
A Document-centric Component Framework for
Document Distributions

Ichiro Satoh�

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract. This paper presents a framework for building and managing com-
pound documents in distributed systems. It enables an enriched document to be
dynamically and nestedly composed of software components corresponding to
various types of content, e.g., text, images, and windows. It permits the content
of each component and program code to access the content inseparable inside the
components so that the components can be viewed or modified without the need
for any applications. It enables each component or document to migrate over a
network under its own control by using mobile agent technology. Moreover, it in-
troduces components as carriers or forwarders because it enables them to carry or
transmit other components as first class objects to other locations. It offers sev-
eral basic operations for network processing, e.g., forwarding, duplication, and
synchronization. Since these operations are still document components, they can
be dynamically deployed and customized at local or remote computers through
GUI manipulations. It therefore allows an end-user to easily and rapidly configure
network processing in the same way as if he/she had edited the documents. This
paper describes the framework and its implementation, which currently uses Java
as the implementation language as well as a component development language,
and then illustrates several interesting applications that demonstrate its utility and
flexibility.

1 Introduction

Document manipulation, such as editing, viewing, and distributing documents, is still
playing a crucial role in modern information processing. Documents in distributed com-
puting systems are always transmitted passively over a network by external systems,
such as electronic mail systems and http servers. As a result, they cannot determine
where, when, or how they should go next. However, there have been several applica-
tions whose network processing depends on the content of the documents that are trans-
mitted over the network. For example, a workflow management system is required to
distribute documents among employees according to the content of the documents and
the company’s decision-making path. As a result, end-users often want to define the
network processing of documents for them to be able to accomplish their application-
specific tasks. However, the customization and management of networking processing
is too complex and difficult for end-users to achieve.

� e-mail: ichiro@nii.ac.jp

This paper proposes a compound document framework, called MobiDoc, as a solu-
tion to these problems. Like other existing compound document frameworks, it enables
an enriched document to be composed of visual components, e.g., text and images. The
framework has several unique features, which other frameworks do not have. For exam-
ple, it introduces the notion of self-contained components in the sense that not only the
content of each component but also its codes to view and edit the content are embedded
in the component to solve various problems, including content rights management, in
existing content-distribution. It also enables network protocols for documents to be im-
plemented by a set of active documents. By using mobile agent technology, documents
or components can define their own itineraries and migrate under their own control.
Documents or components can transmit other documents or components as first-class
objects to their destinations. The framework introduces the components for network
processing as document-centric components, so that it allows an end-user to easily and
rapidly configure network processing in the same way as if he/she had edited the docu-
ments. It provides components with a mechanism for sharing visual content on different
computers.

This paper is organized as follows. We first describes the background and related
work (Section 2) and outline our compound document framework (Section 3). We then
present component runtime systems for executing and migrating document components
(Section 4) and present our component model (Section 5). We describe its prototype
implementation (Section 6) and illustrate several applications of the framework (Section
7). We conclude by providing a summary and discussing future issues (Section 8).

2 Background

Building systems from software components has already proven useful in the devel-
opment of large-scale software [24]. Many frameworks for software components have
been developed, e.g., COM [16] and JavaBeans [9]. These existing frameworks aim at
defining the behaviors of distributed computing, i.e., server-side and client side process-
ing, by combining software components. Therefore, these frameworks are suitable for
professional developers but not end-users.

Several frameworks for compound document components have been developed,
such as COM/OLE [3], OpenDoc [1], and CommonPoint [15]. They enable one docu-
ment to be composed of various visible parts, such as text, image, and video, created
by different applications. These frameworks assume that content is stored inside the
component but it is accessed by external applications. Thus, when users receive a com-
pound document, they cannot view or modify it, if its content needs the support of
different applications, if they do not have all the applications. There have been XML-
based technologies for office documents, e.g., OpenDocument formats, but these have
inherited the problems of compound documents. This is because, when a computer
receives XML-based documents, it may not have the viewer/editor programs for them.
This becomes a serious limitation in distributing new data formats. Of these, the Bonobo
framework for software components and compound documents is being developed by
the GNOME project [7]. It provides several mechanisms for creating compound doc-
uments from a collection of components, but it is based on an underlying middleware

2

and GUI widget, i.e., CORBA and GTK+, and does not support the distribution of com-
ponents, including compound documents over a network.

The framework presented in this paper, therefore, has been designed independently
of existing component frameworks for distributed computing or compound documents.
This is because it permits document-centric components to migrate themselves over a
network and process other components as first-class objects [5], e.g., migrating or sav-
ing them to other computers or on secondary disks. These features enable our compo-
nents to have direct access to novel and powerful features that existing components do
not have. End-users can also easily customize their network processing of documents
through user-friendly manipulations to edit visual components, and they can control
their own network processing according to their content. Nevertheless, it is open to ex-
isting component frameworks. In fact, it can use typical Java-based components, e.g.,
Java Beans and Applets, as its components.

