
Reusable Mobile Agents for Cluster Computing

Ichiro Satoh
National Institute of Informatics

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail: ichiro@nii.ac.jp

Abstract

Adopting mobile agent technology can eliminate the
need for the administrator to manage clusters, e.g., instal-
lation and upgrading of software, and auditing of clusters
and networks. However, creating mobile agent-based net-
work management systems is still in an ad-hoc manner but
not on methodologies for building mobile agents for clus-
ter and Grid computing. This paper presents a framework
for reusable mobile agents for managing clusters in the
sense that they are independent of either particular clus-
ter systems or applications. The framework enables a mo-
bile agent to be composed from two layered components
enables, which are mobile agents. The former is a carrier
of the latter over particular networks independently of any
management tasks and the latter defines management tasks
performed at each host independently of any networks. The
framework also offers a mechanism for matchmaking the
two components. Since the mechanism is formulated based
on a process algebra approach, it can strictly select an
itinerary component suitable to perform management tasks
at the hosts that the tasks want to visit over networks. The
framework provides a methodology for easily developing
and operating mobile agents for traveling among multiple
clusters to perform their management tasks at each of the
clusters that they visit.

1. Introduction

Mobile agent technology can play an important role in the
management of cluster computing environments. Mobile
agents are autonomous programs that travel from cluster
to cluster under their own control. They are not linked to
the system where they start their execution. After being cre-
ated at an execution cluster, each mobile agent can carry its
state and code to another cluster, where its execution can
be restarted or continued. By interacting with a cluster af-
ter migrating to it, an agent can perform complex operations
on data without transferring them, directly control equip-

ments of the visited cluster, and dynamically deploy soft-
ware at the clusters, because the agent can deploy the ap-
plication logic to where it is needed and carry only relevant
data rather than the whole data observed in clusters. This
emerging technology is useful for managing cluster com-
puting systems. Several researchers have attempted to ap-
ply the technology to the management of cluster and Grid
computing systems.

However, there has been a serious problem associated
with the development of mobile agent-based management
systems for cluster computing in addition to security prob-
lems. Such systems are required to migrate their agents
among all specified clusters along an efficient itinerary suit-
able to perform their management tasks at each of the vis-
ited clusters, because the itineraries of agents seriously af-
fect the achievement and efficiency of their tasks. On the
other hand, the network of a cluster computing system of-
ten consists of a lot of sub-networks through which comput-
ers are connected, and some of the sub-networks may have
some malfunctions and disconnections. Also their topol-
ogy may not be exactly known. That is, management agents
for clusters must be able to handle such complicated and
incomplete networks. However, it is almost impossible to
dynamically generate an efficient itinerary among multiple
clusters. As a result, many existing mobile agent-based net-
work management systems for cluster computing systems
or other networked systems explicitly and implicitly assume
that their mobile agents are statically designed for particu-
lar itineraries over their target networks. However, such an
agent optimized for particular networks cannot be reused in
other networks.

To solve the above problem, we construct a frame-
work for building and operating mobile agents for net-
work management without losing their reusability and
efficiency in cluster computing environment. The frame-
work separates the application-specific tasks and itineraries
of mobile agents. The former parts define network man-
agement tasks independently of any networks and the lat-
ter parts can be optimized for particular networks. The
framework also offers a mechanism for matchmaking be-

tween the two parts. Since the mechanism is formu-
lated based on an extended process algebra for reasoning
about the itineraries of mobile agents, it can strictly se-
lect an appropriate itinerary that can satisfy the requirement
of a network management task. The current implementa-
tion of the framework is built on a Java-based mobile agent
system, called MobileSpaces [11].

This paper is organized as follows: Section 2 presents
the basic ideas of this framework and Section 3 defines a
process algebra for specifying mobile agents. Section 4 de-
scribes a prototype implementation of the framework and
Section 5 presents some applications. Section 6 surveys re-
lated work and Section 7 makes some concluding remarks.

2. Approach

The goal of this paper is to provide a framework for
building and operating reusable mobile agents capa-
ble of autonomously traveling among clusters on mul-
tiple sub-networks to perform their management tasks
at each cluster they visit on cluster computing sys-
tems.

2.1. Mobile Agent-based Management for Cluster
Computing

Mobile agents are often treated as software agents but they
are not always required to offer intelligent capabilities, for
example reactive, pro-active, and social behaviors which are
features of existing software agent technologies. This is be-
cause these capabilities tend to be large in scale and pro-
cessing, while computational resources, which agents can
use at its visiting clusters, such as processors, memory, files,
and networks are limited. That is, an intelligent and general-
purpose agent is not appropriate in the management of clus-
ter computing systems because each mobile agent should
not consume many computational resources at its destina-
tions. Also, each mobile agent must be made as small as
possible because the size of a moving agent seriously af-
fects the cost of migrating it over a network. Therefore,
mobile agent-based management systems should offer var-
ious small agents specialized for supporting their particular
tasks, rather than a few general-purpose agents for support-
ing various tasks, and they should select suitable agents to
perform the tasks. For the same reason, as mentioned previ-
ously, mobile agents should be statically optimized for their
target networks because both the cost of dynamically dis-
covering an efficient itinerary and the size of its program
tend to be large. However, an agent optimized for particu-
lar networks or tasks cannot be reused in other networks or
tasks. This results in an inevitable trade-off between the per-
formance and reusability of a mobile agent.

