
MobiDoc: A Framework for Building Mobile Compound

Documents from Hierarchical Mobile Agents

Ichiro Satoh

Department of Information Sciences, Ochanomizu University /
Japan Science and Technology Corporation

2-1-1 Otsuka Bunkyo-ku Tokyo 112-8610 Japan
Tel: +81-3-5978-5388 Fax: +81-3-5978-5390

E-mail: ichiro@is.ocha.ac.jp

Abstract. MobiDoc is a framework for building mobile compound documents,
where the compound document can be dynamically composed of mobile agents
and can migrate itself over a network as a whole, with all its embedded agents.
The key of this framework is that it builds a hierarchical mobile agent system that
enables multiple mobile agents to be combined into a single mobile agent. The
framework also provides several added-value mechanisms for visually manipu-
lating components embedded in a compound document and for sharing a win-
dow on the screen among the components. This paper will describe the MobiDoc
framework and its first implementation, currently using Java as implementation
language as well as component development language, and then illustrate several
interesting applications to demonstrate the utility and flexibility of this frame-
work.

1 Introduction

Building systems from software components has already proven useful in the devel-
opment of large and complex systems. Several frameworks for software components
have been developed, such as COM/OLE [4], OpenDoc [1], CommonPoint [12], and
JavaBeans [8]. Among them, the notion of compound documents is a document-centric
component framework, where various visible parts, such as text, image, and video, that
are created by different applications can be combined into one document and be in-
dependently manipulated in-place in the document. An example of this type of frame-
works is CI Labs’ OpenDoc [1] developed by Apple computer and IBM, although their
development work on this framework has stopped.

However, there have been several problems in the few existing compound document
frameworks. A compound component is typically defined by two parts: contents, and
codes for modifying the contents. Contents are often stored in the component but not
the codes for accessing them. Thus, a user cannot view or modify a document whose
contents need the support of different applications, if the user does not have the appli-
cations themselves. Moreover, most existing frameworks assume that a user manually
lays out components into a compound document. It is difficult to change a compound
document autonomously. So, when a compound document arrives at a computer, the

document is unable to dynamically change the layouts and combinations of its compo-
nents, and it cannot be dynamically adapted to the user’s requirements. A document is
not designed for mobility and thus the document itself cannot determine where it should
go next.

The goal of this paper is to propose a new framework for building mobile com-
pound documents. Each document is built as a component that can be a container for
components that is able to migrate over a network. Accessing compound documents
over a network requires a powerful infrastructure for building and migrating, such as
mobile agents. Mobile agents are autonomous programs that can travel from computer
to computer under their own control. When each agent migrates over network, both the
state and the codes can be transferred to the destination. However, traditional mobile
agent systems cannot be composed of more than one mobile agent, unlike component
technology. Therefore, we built a framework on a unique mobile agent system, called
MobileSpaces, which was presented in an earlier paper [13]. The system is constructed
using Java language [2] and provides mobile agents that can move over a network, like
other mobile agent systems. However, it also allows more than one mobile agent to be
hierarchically assembled into a single mobile agent. Consequently, in our framework,
a compound document is a hierarchical mobile agent that contains its contents and a
hierarchy of mobile agents, which correspond to nested components embedded in the
document. Furthermore, the framework offers several mechanisms for coordinating vis-
ible components so that these components can effectively share visual real estate on a
screen in a seemless-looking way.

This paper is organized in the following sections. Section 2 surveys related work
and Section 3 presents the basic ideas of the compound document framework, called
MobiDoc. Section 4 details its first implementation and Section 5 shows the usabil-
ity of our framework based on real-world examples. Section 6 gives some concluding
remarks.

2 Background

Among the component technologies developed so far, OpenDoc and JavaBeans are
characterized by allowing a component to contain a hierarchy of nested components.
Although there are few hierarchical components available in the market today, their
advent appears to be necessary and unavoidable in the long run.

OpenDoc is a document-centric components framework and has several advantages
over other frameworks, but it has been discontinued. An OpenDoc component is not
self-configurable, although it is equipped with scripts to control itself, and thus a com-
ponent cannot migrate over a network under its own control. JavaBeans is a general
framework for building reusable software components designed for the Java language.
The initial release of JavaBeans (version 1.0 specified in [8]) does not contain a hier-
archical or logical structure for JavaBean objects, but its latest release specified in [6]
allows JavaBean objects to be organized hierarchically. However, the JavaBeans frame-
work does not provide any higher level document-related functions. Moreover, it is not
inherently designed for mobility. Therefore, it is very difficult for a group of JavaBean
objects in the containment hierarchy to migrate to another computer.