Several (non-component-based) attempts have been made to support active docu-
ments, e.g., Active Mail [8] and HyperNews [14], but these have aimed at particular
application-specific documents, such as electronic mail and newspapers, so that they
have not supported varied and complex content. The fuseONE system [26] is composed
of GUI-based control panels to control appliances from active documents, i.e., GUI-
based buttons and toggle switches. Like other compound document frameworks, these
cannot transmit codes for viewing and editing documents. To customize distributed
computing, particularly network processing between computers, several researchers
have explored active networking technologies [25]. However, these existing technolo-
gies have focused on configurations for low-level network processing, e.g., routing and
QoS protocols, so that they are not suitable for end-users.

As will be discussed later, this framework uses mobile agent technology [12, 6].
However, the technology assumes each mobile agent to be an isolated entity that mi-
grates between computers independently of other agents and it does not support any
document-centric approaches.We constructed amobile agent system calledMobileSpaces
[17] and designed a compound document framework [18, 21] based on the system. The
previous framework could not be used to define or customize any network processing,
because it was only proposed as an application of the MobileSpaces system. Further-
more, there were several serious mismatches between mobile agent-based components
and the requirements of document components.

3 Design Principles

This section briefly outlines the framework presented here.

3.1 Requirements

It needs to satisfy the following requirements.

Composition: Like OpenDoc and JavaBeans, our framework needs to be composed of
a document or component of nested components that can display visual parts, e.g.,
text, images, and windows, and that enables us to edit components in-place without
opening a separate window for each component.

3

Application-absence: Components should be distributed and operated without the
need for any applications in their current computers. That is, when a computer
receives a component, it must be able to view or edit it, including its inner compo-
nents, even when the computer lacks applications.

Autonomy andMobility:Each document or component is an autonomous programmable
entity that can determine which components or computers it will go to according to
its program code and content, and that can then migrate to that destination.

Reconfiguration: The network processing of documents, components, or plain data
can be easily and naturally defined and customized as a combination of basic com-
ponents by end-users through document-manipulations just like editing documents.

3.2 Component model

Let us present the basic ideas behind the framework.

Self-contained component: This framework introduces the notion of a self-contained
component, where the content of each component and its codes are inseparable. When
a component is distributed to other computers, the framework not only transmits the
content of each component but also its code to the destinations. To our knowledge, no
existing software component frameworks, including compound document frameworks,
make the code and state of each component indivisible. This makes documents portable.
This is because, when a user receives a document, he/she can view or edit it by using
its code instead of any applications deployed at its current computer.

Hierarchical composition: Like OpenDoc and JavaBeans, this framework allows a hi-
erarchy of nested components to correspond to visual parts, e.g., text, images, and win-
dows, and conform to two notions: i) Each component can be contained by at most one
component, and ii) it can dynamically migrate to other components along with all its
inner components. When a component is contained by another component, the former
is still an individual component so that it can be removed from the latter. Each com-
ponent can move into any other component except itself or its descendant components,
which may be at different computers, as long as the destination component accepts it.

Service Provider: Each container component is responsible for automatically offering
its own services and resources to its inner components and controlling its inner compo-
nents. When a component requires a service, it migrates itself to one of the container
components that can provide the service. The framework also allows container compo-
nents to process their inner components as first-class objects. As a result, each container
component can migrate, save, and destroy its inner components.

Component interaction: The framework enables a component to control the size and
layout of its inner components, and to invoke the service methods explicitly provided
by its container (and its neighboring components through its container). In other words,
a component cannot access any services supported by components other than its con-
tainer component. This is important in allowing successful migration to occur. If it were

4

not imposed, then migrating a component could mean that the descendants of that com-
ponent might suddenly find that they could no longer access services on which they had
previously relied.

3.3 Network processing

This framework provides two approaches to enabling components to customize their
own network processing. The first is to make components mobile in the sense that they
can define their itinerary and travel amongmultiple computers along this itinerary using
mobile agent technology. The second enables components to define network process-
ing for themselves or their inner components. The framework provides three types of
components as follows:

– Visual component stores its visual content within itself. It displays this content in
the estate assigned by its container component by using its own program. When
a visual component contains other components, it is responsible for managing the
estates of its inner component within its own estate.

– Carrier component is transparent and can contain more than one component,
which may contain one more component. It can carry its inner components along
its own itinerary. Moreover, since it can can treat its inner components as first-class
objects, it can explicitly restrict or transform its inner components.

– Forwarder component is allocated at a component or computer and can automati-
cally transmit its inner components to its destinations. It can also process its visiting
components as first-class objects before it forwards them.