2.2. Two-layered Mobile Agents

To solve the above mentioned problem, the framework in-
troduces two types of mobile agents: task agents and navi-
gator agents, as shown in Figure 1.

� The Navigator agent does not have any application-
specific tasks. Instead, it carries task agents and can be
optimized for a particular sub-network.

� The Task agent is an application-specific agent that
performs its management task at each of the clusters it
visits. It can travel from sub-network to sub-network,
but may not know the sub-networks it visits.

step 1

Sub-network

Navigator Agent
Itinerary: A>B>C

Task Agent
Agent Pool

Node C Node B

Node A

step 2
carry

carryAgent Pool

Sub-network

Node C
Node B

Node A

Navigator
Agent

Task Agent

Figure 1. Navigator agents and task agents

When a task agent arrives at an unknown sub-network, it en-
ters an idle navigator agent that knows the current network
well. Then, the selected navigator agent carries the visit-
ing task agent to the clusters that the task agent wants to
visit. Each navigator agent is defined and managed by its
network and can explicitly limit the clusters to which it can
carry task agents.

This framework also provides a mechanism for allow-
ing a task agent to select a navigator agent suitable for the
current network. The mechanism, called Agent Pool, stores
idle agents in a manner similar to that in a bus-terminal or a
taxi stand, as shown in Figure 2. Each sub-network has mul-
tiple agent places for storing navigator agents specific to the
sub-network. Each navigator agent is designed to return to
its specified agent pool to wait for the next task soon af-
ter achieving its navigation task, because tracking moving
agents and forwarding messages to them tend to be heavy-
weight or unreliable functions. Each task agent is respon-
sible for traveling among the agent pools of its destination
sub-networks, where each navigator agent is responsible for
navigating its inner agents among the clusters in its sub-
network. Therefore, to travel among some of the clusters on
a sub-network, a task agent migrates to the agent pool at the

sub-network and asks a navigator agent stored in the pool to
carry it among the clusters. Both kinds of agent are imple-
mented as hierarchical mobile agents in the MobileSpaces
system [11].

sub-network A

navigator

agent A

task agent
agent pool

host 1 host 3

host 2

navigator

agent A'

sub-network B
navigator

agent B

agent pool
host 1 host 3

host 2
navigator

agent B' host 4
agent pool

sub-network C

migration
carry carry

carry

network

Figure 2. Agent Pools

2.3. Mobile Agent Matchmaking Mechanism

Mobile agents should be generally selected accord-
ing to two criteria: their application-specific behaviors
and their itineraries. Existing task assignment or agent se-
lection mechanisms for non-mobile software agents (for
example, see [4, 15]) may be able to deal with the for-
mer criterion but cannot support the latter. The focus of
current researches on mobile agents, however, is on the de-
velopment of execution platforms and applications for
mobile agents. The task of selecting mobile agents has re-
ceived little attention so far. Therefore, this paper pro-
poses an approach for selecting mobile agents according
to the latter criterion. The approach matchmakes be-
tween task agents and navigator agents by comparing
the itineraries required by the task agents and the possi-
ble itineraries of the navigator agents. Since mobile agents’
programs are written in general-purpose programming lan-
guages, such as Java, it is almost impossible to extract only
the mobile agents’ itinerary from their programs. There-
fore, our approach provides a specification language for
the itineraries of mobile agents and assumes that each mo-
bile agent explicitly specifies its own itinerary as a term of
the language.

The language is formulated as an extended process al-
gebra with the expressiveness of agent movement. Our mo-
bile agent selection is formulated based on an order relation
over the terms of the language. The relation is defined based
on the notion of bisimulation [8] and can compare the possi-
ble itinerary of each mobile agent and the itinerary required
by a task request. It allows us to strictly judge whether or
not the former itinerary can satisfy the latter itinerary. We
implemented the relation in more than one agent pool allo-
cated to each sub-network. When it receives a task agent, it

compares the itinerary of each of its stored navigator agents
with the itinerary required by the request of the task agent
by using the relation to select at most one suitable mobile
agent to accomplish the request.

Remarks We should give some supplemental expla-
nations. We should explain why our hierarchical agent
model is needed in the development of network man-
agement on cluster computing systems. The distribu-
tion of knowledge of the sub-network must be limited
to the sub-network for reasons of security and all clus-
ters may not have the capability of authenticating their vis-
iting arbitrary agents. In this framework, to visit clusters
on a sub-network, task agents must be contained and car-
ried by navigator agents that are provided and authorized by
the sub-network. Each agent pool can authenticate its vis-
iting task agents on behalf of its sub-network. As a result,
each cluster can thus accept only pre-authorized naviga-
tor agents instead of its visiting arbitrary agents. Moreover,
the knowledge of the topology of the sub-network is kept
inside the navigator agents and any task agents does not ac-
cess to and cannot have such knowledge.

Furthermore, the reader may wonder why agent
itineraries should be specified in a formal approach. This is
because the requirement of a task agent may be often var-
ious and vague and the itineraries of navigator agents
may be complex and large. Therefore, it is not easy to se-
lect suitable navigator agents whose itineraries can sat-
isfy the itineraries required by task agents. Also, the reader
may think agent itineraries should be passed to naviga-
tor agents as parameters written in simple conventional
or executable languages, such as Lisp and Prolog. How-
ever, it is difficult to verify whether or not itineraries written
in such languages are valid. Consequently, we need to con-
struct a mechanism for selecting mobile agents based on a
theoretical foundation.