A number of other mobile agent systems have been released recently, for exam-
ple Aglets [9], Mole [3], Telescript [16], and Voyager [11]. However, these agent sys-
tems unfortunately lack a mechanism for structurally assembling more than one mobile
agent, unlike component technologies. This is because each mobile agent is basically
designed as an isolated entity that migrates independently. Some of them offer inter-
agent communication, but they can only couple mobile agents loosely and thus cannot
migrate a group of mobile agents to another computer as whole. Telescript introduces
the concept of places in addition to mobile agents. Places are agents that can contain
mobile agents and places inside them, but they are not mobile. Therefore, the notion of
places does not support mobile compound documents.

To solve the above problem in existing mobile agent systems, we constructed a new
mobile agent system called MobileSpaces [13]. The system introduces the notion of
agent hierarchy and inter-agent migration. This system allows a group of mobile agents
to be dynamically assembled into a single mobile agent. Although the system itself
has no mechanism for constructing compound documents, it can provide a powerful
infrastructure for implementing compound documents to network computing settings.

ADK [7] is a framework for building mobile agents from JavaBeans. It provides an
extension of Sun’s visual builder tool for JavaBeans, called BeanBox, to support the
visual construction of mobile agents. In contrast, we intend to construct a new frame-
work for building mobile compound documents in which each component can be a
container for components and can migrate over a network under its own control. Our
compound document will be able to migrate itself from one computer to another as
a whole with all of its embedded components to the new computer and adapt the ar-
rangement of its inner components to the user’s requirements and its environments by
migrating and replacing corresponding components. The HyperNews framework [10]
provides an electronic newspaper system to the WWW by using mobile agents to en-
capsulate and update articles. It does not offer any any general framework for building
mobile compound documents, but can provide an architecture for electronic documents
based on mobile agents.

3 Approach

This section outlines the framework for building compound documents based on mobile
agents called MobiDoc.

3.1 Compound Documents as Mobile Agents

To create an enriched compound document, a component or document must be able
to contain other components, like OpenDoc. We intend to provide such a component
through a hierarchical mobile agent. Our framework is therefore built on the MobileSpaces
system presented in our earlier paper [13] which can dynamically assemble more than
one mobile agent into a single mobile agent. The system supports mobile agents that
are computational and itinerant entities, like other mobile agent systems. Also, the Mo-
bileSpaces system incorporates the following concepts:

– Agent Hierarchy: Each mobile agent can be contained within one mobile agent.

– Inter-agent Migration: Each mobile agent can migrate between other mobile agents
as a whole, with all of its inner agents.

migration

Agent C
Agent D

Agent B

Agent E

Agent A

step 1

step 2

Agent C

Agent A

Agent D

Agent B

Agent E

Fig. 1. Agent Hierarchy and Inter-agent Migration

The first concept enables each component to be a group of mobile agents organized
hierarchically. The second concept enables a compound document to migrate itself and
its components as a whole. Fig. shows an example of an inter-agent migration in an
agent hierarchy. Our agent model is similar to a process calculus for modeling process
migration called mobile ambients [5]. The containment hierarchy for components in a
document is organized directly in the agent hierarchy in the MobileSpace system.

3.2 Compound Document Framework

The MobileSpaces system is a suitable infrastructure for mobile compound documents,
but it does not provide any document-centric mechanisms for managing components
in a compound document. We offer a compound document framework for supporting
mobile agent-based components, including graphical user interfaces for manipulating
visible components. This framework, called MobiDoc, is given as a collection of Java
objects that belong to one of about 40 classes. It defines the protocols that let compo-
nents embedded in a document communicate with each other. It also deals with in-place
editing services similar to those provided by OpenDoc and OLE. The framework offers
several mechanisms for effectively sharing a visual estate of a container among compo-
nents embedded and for coordinating their use of shared resources, such as keyboard,
mouse, and window.

4 Implementation

Next, we will describe our method for using the MobileSpaces system to construct
mobile compound documents.1 The system can execute and migrate mobile agents that

1 Details of the MobileSpaces mobile agent system can be found in our previous paper [13].

are incorporated with the two concepts presented in the previous section. It has been
incorporated in Java Development Kit version 1.2 and can run on any computer that has
a runtime compatible with this version.