Note that visual components can still travel between other components or computers
under their control and network processing components can be assembled and operated
through GUI manipulations and embedded into a document as visual components.

4 Component and Runtime System

This framework consists of two parts: runtime systems and components. The former
can execute components and migrate them to/from other runtime systems, even when
underlying systems, i.e., operating systems and hardware, are heterogeneous, since run-
time systems and the latter are constructed with Java language.

4.1 Component

As we can see from Fig. 1, each component is a collection of Java objects wrapped in a
component and has its own unique identifier and image data displayed as its icon. All the
objects that each component consists of need to implement the java.io.Serializable
interface, because they must be marshaled using Java’s serialization mechanism. Each
visual component needs to be defined as a subclass of either thejava.awt.Component
or java.awt.Container from which most of Java’s visual or GUI objects are
derived. To reuse existing software, we implemented an adapter to use typical Java

5

Runtime system

Callback method

Callback method

Program

DataContext
object

Callback manager

Service
methods

Component (Java object)

Component tree node

Internal program

Component layout manager
Component Runtime System

Component execution manager

Program

Data

Component B

Component layout manager

Component tree node

Program

Data

Component C

Component layout manager

Component tree node

Program

Data

Component A

component layout manager

Component tree node

Fig. 1. Component hierarchy and structure of components.

components, e.g., Java Applets and JavaBeans, that are defined as subclasses of the
java.awt.Component or java.awt.Container class within our components 1

We describe a programming model for components in the Appendix.

Runtime System

OS/Hardware

Java Virtual Machine

Network

Component
migration

Computer A Computer B

TCP connection
manager

Marashalling
managerComponent

execution
manager

MDContainer
Window
component

Program

Data

MDComponent
Text component
Program Data

Runtime System

OS/Hardware

Java Virtual Machine

TCP connection
manager

Marashalling
managerComponent

execution
manager

MDContainer
Document
component

Program

Data

MDComponent
Text component

Program Data

Program Data
Image component

MDComponent

Program Data
Image component

MDComponent

Fig. 2. Component migration between two computers.

4.2 Component runtime system

Fig. 2 outlines the basic structure of a runtime system. Each runtime system governs
all the components within it and provides them with APIs for components in addition
to Java’s classes. It assigns one or more threads to each component and interrupts them
before the component migrates, terminates, or is saved. Each component can request its
current runtime system to terminate, save, and migrate itself and its inner components
to the destination that it wants to migrate to. This framework provides each component
with a wrapper, called a component tree node. Each node contains its target compo-
nent, its attributes, and its containment relationship and provides interfaces between its
component and the runtime system (Fig. 1). When a component is created in a runtime

1 This is not compatible with all kinds of Applets and JavaBeans, because some of those existing
manage their threads and input and output devices depreciatively.

6

system, it creates a component tree node for the newly created component.When a com-
ponent migrates to another location or duplicates itself, the runtime system migrates its
node with the component and makes a replica of the whole node.

MDContainer

size
position

size
position

component layout manager

program
data

MDContainer

size

position

component layout manager

Box Component

program
data

Component
tree node

program
data

MDComponent

Text Component

program
data

C

D

B

Image Component

MDComponent

Component
tree node

Component
tree node

Component tree node

Window Component

Image view

Box Frame

Text

Window

Fig. 3. Component Hierarchy

A hierarchy is maintained in the form of a tree structure of component tree nodes
of the components (Fig. 3). Each node is defined as a subclass of MDContainer or
MDComponent, where the first supports components, which can contain more than
one component inside them and the second supports components, which cannot contain
any components. For example, when a component has two other components inside it,
the nodes that contains these two inner components are attached to the node that wraps
the container component. Component migration in a tree is only performed as a trans-
formation of the subtree structure of the hierarchy. When a component is moved over
a network, on the other hand, the runtime system marshals the node of the component,
including the nodes of its children, into a bit-stream and transmits the component and
its children, and the marshaled component to the destination.

4.3 Component manipulation

Each component can display its content within the rectangular estate maintained by its
container component. The node of the component, which is defined as a subclass of the
MDContainer or MDComponent class, specifies attributes, e.g., its minimum size
and preferable size, and the maximum size of the visible estate of its component in the
estate is controlled by the node of its container component. These classes can define
their new layout manager as subclasses of the java.awt.LayoutManager class.