3. Mobile Agent Selection

A typical mobile agent for management in cluster comput-
ing systems must monitor and control some equipments
at multiple clusters over a network whose topology may
not be exactly known and which may have some malfunc-
tions and disconnections. Such an agent often has its own
itinerary statically to solve problems in its target network.
When a task agent is carried by a navigator agent, the per-
formance and achievement of the task agent is dependent
on the itinerary of the navigator. If a mobile agent gath-
ers information from a cluster and reflects the information
on other clusters, its movement order among clusters may
affect the states of the clusters. Therefore, such an agent
must migrate among the clusters according to a specified
itinerary. On the other hand, if an agent can travel among
clusters to aggregate its interesting information from the

clusters without any writing on any clusters, the order of its
movement may be independent of its achievement. More-
over, an agent’s itinerary is often dependent on the results
of the agent’s network management task. A given request
may permit an agent to migrate along a traversal of all the
specified clusters irrespective of the arrival order, or along
a loose route, where a loose route means that some clus-
ters may be omitted or visited any number of times. The
language specifies such vagueness and allows the agents’
discretion by extending itself with non-deterministic opera-
tors.

Definition 3.1 The set � of expressions of the language,
ranged over by ����� ��� � � � is defined recursively by the
following abstract syntax:

� ��� 0 � � � �� ;�� � �� +��

� �� #�� � �� %�� � �� &�� � �*

where � is the set of location names, ranged over by
�� ��� ��� � � �. We often omit 0. We describe a subset lan-
guage of � as �, when eliminating �� #��, �� %��,
�� &��, and �* from � . Let �� ��� ��� � � � be ele-
ments of �. ��

This framework assumes that each agent has its own
itinerary written in �. Since each agent has an interpreter
for terms of �, it can dynamically evaluate its itinerary
and migrate itself among clusters along the itinerary. Intu-
itively, the meaning of constructions are as follows:

� 0 represents a terminated itinerary.
� � represents agent migration to the cluster whose name

or network address is �.
� ��;�� denotes the sequential composition of two

itineraries �� and ��. If the migration of �� termi-
nates, then the migration of �� follows that of ��.

� ����� represents that an agent moves according to
either �� or �� where the selection can be explicitly
performed by the processing of the agent.

� ��#�� means that an agent can select either �� or ��

under its control regardless of its processing.
� ��%�� means that an agent can follow either �� be-

fore �� or �� before �� as its itinerary.
� ��&�� means that two itineraries �� and �� can be

performed asynchronously.1

� �* is a transitive closure of� and means that an agent
can move along � in an arbitrary number of times.

To strictly express such itineraries, we here define a spec-
ification language based on a process algebra approach such

1 In process algebras, & is an operator for specifying parallel execu-
tions. The operational semantics of the language is an interleaving
model in the literature of process algebras and each agent migration
is an atomic action.

as CCS [8]. The semantics of the language is defined as the
following labeled transition rules:

Definition 3.2 The language is a labeled transition sys-
tem � � � �� 	�
 	

�
��
 � �� �� � � � 	�

 � defines as

induction rules as given below:

�

�
�

�� 0

��

�

�� �
�

�

�� ;��

�

�� �
�

� ;��

��

�

�� �
�

�

�� +��

�

�� �
�

�

��

�

�� �
�

�

�� &��

�

�� �
�

� &��

�

�� #��

�

�� ��

�

�� #��

�

�� ��

�

�� %��

�

�� �� ;��

��

�

�� �
�

�

�� ;��

�

�� �
�

� ;��

��

�

�� �
�

�

�� +��

�

�� �
�

�

��

�

�� �
�

�

�� &��

�

�� �� &�
�

�

where + , & , # , and % are symmentric binary-operators 2

and 0;� is treated to be syntactically equal to � and �*

is recursively defined as 0# �� ; �*�. We often abbrevi-
ate ��

�
�� � � �

�
�� �� to ���

�
������. ��

In Definition 3.2, the �-transition defines the semantics of

an agent’s mobility. For example �
�

�� �� means that the
agent moves to a cluster named � and then behaves as � �.

Also, if there are two possible transitions �
���� �� and

�
���� �� in an agent, the processing of the agent choose

one of the destinations �� and ��. On the other hand, the
� -transition corresponds to a non-deterministic choice in an
agent’s itinerary.

Next, we formulate an algebraic order relation based on
the concept of bisimulation [8]. The relation is suitable for
selecting one of the navigator agents whose itineraries can
satisfy the requirement of a task agent.

Definition 3.3 A binary relation �� (�
 �� � ����)
is an �-itinerary prebisimulation, where� is the set of nat-
ural number, if whenever ��� �� � �� where � � �, then
the following hold for all � � � or � .

(i) if �
�

�� �� then there is an � � such that �
�

�� ��

and �� �� ��� � ����

(ii) � �
�
������ and �� �� �� � ��

(iii) if �
�

�� �� then there exist � �, ��� such that � �
�
��

����
�

�� ��� and �� �� ��� � ����

where ��� � if there exist some �-itinerary prebisimula-
tions such that ��� �� � ��. We call �� �-itinerary or-
der. ��

The informal meaning of ��� � is that � is included in
one of the permissible itineraries specified in � and � cor-
responds to the number of movements of the agent that can
satisfy �. We show some basic examples.