4.1 The Runtime System

The MobileSpaces runtime system is a platform for executing and migrating mobile
agents. It is built on a Java virtual machine and mobile agents are given as Java objects
[2]. Each component is given as a mobile agent in the system and the containment
hierarchy of components in a document is given as an agent hierarchy managed by the
system. The runtime system has the following functions:

Agent Hierarchy Management: The agent hierarchy is given as a tree structure in
which each node contains a mobile agent and its attributes. The runtime system is as-
sumed to be at the root node of the agent hierarchy. Agent migration in an agent hi-
erarchy is performed just as a transformation of the tree structure of the hierarchy. In
the runtime system, each agent has direct control of its inner agent. That is, a container
agent can instruct its embedded agents to move to other agents or computers, serialize
and destroy them. In contrast, each agent has no direct control over its container agent.
Instead, each container can offer a collection of service methods which can be accessed
by its embedded agents.

Agent Execution Management: The runtime system is at the root node of the agent
hierarchy and can control all the agents in the agent hierarchy. Furthermore, it maintains
the life-cycle of agents: initialization, execution, suspension, and termination. When the
life-cycle state of an agent is changed, the runtime system issues events to invoke certain
methods in the agent and its containing agents. Moreover, the runtime system enforces
interoperation among mobile agent-based components. The runtime system monitors
the changes of components and propagates certain events to the right components. For
example, when a component is added to or removed from its container component, the
system dispatches specified events to the component and the container.

Agent Migration: Each document is saved and transmitted as a group of mobile
agents. When a component is moved inside a computer, the component and its inner
components can still be running. When a component is transferred over a network, the
runtime system stores the state and the codes of the component, including the com-
ponents embedded in it, into a bit-stream formed in Java’s JAR file format that can
support digital signatures for authentication. The system provides a built-in mechanism
for transmitting the bit-stream over the network by using an extension of the HTTP
protocol. The current system basically uses the Java object serialization package for
marshaling components. The package does not support the capturing of stack frames of
threads. Instead, when a component is serialized, the system propagates certain events
to its embedded components to instruct the agent to stop its active threads.

Extensibility: The MobileSpaces system is characterized by offering its own facili-
ties through mobile agents, so that these subcomponents can be dynamically added to
and removed from the system by migrating and replacing the corresponding agents.
Therefore, the system itself can dynamically extend and adapt its new functions, such
as inter-agent communication, agent persistency, and agent migration between comput-
ers to its execution environments. For example, the system can migrate agents through
unreliable, unsecured, and temporally disconnected networks, that may not have been
initially supported.

4.2 Agent Model

In our compound document framework, each component is a group of mobile agents
in the MobileSpaces system. They consist of a body program and a set of services im-
plemented in Java language. The body program defines the behavior of the component
and the set of services defines various APIs for components embedded within the com-
ponent. Every agent program has to be an instance of a subclass of the abstract class
ComponentAgent, which consists of some fundamental methods to control the mo-
bility and the life-cycle of a mobile agent-based component.

1: public class ComponentAgent extends Agent {
2: // (un)registering services for inner agents
3: void addContextService(ContextService service){ ... }
4: void removeContextService(ContextService service){ ... }
5:
6: // (un)registering listener objects to hook events
7: void addListener(AgentEventListener listener) { ... }
8: void removeListener(AgentEventListener listener) { ... }
9:

10: void getService(Service service) throws ... { ... }
11: void go(AgentURL url) throws ... { ... }
12: void go(AgentURL url1, AgentURL url2) throws ... { ... }
13: byte[] create(byte[] data) throws ... { ... }
14: byte[] serialize(AgentURL url) throws ... { ... }
15: AgentURL deserialize(byte[] data) throws ... { ... }
16: void destroy(AgentURL url) throws ... { ... }
17:
18: ComponentFrame getFrame() { ... }
19: ComponentFrame getFrame(AgentURL url) { ... }
20:
21: }

The methods used to control mobility and lifecycle defined in the ComponentAgent
class are as follows:

– An agent can invoke public methods defined in a set of service methods offered
by its container by invoking the getService() method with an instance of the
Service class. The instance can specify the kind of service methods, arbitrary
objects as arguments, and deadline time for timeout exception.