This framework provides an editing environment for manipulating the components
for network processing, as well as for visual components. It also provides in-place edit-
ing services similar to those provided by OpenDoc and OLE. It offers several value-
added mechanisms for effectively sharing the visual estate of a container among em-
bedded components and for coordinating their use of shared resources, such as key-
boards, mice, and windows. Each component tree node can dispatch certain events to

7

its components to notify them when certain actions happen within their surroundings.
MDContainer and MDComponent classes support built-in GUIs for manipulating
components. For example, when we want to place a component on another component,
including a document, we move the former component to the latter throughGUI manip-
ulations, e.g., drag-and-drop or cut-and-paste. When the boundary of the visible area of
a component is clicked, the component is selected and displays eight rectangular control
points for moving it around and resizing it (Fig. 4 (a)). The user can resize the selected
component, move it to another, save it, and terminate it by dragging its handles (Fig. 4
(b)).

(a) (b)

Fig. 4. Editing layout for components and popup-menu for controlling components

We developed various components, e.g., a text viewer/editor component and a JPEG
or GIF viewer component (there are several example components in Fig. 9). Note that
visual components allow their content to be in arbitrary as well as standard formats,
because they have codes for viewing and modifying content. Most Swing and AWT
GUI Widgets can be used as our components in the framework without modifications,
because they have been derived from the java.awt.Component class.

4.4 Component distribution and duplication

The runtime system can transmit the marshaled nodes of components to their destina-
tions through an extension of the HTTP protocol. 2 Since the runtime system transmits
both the code and state of the components to the destinations, the components can con-
tinue processing, even when the destinations are disconnected from the source. Each
runtime system also has a built-in mechanism for writing the marshaled component
and reading it from the underlying file system, network file system, and database sys-
tem without losing the component’s containment structure or inner components. To
duplicate components, the system marshals components into a bit-stream and then du-
plicates the marshaled component, because Java has no deep-copy mechanisms, which
can make replicas of all objects embedded in and referred to from these components.
The current implementation treats a component and its clones as independent. Compo-
nents also have no problems with incompatibility even with different versions, because
they contain their codes.

The current implementation uses the Java object serialization package to marshal
and duplicate the states of components into a bit-stream. The package does not sup-
port the capturing of stack frames of threads. Consequently, our system cannot marshal
the execution states of any thread objects. Instead, the runtime system (and the Java

2 The current implementation can support HTTP tunneling to transfer components outside fire-
walls.

8

virtual machine) propagates certain events to components before and after marshaling
and unmarshaling them. The current implementation of our system uses the standard
JAR file format for passing components that can support digital signatures, allowing for
authentication. If inner components embedded in a component share the same codes,
the runtime system can detect and remove such redundant codes from the bit-stream
corresponding to the marshaled component, including its inner components to reduce
the size of the bit-stream.3

5 Component-based network processing

Each component for network processing is invisible and has been designed to provide its
service to its inner components. A component can directly instruct its inner components
to move to another location, and can transform them.

5.1 Carrier component

Carrier components are transparent, can carry other components to their destinations
along their itineraries, and transform their inner components (see Fig. 5).

Duplicator Component

Component A

Component A

Component A'

Synchronizer Component

Component A
Component B Component C

Forwarder Component

Component A
Component A

Component A

Component A

Component A

Component B

Component C

Carrier Component

Fig. 5. Carrier component and basic forwarder components for network processing.

We developed a language enabling mobile agents to specify their own itineraries
from multiple destinations [22]. The carrier components can define their itineraries
with the language and migrate to other computers along their itineraries. When the
movement of a component deviates from its registered itinerary, the runtime system
issues an exception to the component. Moreover, carrier components can encapsulate
or restrict their inner components, because they can control them while carrying them,
and they can provide a secret-key-based cryptographic procedure to protect these inner
components against illegal access or modification.

3 This optimization mechanism involves a trade-off because its detection of redundant codes is
not always lightweight. We intended to disable the mechanism in the evaluations presented in
Section 6.

9

5.2 Forwarder component

Forwarder components are statically or dynamically deployed at components. When a
forwarder component receives a component, it processes the visitor and then forwards
it to its target component. A variety of processes for components, e.g., duplication and
synchronization, can be defined in derivations from the forwarder component. The cur-
rent implementation provides basic operations for component migration (Fig. 5). By
combining these components, we can easily customize network processing. Since these
protocols are given as Java abstract classes, we can easily define further advanced net-
work processing by extending these basic protocols.

– Forwarder component can redirect its inner component to other locations. When
it receives a component, it automatically transfers the visiting component to its
specified destination as long as the destination is within the range that the inner
component can migrate to.

– Duplicator component can receive another component and then create a copy of
its visiting component including all instance variables. The cloned component has
the same content as the original.

– Synchronizer component can strand its inner components until it can determine
whether specified conditions can be satisfied, e.g., the number of inner components,
the arrivals of specified components, and time constraints. A typical synchronizer
component defines a group of moving components, as a barrier synchronization
mechanism for parallel processes. It strands the visiting components inside it, until
it receives all the components within the group.