2 For example, �� +�� is equal to �� +��.

� ��% �% ��;� �� �; �; �;�

where the right side requires an agent to migrate
among three clusters �, 	, and
 in an indefinite or-
der and then return to cluster � and the right side mi-
grate among three clusters
, �, and 	 sequentially.
When the left side is changed to �; 	;
;�, the rela-
tion is still preserved, but when the left side becomes
�;�; 	;�;
;� or �; 	;�, the relation is not pre-
served.

� ���; �; ��& �
*�;� �� �;�; �;�; �;�

where the left side allows an agent to drop in at cluster
� in arbitrary times on the itinerary �; 	;
 and then
finish its movement at cluster �. The right is a star-
shaped route between three destinations, �, 	,
 and
cluster � can satisfy the left side.

4. Mobile Agent System

Before describing the framework presented in this paper, we
briefly review the MobileSpaces mobile agent system that
provides the infrastructure for this framework. 3

4.1. Hierarchical Mobile Agents

Mobile agents in MobileSpaces are programmable entities
like other mobile agents. They are capable of conserving
their state while on the move and their itineraries can in-
clude multiple clusters. Furthermore, MobileSpaces pro-
vides each mobile agent with two novel concepts: agent hi-
erarchy and group migration. The former means that an-
other mobile agent can be contained within one mobile
agent. The latter means that each mobile agent can migrate
to another mobile agent or computer along with all its in-
ner agents, as long as the destination accepts it. Therefore,
an agent can contain other mobile agents inside it and carry
the agents carry these agents to another computer or agent
as a whole. Each agent has a globally unique name and can
have more than one active thread under the control of the
runtime system.

4.2. Mobile Agent Runtime System

Each MobileSpaces runtime system is a platform for ex-
ecuting and migrating agents. It is built on a Java virtual
machine, and mobile agents are Java objects. Each runtime
system can subordinate all the agents inside it, and the sys-
tem maintains the life-cycle state of the agents. When the
life-cycle state of an agent is changed, for example, at cre-
ation, termination, or migration, the core system issues cer-
tain events to invoke certain methods in the agent and the

3 Details of the MobileSpaces mobile agent system can be found in our
previous paper [11].

agents it contains. The runtime system provides a mecha-
nism for marshaling and unmarshaling agents. 4 When an
agent is marshaled, the runtime system propagates certain
events to the agent and its inner agents that are still run-
ning to instruct them to stop. It also can automatically stop
and serialize them after a given time period. The runtime
system can transfer agents to the destination computer over
TCP/IP connection.

5. Design and Implementation

This section presents a prototype implementation of our
framework. We tried to keep the implementation within the
framework as much as possible. Fig. 3 shows the structure
of a navigator agent containing a task agent.

a;b;(c+d)
itinerary

interpreter

setRoute()
moveToNext()

moveTo()

itinerary

task

agent

state

depaturingFor()
callback method

arrivedAt()
callback method

state

event

navigator agent

MobileSpaces runtime system

depaturingFor()
callback method

arrivedAt()
callback method

API for agent migration

Figure 3. Structure of navigator agent.

5.1. Navigator Agent

Each navigator agent is a container of one or more task
agents and is responsible for carrying them to the clusters in
the network it covers. It travels with its inner agents in ac-
cordance with its itinerary, written in �, and invokes the
callback methods of its inner task agents at certain tim-
ings, such as arrival and departure. Each navigator agent
is designed to go back to its agent pool and then register
its itinerary at the pool soon after completing its naviga-
tion goals and then wait for the next task. This framework

4 The current implementation of the system uses the Java object seri-
alization package provided by JDK to marshal and unmarshal agents.
The package does not support capturing the stack frames or a program
counter of threads. Consequently, our system cannot serialize the exe-
cution states of any thread objects.

provides abstract classes in the Java language and naviga-
tor agents can be defined by extending these classes.

public class NavigatorAgent
extends MobileAgent {
// registering an itinerary
void setRoute(Route r)

throws IllegalSyntaxException ... { ... }
// migrating to the cluster specified as h
void moveTo(Host h) throws NoSuchHostException,

IllegalHostException .. { .. }
// migrating to the next cluster specified
// in its itinerary
void moveToNext() throws

MultiplePossibleHostsException,
NoSuchHostException ... { ... }

// asking the possible destinations
// in the next migration
Host[] getPossibleHosts() ... { ... }
...
// callback method invoked after
// the agent arrives at a destination.
void arrivedAt(Host here);
// callback method invoked before the agent
// leaves from the current cluster.
void depaturingFor(Host dst);
...

}

Each navigator agent has its own itinerary as a term of �
and registers the term with itself and its agent pool by in-
voking the setRoute() method as follows:

setRoute(new Route("a;b;(c+d)"));

where a;b;(c+d) is an itinerary attached to the navigator
agent. It means that the agent migrates to cluster a and then
to cluster b. Next, the agent can select either cluster c or
d according to the result of its own processing. Each agent
can migrate over a network by using the following two ap-
proaches.

moveTo(c);moveToNext(); moveToNext();

host a host b

host d

host c

host h
moveTo(d);

a;b;(c+d) b;(c+d) c+d

0

0

migration migration

migration

migrationitinerary

itinerary

itineraryitinerary

itinerary
agent programagent programagent program

agent program

navigator agent navigator agent navigator agent

navigator agent

navigator agent

Figure 4. Following-itinerary movement of
a mobile agent with itinerary specified as
a;b;(c+d).