– When an agent performs the go(AgentURL url) method, the agent migrates it-
self to the destination agent specified as url. The go(AgentURL url1, Agen-
tURL url2) method instructs the descendant specified as url1 to move to the
destination agent specified as url2.

– Each container agent can dispatch certain events to its inner agents and notify
them when specified actions happened within their surroundings by using the dis-
patchEvent() method.

Our framework provides an event mechanism based on the delegation-based event
model introduced in the Abstract Window Toolkit of JDK 1.1 or later, like Aglets [9].
When an agent is migrated, marshaled, or destroyed, our runtime system does not auto-
matically release all the resources, such as files, windows, and sockets, which are cap-
tured by the agent. Instead, the runtime system can issue certain events in the changes of
life-cycle states. Also, a container agent can dispatch specified events to its inner mobile
agent-based components at the occurrence of user-interface level actions, such as mouse
clicks, keystrokes, and window activation, as well as at the occurrence of application
level actions, such as the opening and closing of documents. To hook these events, each
mobile agent-based component can have one or more listener objects which implement
specific methods invoked by the runtime system and its container component. For ex-
ample, each component can have one or more activities which are performed by using
the Java thread library, but needs to capture certain events issued before it migrates over
a network and stop its own activities.

4.3 The MobiDoc Compound Document Framework

The MobiDoc framework is implemented as a collection of Java classes to enforce some
of the principles of component-interoperation and graphical user interface.

Visual Layout Management: Each mobile agent-based component can be displayed
within the estate of its container or a window on the screen, but it must be accessed
through an indirection: frame objects derived from the ComponentFrame class.2 as
shown in Fig. 2. Each frame object is the area of the display that represents the contents
of components and is used for negotiating the use of geometric space between the frame
of its its container component and the frame of its component.

frame

frame

frame
clock
agent

Canvas
Agent

Compound Document Agent

Fig. 2. Components for Compound Document in Agent Hierarchy

2 Although the ComponentFrame class is a subclass of the java.awt.Panel class, we
call them frame objects because many existing compound document frameworks often call the
visual space of an embedded component frame

The frame object of each container component manages the display of the frames of
the components it contains. That is, it can control the sizes, positions, and offsets of all
the frames embedded within it, while the frame object of each contained component is
responsible for drawing its own contents. For example, if a component needs to change
the size of its frame by calling the setFrameSize() method, its frame must negoti-
ate with the frame object of its container for its size and shape and redraw its contents
within the frame.

1: public class ComponentFrame extends java.awt.Panel {
2: // sets the size of the frame
3: void setFrameSize(java.awt.Point p);
4: // gets the size of the frame
5: java.awt.Point getFrameSize();
6: // sets the layout manager for the embedded frames
7: void setLayout(CompoundLayoutManager mgr) {
8: // views the type of the component, e.g. iconic, thumbnail, or framed,
9: int getViewType();

10: // gets the reference of the container’s frame
11: ComponentFrame getContainerFrame();
12: // adds an embedded component specified as frame
13: void addFrame(ComponentFrame frame);
14: // removes an embedded component specified as frame
15: void removeFrame(ComponentFrame frame);
16: // gets all the references of embedded frames
17: ComponentFrame[] getEmbeddedFrames();
18: // gets the offset and size of the inner frame specified as cf
19: java.awt.Rectangle getEmbeddedFramePosition(ComponentFrame cf);
20: // sets the offset and size of the inner frame specified as cf
21: void setEmbeddedFramePosition(ComponentFrame cf, java.awt.Rectangle);
22:
23: }

When one component is activated, another component is usually deactivated but is
not necessarily idle. To create a seamless application look, components embedded in
a container component need to coordinately share several resources, such as keyboard,
mouse, and window. Each component is restricted from directly accessing such shared
resources. Instead, the frame object of one activated component is responsible for han-
dling and dispatching user interface actions issued from most resources, and can own
these resources until it sends a request to relinquish its resource.

In-Place Editing: The MobiDoc framework provides for document wide operations,
such as mouse click and keystrokes. It can dispatch certain events to its components
to notify them when specified actions happen within their surroundings. Moreover,
the framework provides each container component with a set of built-in services for
switching among multiple components embedded in the container and for manipulating
the borders of the frame objects of its inner components. One of these services offers
graphical user interfaces for in-place editing. This mechanism allows different com-
ponents in a document to share the same window. Consequently, components can be
immediately manipulated in-place, without the need for opening a separate window for
each component.