We can define flows of components over a distributed system as a combination of for-
warder components like the active routers (or nodes) in active network technology. The
components previously described have properties that customize their processing and
provide support to GUI editors like those for the property editors developed by Java
Beans. The editors allow users to edit the property values of a given type. For example,
forwarding components can configure their destinations in their properties and synchro-
nization components can explicitly define their conditions.Moreover, these components
can be dynamically deployed at remote hosts through document manipulations because
they are still components of compound documents.

Since these components cover most basic functions to implement network proto-
cols, end-users can rapidly and easily implement the protocols they want by combining
components. Various types of network processing for components can be implemented
as components. Since these protocols are given as abstract classes in the Java language,
we can easily define further advanced network processing by extending these basic
protocols. Fig. 6 outlines application-specific document-delivery (for workflow man-
agement systems) executed by combining basic components.

5.3 Network-wide component manipulation

This framework itself does not support any network-wide component manipulations,
e.g., cut-and-paste and drag-and-drop between computers. Instead, such operations can

10

Duplicater component

Computer A

Forwarder

component

Forwarder

component

Forwarder

componentComputer B

Computer C computer D

Computer E

Synchronizer

component

Workflow

component

Fig. 6. Combination of basic components for network processing

easily be achieved through the forwarding and duplicator components. One can also
use forwarding components as a mechanism to deploy network processing at remote
computers. Figure 7 presents a compound document that includes several forwarding
components, which automatically transfer other components to specified components
at remote nodes. When a user wants to enable new network processing at remote nodes,
he/she drags and drops the component that supports the processing to forwarding com-
ponents corresponding to the nodes. This action transfers that component to the target
of the forwarding component. Moreover, forwarding components can have property ed-
itors for their target components at the new location in addition to their own editors,
allowing us to customize the properties of components deployed at remote computers
by using their editors, which can be implemented as plug-in modules. Note that the user
interface presented in Fig. 7 has only been implemented as components. Therefore, the
interface itself can easily be distributed to other computers. That is, a component can
be viewed as the only constituent of the framework. This gives users and programmers
a single unified perspective of the system.

Forwarder
component

Text-editor
component

Window
component

Drag-and-drop of text-editor component
on forwarder component

(A) (B)

Fig. 7. (A) Screenshot of window component contains text-editor and forwarding components
and (B) screenshot of window component when text-editor component is dragged and dropped
on forwarding components.

Fig. 8 presents a compound document for deploying components for network pro-
cessing at computers on a network. When three forwarder components contained in
the document receive components, they automatically forward their visitors to their tar-
get computers. We can easily migrate a component for network processing at each of
the forwarders by duplicating the component through our duplicator component. Note
that the document is just a configuration for network processing and can be stored in
secondary storage as a first class object just like visual components.

11

Computer A

Computer C

Computer B

Component for
network processing

Compound doucment

Forwarder
component

Forwarder component

Forwarder
component

Network

Components for
network processing

Network world

Document world

Component p
deployment

Component deployment

Fig. 8. Compound document for deploying components at computers.

6 Current Status

We implemented the framework using Java language (JDK 1.4 or later version), and
we developed various components for compound documents and network processing.
Since the Java virtual machine and libraries abstract away differences between the un-
derlying systems, e.g., operating systems and hardware, components can migrate be-
tween and be executed on runtime systems running on different computers, whose un-
derlying systems may be different.

Palette
component

Web-browser
component

Document
component

Rich-text
component

Image-viewer
component Carrier component

Box
component

Window
component

Clock
component

Text
component

Fig. 9. Example compound documents

12

Fig. 9 has a screen-shot of this framework. The left window is a palette of part
components and the center and right windows are compound documents contained in
the components corresponding to GUI-windows. When a user wants to place a compo-
nent on his/her editing compound document, he/she drags the wanted component from
the palette and then drops it on the estate of the document. Since the palette itself is
implemented as a container component of part components, it can migrate to another
computer and be saved in secondary storage. We can register new components, which
may be edited or modified, in the palette through GUI-based data-transfer operations,
e.g., drag-and-drop or cut-and-paste. End-users can also define and customize their
application-specific network processing by combining forwarder components through
GUI manipulations in the same way as if they were editing visual components in docu-
ments.

6.1 Basic performance

Even though our current implementation was not built for performance, we evaluated
some basics of the framework.

Component migration We conducted a basic experiment on component migration
with computers (Pentium III 1.2-GHz with Windows XP and Sun’s JDK 1.4.2). The
time for component migration measured from one container to another in the same hi-
erarchy was 10 msec., including the cost of drawing the visible content of the moving
component and checking whether the component was permitted to enter the destina-
tion component. The cost of component migration measured between two computers
connected through a Fast-Ethernet was measured at 64 msec.. The cost was the sum
of marshaling, compressing, opening a TCP connection, transmitting, acknowledging,
decompressing, verifying security and consistency, unmarshaling, laying out the visual
space, and drawing the content. The moving component was a simple text viewer and
its size (sum of code and data) was about 9 KB (zip-compressed). The latency of com-
ponent migration was reasonable for a Java-based visual environment for exchanging
compound documents between computers.

