposium on Agent Systems and Applications / Symposium on
Mobile Agents (ASA/MA’2000), Lecture Notes in Computer Sci-
ence, Vol.1882, pp.113-125, Springer, 2000.

[13] I. Satoh, “Flying Emulator: Rapid Building and Testing of Net-
worked Applications for Mobile Computers”, Proceedings of Con-
ference on Mobile Agents (MA’2001), LNCS, pp.103-118, Springer,
December, 2001.

[14] B. Schilit, N. Adams, R. Want, “Context-Aware Computing Appli-
cations” Proceeding of Workshop on Mobile Computing Systems
and Applications, IEEE Computer Society, 1994.