The first approach allows each agent to move along the
itinerary registered with itself. Each agent has a lightweight
interpreter for the language in �. When the agent invokes
the moveToNext() method, the interpreter evaluates the
agent’s next destination from the itinerary and automatically
moves the agent to the destination. However, if the itinerary

contains one or more candidate destinations combined by
the selective operator + , the invocation of the method
throws a MultiplePossibleHostsException. The
agent gets all the destinations that it can move to at the next
hop by invoking the getPossibleHosts()method and
moves to one of them by invoking the moveTo(dst)
method with the selected destination specified as dst.
For example, suppose that an agent registers a;b;(c+d)
as its own itinerary. As shown in Fig. 4, it performs the
moveToNext() method twice times for two hops; from
the current cluster to a and then from cluster a to b. Next,
it can select either c or d, after which it performs the
moveTo(dst) method with the name of the selected des-
tination as the method’s argument.

The second approach corresponds to the common ap-
proach used in existing mobile agent systems. That is, an
agent explicitly specifies its destination whenever it mi-
grates itself over a network. The moveTo() of the Nav-
igatorAgent class causes the agent to move from clus-
ter b to the destination specified as its argument. For ex-
ample, an agent whose itinerary is a;b;(c+d) can invoke
the moveTo() method with a and then b to move to clus-
ter a and then to b. Next, it can invoke the same method
with either c or d.

For the reason of security, this framework prevents navi-
gator agents from straying from the itinerary they registered
with themselves. In both of the above approaches, when the
movement of a mobile agent deviates from the itinerary reg-
istered by invoking the setRoute() method, the agent is
constrained and an IllegalHostException is thrown
to the agent. Each navigator agent can explicitly limit the
length of the execution period of its incoming task agents af-
ter arriving at each destination. When the time limit of a task
agent inside it expires, it automatically terminates the agent.
Each navigator agent can dynamically register its itinerary
by invoking the setRoute() method while it is moving,
but the new itinerary becomes available after it returns to a
certain agent pool.

5.2. Task Agent

Each task agent is a mobile agent that defines its manage-
ment tasks at each of the clusters in accordance with its
management criterion. Although it may be able to travel
among the agent pools of its target sub-networks, it is unfa-
miliar with each of the sub-networks. This framework pro-
vides a Java-based abstract class that allows us to easily de-
fine advanced task agents by extending the TaskAgent
class.

public class TaskAgent extends MobileAgent {
// registering its requiring itinerary
void setRoute(Route r) throws

IllegalSyntaxException ... { ... }
// callback method invoked after the agent

// arrives at one of its destinations.
void arrivedAt(Host here);
// callback method invoked before the agent
// leaves from the current cluster.
void depaturingFor(Host dst);
// callback method invoked after the agent
// visits all the clusters in its itinerary
void finished(Route r);
...

}

The interaction between a navigator agent and the task
agents inside it is based on event-based communication in-
troduced in the Abstract Window Toolkit of JDK 1.1. A
navigator agent invokes certain methods of its task agents,
whenever it arrives at one of the destinations. For exam-
ple, each task agent defines its task in the arrivedAt()
method. When arriving at an agent pool, the task agent gives
the pool the required itinerary along which a navigator agent
is required to carry itself by performing the setRoute()
method with an itinerary specified in � . The agent pool se-
lects a suitable navigator agent and then migrates the task
agent into the selected agent. Upon arrival at a cluster, the
navigator agent invokes the arrivedAt() method of its
task agent to instruct it to do something for a given time pe-
riod at the cluster. After receiving a certain event from all
the task agents or after the period has elapsed, the naviga-
tor agent invokes the depaturingFor() method with
the address of the next cluster and then moves itself and its
task agents to the next destination on its itinerary. After it
has traveled among all the required clusters, the navigator
agent invokes its finished method. For reasons of secu-
rity, all agents must be authenticated by the agent pool of a
sub-network on behalf of the sub-network. This is helpful
in network management systems whose clusters may have
limited CPU power and memory. Since a sub-network may
explicitly prohibit any task agent from visiting its clusters,
task agents must be carried by a navigator agent managed by
the agent pool of the sub-network. Therefore, a task agent
alone cannot migrate to all the clusters, even if it knows the
addresses of its target clusters in the sub-network.