Component size Since each component in this framework not only contains its content
but also program code, documents or components transmitted over a network or stored
on secondary storage tend to be large. We compared the sizes of documents in this
framework and the size of documents created with MS-Word, which is the most typical
office application.4 The sizes of two typical kinds of content were as follows:

– The first content was plain text. The size of the component for viewing and editing
the text was 5.6 KB (0), 6.3 KB (1,000), 9.9 KB (10,000), and 19.5 KB (100,000),
whereas the size of the document created with MS-Word was 19.5 KB (0), 21.0

4 Note that the sizes of documents, which contain multimedia content, created with MS-Word
may vary for no reason, so that we could not systematically compare the sizes of our docu-
ments and MS-Word documents. The results presented in this section have not always been
generalized but have focused on several samples.

13

KB (1,000) 47.1 KB (10,000), and 306.2 KB (100,000), where the numbers in
parentheses represent the length of the text where the text-content was part of this
paper.

– The second was image content within the dotted box in Fig. 9. The content is com-
posed of three components: box, text, and image-viewer, where the first contains
the second and third components. The content was 68 KB, where the document
corresponding to the content created with MS-Word was 24 KB.

The size of the text component was not proportional to the length of the text because
our components were migrated over a network or stored in secondary storage and they
were compressed in JAR-format, which was ZIP-based compression. This meant that
our components were not always larger than documents created with commercial appli-
cations, e.g., MS-Word.We also found that the size of our components greatly depended
on the kind of content and the complexity of their codes. When various types of com-
ponents were embedded into a document, the document tended to be larger, because
each type needed to embed its code for the content type into the document. Otherwise,
the size was often smaller than that of corresponding documents created by existing
applications, when the document contained a few component types. The size of our
components was reasonable because the network bandwidth and the capacity for stor-
age have recently increased.

7 Application

We developed a variety of components based on this framework. This section introduces
several of these and their uses.

Step 1 Step 2

Drag-and-drop image viewer component

Letter component Text component

Spreadsheet component

Fig. 10. Letter document

7.1 Compound document letter

Although documents are often sent to their destinations through electronic mail sys-
tems, it is difficult for these systems to send the documents to multiple destinations
along specified itineraries. To solve this problem, this framework provides carrier com-
ponents that can travel between multiple computers under their own control. Figure 10

14

shows a letter constructed as a compound document. It consist of three components:
carrier, image viewer, and text components. The carrier component has a UGI corre-
sponding to the header on an electronic mail and it can migrate with its inner compo-
nents, i.e., the text and spreadsheet components, to its destination. We can easily add
new components to the letter compound document by dragging them from the palette
and dropping them on the document. Since not only the content but also the codes for
viewing and editing the content of the components are transferred to the destination, the
letter document can be viewed at the destination with no applications necessary for the
content. The spread-sheet component has its own profile because it can automatically
record when it has been (un)marshaled and where it has visited.

Most electronic mail systems disallow letters from traveling among multiple des-
tinations along their own itineraries. We developed a legacy decision-making system,
called ringi, for group decision-making, which has been widely used throughout Japan.
When an employee proposes something to his/her company, he/she describes the propo-
sition on a workflow document, called a ringi-sho. The document must be handed to all
sections involved with the proposed issue. When the managers of the sections deem the
proposal to be of worth, they stamp it with their hanko, or give rights access through its
carrier component, and then resume its process as seen at the right of the computer.

Text viewer (read-only) components

Multiple destination table Stamp (hanko) component
Ringo-sho component

Fig. 11. Ringi-sho compound document.

7.2 Distributed Presentation System

This system is unique to other existing presentation systems because it can exchange
slides or its visual parts, e.g., text and images, between different computers. Fig. 12 is a

15

slide viewer component slide component

image viewer
component

animation component
contained in
carrier component text component

Fig. 12. Slide component.

slide-presentation compound document that can contain more than one slide component
inside it, where each slide component corresponds to one slide and can contain and view
one or more visual components. It stacks its slides by using thejava.awt.CardLayout
class as a layout manager. It enables us to change the order of the stack and exchange
slides with other slide-presentation compound documents running on different comput-
ers through a GUI-based control panel at the bottom of its window. The center image
is a GIF-animation-viewer component contained in a carrier component. When the car-
rier component is made active by clicking the mouse within its estate, it migrates to
its specified component or computer. Figure 13 shows that the animation-viewer com-
ponent has migrated between slides from the left (Macintosh) to the right computer
(Windows PC) through its carrier component and has then resumed its animation at the
right of the computer.