To directly interact with a component, we need to make the component active by
clicking the mouse within its frame. When a component is active, we can directly ma-
nipulate its contents. When clicking the boundary of the frame, the frame becomes

selected and then has eight rectangle control points for moving it around and resizing
it, as shown in Fig. 3. The user can easily resize and move the selected components by
dragging their handles.

Rectangle Control PointComponent

Window Component

Fig. 3. Selected Component and Its Rectangle Control Points

Structured Storage and Migration: When migrating over a network and being stored
onto a disk, each component must be responsible for transforming its own contents and
codes into a stream of bytes by using the serialization facility of the runtime system.
However, the frame object of each component is not stored in the component. Instead,
it is dynamically created and allocated in its container’s frame, when it becomes visible
and restored. The framework automatically disposes frame objects of each component
from the screen and stores specified attributes of the frame object in a list of values
corresponding to the attributes, because other frame objects may refer objects which are
not serializable, such as several visible objects in the Java Foundation Class package.
After restoring such serialized streams as components at the destination, the framework
appropriately redraws the frames of the components, as accurately as possible.

4.4 The Current Status

The MobiDoc framework has been implemented in the MobileSpaces system using the
Java language (JDK1.2 or later version), and we have developed various components
for compound documents, including the examples presented in this paper. The Mo-
bileSpaces system is a general-purpose mobile agent system. Therefore, mobile agents
in the system may be unwieldy as components of compound documents, but our com-
ponents can inherit the powerful properties of mobile agents, including their activity
and mobility. Security is essential in compound documents as well as mobile agents.
The current system relies on the Java security manager and provides a simple mech-
anism for authentication of components. A container component can judge whether it
accepts a new inner component or not beforehand, where the inner components can
know the available methods embedded in their containers by using the class introspec-
tor mechanism of the Java language. Furthermore, since a container agent plays a role

in providing resources for its inner agent, it can limit the accessibility of its inner com-
ponents to resources such as window, mouse, and keyboard, by hiding events issued
from these resources.

5 Examples

The MobiDoc compound document framework is powerful and flexible enough to sup-
port radically different applications. This section shows some examples of compound
documents based on the MobiDoc framework.

5.1 Electronic Mail System

One of the most illustrative examples of the MobiDoc framework is for the provision of
mobile documents for communication and workflow management. We have constructed
an electronic mail system based on the framework. The system consists of an inbox doc-
ument and letter documents as shown in Fig. 4. The inbox document provides a window
that can contain two components. One of the components is a history of received mails
and the other component offers a visual space for displaying the contents of mail se-
lected from the history. The letter document corresponds to a mobile agent-based letter
and can contain various components for accessing text, graphics, and animation. It also
has a window for displaying its contents. It can migrate itself to its destination, but it
is not a complete GUI application because it cannot display its contents without the
collaboration of its container, i.e., the inbox document.

Text Editor Component
(Inner Mobile Agent)

Image Viewer Component
(Inner Mobile Agent)

Letter Component
(Container Mobile Agent)

Fig. 4. Structure of a Letter Document

For example, to edit the text in a letter component, simply click on it, and editor
program is invoked by the in-place editing mechanism of the MobiDoc framework.
The component can deliver itself and its inner components to an inbox document at the
receiver. After a moving letter is accepted by the inbox document, if a user clicks a letter
in the list of received mail, the selected letter creates a frame object of it and requests
the document to display the frame object within the frame of the document. The key

idea of this mail system is that it composes different mobile agent-based components
into a seemless-looking compound document and allows us to immediately display and
access the contents of the components in-place. Since the inbox document is the root
of the letter component, when the document is stored and moved, all the components
embedded in the document are stored and moved with the document.

5.2 Desktop Teleporting

We constructed a mobile agent-based desktop system similar to the Teleporting System
and the Virtual Network Computing system. These systems are based on the X Window
System and allow the running applications in the computer display to be redirected to a
different computer display.