task agent

agent pool

database

a;b;c;h

b;a;c;h
b;a;h

(a%b%c);h

inference

engine

a;b;c;hb;a;h
navigator agent

navigator agent navigator agent

(a%b%c);h

migration

itinerary registration

migration
possible itinerary

Figure 5. Agent pool

5.3. Agent Pool

Each agent pool is a stationary agent that can contain more
than one navigator agent as shown in Fig. 5. It is also re-

sponsible for receiving the requirements of the visiting task
agents and selecting a suitable navigator agent to carry the
task agent around the clusters on its sub-network. Here,
we explain the selection algorithm for the current imple-
mentation. The algorithm tried to be as faithful to Defini-
tion 3.3 as possible. Each agent pool maintains a reposi-
tory database containing the possible itineraries of its idle
navigator agents awaiting the chance to guide task agents.
To reduce the cost of the selection algorithm, the possible
itineraries written in � are transformed into tree structures,
which are called transition trees or derivation
trees in the literature of process algebra [8], before they
are stored in the database. Each tree is derived from an
itinerary in � according to Definition 3.2 and consists of
arcs corresponding to �-transitions or � -transitions in the
itinerary. When an agent pool receives a task agent, it ex-
tracts the required itinerary written in � from the task agent
and then transforms the itinerary into a transition tree. Next,
it judges whether or not the trees derived from the possi-
ble itineraries of its stored navigator agents can satisfy the
tree derived from the required itinerary by matching the
two trees according to the definition of the order relation
(��
 � � �) as follows:

(1) If each node in one of the two trees has arcs corre-
sponding to �-transitions, then the corresponding node
in the other tree can have the same arcs and the sub-
nodes derived through the two trees’ matching arcs can
still satisfy either (1) or (2).

(2) If each node in the tree derived from the required
itinerary has one or more arcs corresponding to � -
transitions, then at least one of the nodes derived
through the arcs and the corresponding node in the tree
derived from the agent’s itinerary can still satisfy (1) or
(2).

(3) If neither (1) nor (2) is satisfied, the agent pool back-
tracks from the current nodes in the two trees and tries
to apply (1) or (2) to their two backtracked nodes.

The agent pool assigns the task agent to the navigator agent
whose itinerary can satisfy the above conditions. If more
than one navigator agent satisfies the required itinerary, it
selects the agent with the least number of agent migrations
over a network, which is � of �� in Definition 3.3. The
current algorithm for agent selection in agent pools was not
optimized for performance. The cost of selecting navigator
agents is dependent on the number of agents and the length
of itineraries, but it can handle each of the itineraries pre-
sented in this paper within a few milliseconds.

6. Application

To explain the utility of the framework, we describe an
application of the framework. The application is a net-

work management system for a cluster computing environ-
ment consisting of three sub-networks and each of the sub-
networks has from four to eight processor elements dis-
tributed geographically.5 The management system deploys
agent pools at one cluster of each sub-network and offers
several task agents and navigator agents. Since each task
agent can contain codes to perform both information re-
trieval and filtering, it can carry only relevant information.
We implemented some task agents, which collect informa-
tion on the use of CPU and memory and the traffic of net-
work by incorporating performance monitoring systems at
the clusters. Although the system itself is independent of
any network management protocols, we constructed a task
agent that can access SNMP data from a small stationary
agent situated at its visiting cluster. The stationary agent al-
lows that visiting task agent to access the MIB of its clus-
ter via interagent communication. For example, a task agent
that monitors network traffic loads is designed to perform
its task at each cluster that it visits. The system also pro-
vides more than twenty navigator agents having different
itineraries. The agents are statically optimized for the topol-
ogy of their target sub-networks so that they can efficiently
travel among the clusters in the sub-networks.

host c

monitoring

task agent
agent pool

host h
host b

host a

host d

migration

SNMP

agent

migration

SNMP

agent

SNMP

agent

SNMP

agent

monitoring

monitoring

NaviAgent 1

(h;a;b;c;d;h)

NaviAgent 2 (h;a;h;b;h;c;h;d;h)

NaviAgent 1

b
a

cd

b
a

cd

h;(Tour(

 $(SNMP-AGENT)

 &h^*);h

task agent

Figure 6. Mobile agent-based management
system

The system deploys an agent pool at one host of each
sub-network and offers several task agents and navigator
agents as shown in Fig. 6. For example, a task agent that
monitors network traffic load is designed to perform its task
at each cluster it visits. Although the system itself is inde-
pendent of any network management protocols, we con-
structed a task agent that can access SNMP data from a
small stationary agent located at its visiting cluster. The
stationary agent allows that visiting task agent to access
the MIB of its cluster via interagent communication. Since

5 The environment is small in scale because it is implemented as a
testbed for developing middleware and applications for Grid or clus-
ter computing rather than a computational infrastructure.

the task agent can contain code to perform both informa-
tion retrieval and filtering, it carries only relevant informa-
tion. In addition, the system has three other task agents
for monitoring computational resources at clusters. They
are designed to collect information on the use of CPU,
memory, and disks by incorporating performance monitor-
ing systems at the clusters. The system also offers several
navigator agents with different itineraries. However, due
to a lack of space, this section illustrates only two nav-
igator agents optimized for one of the sub-networks de-
fined by NaviAgent1 and NaviAgent2 classes, respec-
tively. NaviAgent1 can travel along a sequential route,
h;a;b;c;d;h.

public class NaviAgent1
extends NavigatorAgent {
public NaviAgent1() {

// registering its possible itinerary
setRoute(new Route("h;a;b;c;d;h"));

}
// invoked at the completion of the task
// agent’s processing at the current cluster
public void done() throws

MultiplePossibleHostsException .. {
moveToNext();

}
...

}

NaviAgent2 can move along a star-shaped route,
h;a;h;b;h;c; h;d;h.

public class NaviAgent2
extends NavigatorAgent {
public NaviAgent2() {

setRoute(
new Route("h;a;h;b;h;c;h;d;h"));

}
public void done() throws

MultiplePossibleHostsException .. {
moveToNext();

}
...