Step 1 Step 2

slide componentslide component animation componentanimation component

Fig. 13.Migration of components between slide components running on different computers

16

7.3 Application-specific document distribution

This framework enables end-users to easily define and operate CSCW applications. The
third example is an editing system for an in-house newsletter. Each newsletter is edited
by automatically compiling one or more text parts, which are written by different people
as we can see from Figure 14. A newsletter compound document has one page com-
ponent, which can contain editor components for visual content, e.g., text and images.
When the newsletter is being edited, it forwards the page component to a duplicator
component to make replicas of the component to match the number of writers. The
duplicator component then migrates the replicas to forwarder components so that each
of the page components is forwarded to a window component on its writer’s computer.
When it arrives at the destination, it displays a window for its editor program on the
screen of the computer to assist the writer. Each writer can add his/her visual compo-
nents to the page component. If a page component can contain sharing components, the
components contained in the sharing components can maintain common content for all
the replicas, even when one of the replicas has changed. For example, each page of the
newsletter can have common text and images in its header and tail. Sharing components
are located at the head and tail of each page. When a writer modifies text in text com-
ponents or images in image-viewer components containing sharing components, this
modification can be reflected on the heads and tails of all pages, while other writers are
editing their pages. This modification goes back to the document after the writer has
finished writing his/her text and then the document arranges the arriving components as
a bound set. Since the newsletter document, duplicator, and forwarder components are
still mobile, they can easily be deployed and coordinated according to the requirements
of applications.

migration

step 1

Computer A

Editor Components

Computer C

Computer B

migration

migration

step 2

Computer A

Computer B

Editor components

Computer

Editor
component

Forwarding
components

Duplicator
component

duplications

Editor components

Forwarding
components

migration

migration

migration

Duplicator component

Computer C

Newsletter component

Newsletter
component

Fig. 14. Newsletter editing system.

17

8 Conclusion

We presented a compound document framework for document-centric network process-
ing. The framework made three novel contributions. The first introduced the notion of
a component hierarchy and mobile components. This notion enabled an enriched docu-
ment to be composed of various components and to migrate between these components,
which may run on different computers, under its own control. The framework provided
several value-added mechanisms for visually manipulating components embedded in a
compound document and for seamlessly combining multiple visible components into
one. The second contribution was that it made the content of each component and its
codes inseparable. It allowed us to view or modify components without the need for any
applications. It was also useful in protecting content because it prevented the content of
components from being accessed by external systems and it enabled us to easily insert
security mechanisms in each component’s codes to view or edit its content. The third
contribution enabled documents to pass other documents from/to other components or
computers. Components were introduced as the only constituent of our network pro-
cessing for documents or components. It also offered several basic operations for net-
work processing, e.g., carrying, forwarding, duplication, synchronization, and sharing.
The operations were still document components; they could be dynamically deployed
at local or remote computers through GUI-based manipulations. It therefore allowed
an end-user to easily and rapidly configure network processing in the same way as if
he/she had edited the documents. In fact, a variety of advanced network processing can
be implemented as a collection of components for network processing. We constructed
a prototype implementation of this infrastructure and its applications.

To conclude, we would like to point out further issues that need to be resolved. Re-
source management and security mechanisms in the current system were incorporated
in a relatively straightforward manner. These should now be designed to incorporate
compound documents. This framework does not support interoperability with other
document frameworks, because these assume that each component can be viewed or
modified by external applications. Nevertheless, it is open to supporting such existing
document formats because the framework can provide viewers and editors components
that can encapsulate such documents with their viewers and editors corresponding to
their applications. When a component migrates to another component or computer, its
visual resources, i.e., the size of its estate and colors in the destination, may not be the
same as those in the source. It must adapt its visibility to the resources available in the
current location; however, the current implementation relies on Java’s layout manager.
We need a more sophisticated and flexible mechanism to enable adaptation.

References

1. Apple Computer Inc. (1994) OpenDoc: White Paper, Apple Computer Inc.
2. K. Arnold, and J. Gosling, The Java Programming Language, Addison-Wesley, 1998
3. K. Brockschmidt, Inside OLE 2, Microsoft Press, 1995.
4. Cable, L. (1997) Extensible Runtime Containment and Server Protocol for JavaBeans, Sun
Microsystems, http://java.sun.com/beans.

18

5. D. P. Friedman, M. Wand, and C. T. Haynes, Essentials of Programming Languages, MIT
Press, 1992.

6. A. Fuggetta, G. P. Picco, and G. Vigna, Understanding Code Mobility, IEEE Transactions
on Software Engineering, vol.24, no.5, 1998.