In contrast, our desktop system consists of mobile agent-based applications and thus
can migrate not only the surface of applications but also the applications themselves to
another computer (Fig. 5). The system consists of a window manager document and its
inner applications. The manager corresponds to a desktop document at the top of the
component hierarchy of applications separately displayed in their own windows on the
desktop on the screen. It can be used to control the sizes, positions, and overlaps of
the windows of its inner applications. When the desktop document is moved to another
computer, all the components, including their windows, move to the new computer. The
framework tries to keep the moving desktop and applications the same as when the user
last accessed them on the previous computer, even when the previous computer and
network are stopped. For example, the framework can migrate a user’s custom desktop
and applications to another computer the user is accessing.

This is an Editor Component. This is an Editor Component.

migration

Computer A
(source)

This is an Editor Component.

Computer B
(destination)

Window Manager
(Container Component)

Editor Window
(Inner Component)

Clock Window
(Inner Component)

Fig. 5. A Desktop Teleporting to Another Computer

6 Conclusion

We have presented a new approach for building mobile compound documents. The key
idea of the approach is to build compound documents from hierarchical mobile agents in
the MobileSpaces system, which allows more than one mobile agent to be dynamically

assembled into a single mobile agent. Our approach allows a compound document to
be dynamically composed of mobile components and to be migrated over a network as
a whole with its inner components. We design and built a framework, called MobiDoc,
to demonstrate the usability and flexibility of this approach. The framework provides
value-added services for coordinating mobile agent-based components embedded in a
document. We believe that the framework can provide a realistic and useful application
of mobile agents.

Finally, we would like to point out further issues to be resolved. To develop com-
pound documents more effectively, we need a visual builder for our mobile compo-
nents. We plan to extend a visual builder tool for JavaBeans, such as the BeanBox
system included in the Bean Development Kit (BDK) [14], so that it has the ability
to support mobile agent-based compound documents. In the current system, resource
management and security mechanisms were incorporated relatively straightforwardly.
These now should be designed for mobile compound documents. Additionally, the pro-
gramming interface of the current system is not yet satisfactory. We plan to design a
more elegant and flexible interface incorporating with existing compound document
technologies. The MobileSpaces system is a general-purpose mobile agent system and
thus can easily be used to build the framework. However, it may be unwieldy as an
infrastructure for compound documents, and thus we are interested in investigating a
lightweight system, which is optimized to handle mobile compound documents.

References

1. Apple Computer Inc., OpenDoc: White Paper, Apple Computer Inc., 1994.
2. K. Arnold and J. Gosling, The Java Programming Language, Addison-Wesley, 1998.
3. J. Baumann, F. Hole, K. Rothermel, and M. Strasser, Mole - Concepts of A Mobile Agent

System, Mobility: Processes, Computers, and Agents, pp.536-554, Addison-Wesley, 1999.
4. K. Brockschmidt, Inside OLE 2, Microsoft Press, 1995.
5. L. Cardelli and A. D. Gordon, Mobile Ambients, Foundations of Software Science and Com-

putational Structures, LNCS, Vol. 1378, pp. 140–155, 1998.
6. L. Cable, Extensible Runtime Containment and Server Protocol for JavaBeans, Sun Micros-

fystems, http://java.sun.com/beans, 1997.
7. T. Gschwind, M. Feridun, and S. Pleisch, ADK: Building Mobile Agents for Network and

System Management from Resuable Components, Technical University of Vienna, TUV-
1841-99-10, 1999.

8. G. Hamilton, The JavaBeans Specification, Sun Microsfystems, http://java.sun.com/beans,
1997.

9. B. D. Lange and M. Oshima, Programming and Deploying Java Mobile Agents with Aglets,
Addison-Wesley, 1998.

10. J. Morin, HyperNews, a Hypermedia Electronic-Newspaper Environment based on Agents,
Proceedings of HICSS-31, pp.58-67, 1998.

11. ObjectSpace Inc, ObjectSpace Voyager Technical Overview, ObjectSpace, Inc. 1997.
12. M. Potel and S. Cotter, Inside Taligent Technology, Addison-Wesley, 1995.
13. I. Satoh, MobileSpaces: A Framework for Building Adaptive Distributed Applications Using

a Hierarchical Mobile Agent System, Proceedings of International Conference on Distributed
Computing Systems (ICDCS’2000), pp.161-168, IEEE Press, April, 2000.

14. Sun Microsystems, The Bean Development Kit, http://java.sun.com/beans/, July, 1998.
15. C. Szyperski, Component Software, Addison-Wesley, 1998.
16. J. E. White, Telescript Technology: Mobile Agents, General Magic, 1995.