}

Next, let us consider a task agent, which gathers local infor-
mation from the SNMP agent running on each of the clus-
ters that it visits. The agent has its required itinerary speci-
fied as h;Tour($(SNMP-AGENT)&hˆ*);hwhere hˆ*
denotes �* in the language � and SNMP-AGENT specifies
��� 	�
� �� as a list of the clusters that offers snmp agents
on the sub-network. When an agent pool receives the task
agent, it selects a suitable idle navigator agent whose possi-
ble itinerary can satisfy the required itinerary of the task
agent according to the algorithm presented in Section 5.
In the above example, the two navigator agents can sat-
isfy the required itinerary of the task agent. Since the num-
ber of agent migrations for NaviAgent1 is less than that
for NaviAgent2, the agent pool selects the former navi-
gator agent and moves the task agent into it. After receiv-
ing the task agent, the NaviAgent1 navigator agent car-
ries it from cluster to cluster according to its own itinerary.

Whenever it arrives at one of the destinations, it issues cer-
tain events to invoke the arrived() method of the task.
The task agent performs its application-specific task, such
as accessing and filtering from the SNMP agent of its visit-
ing cluster, as defined in the arrived() method.

We have obtained a preliminary measurement of the
cost of migrating a navigator agent over a sub-network of
the cluster system. Note that the system is just a proto-
type implementation; hence it is not optimized for efficient
agent migration. Actually, the total size of the navigator
agent containing one of the task agents is about 8 KB (zip-
compressed) and it is only 20 percent greater than the size
of a self-contained task agent that controls its own itinerary.
This is a small increase in size if we take into account the
amount of data such agents can collect from clusters. The
cost of detecting a navigator agent in an agent pool is less
than 10 msec, although the current algorithm for agent se-
lection in agent pools was not optimized for performance.

The total cost of management depends on application-
specific tasks performed at clusters rather than agent migra-
tion. After receiving a task agent at the agent pool of the
sub-network, the navigator agent travels straightly around
four clusters and then returns to the agent pool of the sub-
network, where the clusters and the pool are Pentium III-
800 MHz computers connected using a 100-Mbps Ethernet.
The itinerary of the navigator agent is statically defined and
corresponds to five hops. The round-trip time of the agent is
about 480 msec. where the per-hop latency of agent migra-
tion for the task agent using the navigator agent is at most 25
percent greater than the per-hop latency of a self-contained
task agent.

Our early experience with this system suggests that
the framework presented in this paper enables each task
agent to be built independently of any sub-network and
to move efficiently among multiple clusters by using nav-
igator agents. By dynamically changing to a naviga-
tor agent suitable for the current sub-network, a task
agent can efficiently migrate among clusters in vari-
ous sub-networks to perform its task, without modifying
its own program. The system also enables both navi-
gator and task agents to be small and simple, because
navigator agents do not have to offer any adaptive mecha-
nisms for handling various networks and task agents con-
tain no specific knowledge about sub-networks; they only
have to know the location of the agent pools of their des-
tinations. Moreover, the framework can strictly select
one of the most suitable navigator agents, since it pro-
vides a theoretical and practical mechanism for compar-
ing itineraries of the navigator agents. Our experience tells
us that our navigator agents are useful in resource man-
agement of cluster computing environments, because
they can provide a decentralized mechanism for deploy-
ment of computational tasks at remote clusters. As a result,

the performance of our framework is scalable in the num-
ber of clusters. That is, we can naturally expect the system
to still to be scalable even when applying it to a larger clus-
ter computing environment.

7. Related Work

Mobile agent technology can provide a convenient, ef-
ficient, and robust management framework for cluster and
grid computing. There have been several attempts to ap-
ply mobile agent technology to the management of clus-
ter and grid computing [9, 10]. The focus of current re-
search is, however, on the development mobile agent-based
management systems themselves for particular cluster and
grid computing environments. In fact, most existing systems
have been constructed in ad-hoc manners or dependently on
their target cluster computing systems or particular applica-
tions. Nevertheless, the tasks of building and operating mo-
bile agents, which are specific for cluster and grid comput-
ing, have received little attention so far, although creating
and operating such agents can be tedious and susceptible to
errors.

Next, we compare our framework with some methodolo-
gies for building management mobile agents for distributed
systems ADK [5] is notable because it can separate the
travel itinerary of an agent from its behavior as our approach
does. Aglets [6] introduces the notion of an itinerary pat-
tern, which is similar to design patterns in software engi-
neering, to shift the responsibility for navigation from an
application-specific agent to a framework library described
in [1]. Both approaches allow us to design an application-
specific itinerary for an agent independent of the agent’s
logical behavior, but the itinerary parts must be statically
and manually embedded in the agent. Consequently, this
agent, unlike ours, cannot dynamically change its itinerary
and cannot travel beyond its familiar networks.

Also, there have been some theoretical models devel-
oped for specifying mobile agents, for example, Mobile
UNITY [7] and Ambient calculus [3]. Mobile UNITY can
specify control flows, variable, and conditional assignment
statements at programs but cannot extract and reason about
the itineraries of mobile components. The existing process
algebra-based models, including Ambient calculus, are just
theoretical frameworks for formalizing the whole computa-
tion of mobile agents and, as far as the author knows, they
do not support any preorder relations for selecting mobile
agents according to their itineraries.

Lastly, we should describe an approach to building con-
figurable protocols for agent migration in another paper
[13]. While that approach customizes network process-
ing for agent migration embedded in a mobile agent run-
time system, the approach presented in this paper enables
application-specific agents to dynamically select itineraries

among multiple clusters according to the topology of the
current network and the requirement of the application-
specific tasks. Our previous papers [12, 14] presented an ap-
proach for building a mobile agent from two layer compo-
nents, like the framework presented in this paper. However,
the previous approach aimed at only mobile agent-based
network management systems, instead of any cluster com-
puting. The previous papers did not present any matchmak-
ing mechanisms for the two layer components. That is, they
provide just a component-based approach for the develop-
ment of mobile agent-based network management and did
provide neither specification languages for agent itineraries
nor algebraic relations.

8. Conclusion

This paper presented a methodology for building and op-
erating reusable mobile agents for cluster and Grid com-
puting. The methodology has two key ideas. The first is
to compose a mobile agent from two layered components,
where the lower layer components carry upper layered com-
ponents between hosts following their own itineraries op-
timized for their target sub-networks and the upper layer
components define a set of management tasks to be per-
formed at each of the clusters to be visited. The second
idea is to provide a matchmaking mechanism between the
two layer components. The mechanism is formulated based
on a process algebra-based language and an algebraic order
relation between the terms of the language. The language
can specify the possible itineraries of lower layer compo-
nents and the requiring itineraries of upper layer compo-
nents. The relation can strictly decide whether or not the
possible itinerary of each lower layer component can satisfy
the itinerary required by an upper layer component or given
request. When an upper layer component arrives at a sub-
cluster, the approach can strictly and automatically select
a suitable lower layer component according to the require-
ment of the visiting upper layer component. A prototype im-
plementation system based on methodology has been con-
structed on a Java-based mobile agent system and applied to
our experimental cluster computing system to demonstrate
the effectiveness of the methodology. We believe that the
system is practical in deploying and upgrading software at
clusters as well as monitoring clusters and networks.

Finally, we would like to mention some future research
directions. This paper does not discuss any coordination
among multiple mobile agents, but we are interested in de-
veloping a mechanism for assigning a task to one or more
navigator agents. Also, we plan to establish an axiomatic
system based on the order relation, which could improve
the performance of the agent selection. The performance of
the current implementation is not yet satisfactory, so further
measurements and optimizations are needed.

References

[1] Y. Aridor, and D.B. Lange: Agent Design Patterns: Elements
of Agent Application Design, Proceedings of Second Inter-
national Conference on Autonomous Agents (Agents ’98),
ACM Press, pp. 108-115, 1998

[2] A. Bieszczad, B. Pagurek, and T. White, Mobile Agents for
Network Management, IEEE Communications Surveys, Vol.
1, No. 1, 1998.

[3] L. Cardelli and A. D. Gordon, Mobile Ambients, Proceed-
ings of Foundations of Software Science and Computational
Structures, LNCS, Vol. 1378, pp. 140–155, 1998.

[4] T. Finin, Y. Labrou, and J. Mayfield, KQML as An Agent
Communication Language, in Software Agents, MIT Press,
1997.

[5] T. Gschwind, M. Feridun, and S. Pleisch, ADK: Building
Mobile Agents for Network and System Management from
Reusable Components, Proceedings of Symposium on Agent
Systems and Applications / Symposium on Mobile Agents
(ASA/MA’99), pp.13-21, IEEE Computer Society, 1999.

[6] B. D. Lange and M. Oshima: Programming and Deploying
Java Mobile Agents with Aglets, Addison-Wesley, 1998.

[7] P.J. McCann, and G.-C. Roman, Compositional Program-
ming Abstractions for Mobile Computing, IEEE Transaction
on Software Engineering, Vol. 24, No.2, 1998.

[8] R. Milner, Communication and Concurrency, Prentice Hall,
1989.

[9] O. F. Rana (eds), Proceedings of 2nd Workshop on Agent
Based Cluster and Grid Computing, May 2002.

[10] O. F. Rana and S Graupner (eds), Proceedings of 3rd Work-
shop on Agent Based Cluster and Grid Computing, May
2003.

[11] I. Satoh, MobileSpaces: A Framework for Building Adap-
tive Distributed Applications Using a Hierarchical Mobile
Agent System, Proceedings of International Conference on
Distributed Computing Systems (ICDCS’2000), pp.161-168,
IEEE Computer Society, April, 2000.

[12] I. Satoh, A Framework for Building Reusable Mobile Agents
for Network Management, Proceedings of Network Opera-
tions and Managements Symposium (NOMS’2002), pp.51-
64, IEEE Communication Society, April 2002.

[13] I. Satoh, Configurable Network Processing for Mobile
Agents on the Internet, Cluster Computing, Vol. 6, No.4 (Ac-
cepted), Kluwer, October 2003.

[14] I. Satoh, Building Reusable Mobile Agents for Network
Management, to appear in IEEE Transactions on Systems,
Man and Cybernetics, Vol.33, No. 3 (Accepted), October
2003.

[15] R. G. Smith, The Contract Net Protocol: High-Level Com-
munication and Control in a Distributed Problem Solver,
IEEE Transactions on Computers, pp.1104-1113, 1980.