7. The GNOME Project, Bonobo, http://developer.gnome.org/ arch/component/ bonobo.html,
2002.

8. Y. Goldberg, M. Safran, and E. Shapiro, Active Mail - A Framework for Implementing
Groupware, Proceedings of ACM CSCW’92, pp. 75-83, ACM Press, 1992.

9. Hamilton G. (1997) The JavaBeans Specification, Sun Microsystems,
http://java.sun.com/beans.

10. G.H. ter Hofte, H.J. van der Lugt, CoCoDoc: a framework for collaborative compound doc-
ument editing based on OpenDoc and CORBA, Proceedings of International Conference on
Open Distributed Processing and Distributed Platforms, pp.15-33, 1998.

11. G. Kiczales, et al, Aspect-Oriented Programming Proceeding of European Conference on
Object-Oriented Programming (ECOOP’97), LNCS, vol. 1241, Springer, 1997.

12. B. D. Lange and M. Oshima, Programming and Deploying Java Mobile Agents with Aglets,
Addison-Wesley, 1998.

13. R. Litiu and A. Parakash, Developing adaptive groupware applications using a mobile com-
ponent framework, Proceedings of ACM conference on Computer Supported Cooperative
Work (CSCW’2000) , pp.107 - 116, ACM Press, 2000.

14. J. Morin, HyperNews, a Hypermedia Electronic-Newspaper Environment based on Agents,
Proceedings of HICSS-31, pp.58-67, 1998.

15. M. Potel and S. Cotter Inside Taligent Technology, Addison-Wesley, 1995.
16. D. Rogerson, Inside COM, Microsoft Press, 1997.
17. I. Satoh, MobileSpaces: A Framework for Building Adaptive Distributed Applications Using

a Hierarchical Mobile Agent System, Proceedings of International Conference on Distributed
Computing Systems (ICDCS’2000), pp.161-168, IEEE Computer Society, April 2000.

18. I. Satoh, MobiDoc: A Mobile Agent-based Framework for Compound Documents, Infor-
matica, vol.25, no.4, pp.493-500, December 2001.

19. I. Satoh, Building Reusable Mobile Agents for Network Management, IEEE Transactions on
Systems, Man and Cybernetics, vol. 33, no.3, part-C, pp.350-357, August 2003.

20. I. Satoh, Configurable Network Processing for Mobile Agents on the Internet, Cluster Com-
puting, vol. 7, no.1, pp.73-83, Kluwer, January 2004.

21. I. Satoh, A Compound Document Framework for Multimedia Networking, Proceedings
of 1st International Conference on Distributed Frameworks for Multimedia Applications
(DFMA’2005), pp.80-87, IEEE Computer Society, February 2004.

22. I. Satoh, Selection of Mobile Agents, Proceedings of IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’2004), pp.484-493, IEEE Computer Society, March
2004.

23. I. Satoh, Network Processing of Documents, for Documents, by Documents (short position
paper), to appear in Proceedings of ACM/IFIP/USENIX 6th International Middleware Con-
ference (Middleware’2005), Lecture Notes in Computer Science (LNCS), December 2005.

24. C. Szyperski, Component Software (2nd), Addison-Wesley, 2002
25. D. L. Tennenhouse et al., A Survey of Active Network Research, IEEE Communication

Magazine, vol. 35, no. 1, 1997.
26. P. Werle, F. Kilander, M. Jonsson P. Lonqvist, C. G. Jansson, A Ubiquitous Service Envi-

ronment with Active Documents for Teamwork Support, Proceedings of 3rd International
Conference on Ubiquitous Computing (UBICOMP’2001), Lecture Notes in Computer Sci-
ence, vol. 2201 pp.139 - 155, Springer, 2001.

27. J. E. White, Mobile Agents, in Software Agents (eds. J. M. Bradshaw), pp.437-472, AAA
Press/MIT Press, 1997.

19

Appendix: Component programming model

Each visual component needs to be defined as a subclass of either thejava.awt.Component
or java.awt.Container from which most of Java’s visual or GUI objects are de-
rived.5 When a component is moved to another location or its estate is resized, its com-
ponent node invokes repaint(), which is a callback method to redraw the visible
content of the java.awt.Component class. Therefore, each visual component is
required to define its own visual features in addition to its application logic.

The framework also provides an event listener interface, called theMDLifecycleListener,
which defines several callback methods to inform components about changes in their
lifecycle state from the runtime system, like the Java AWT event listener interfaces. If a
component implements the interface, before or after the lifecycle of the component has
changed, the runtime system invokes these methods.

interface MDLifecycleListener
implements java.io.Serializable {

void create(MDContext mdcx) throws IllegalAccessException;
void destroy(MDContext mdcx) throws IllegalAccessException;
void save(MDContext mdcx) throws IllegalAccessException;
void suspend(MDContext mdcx) throws IllegalAccessException;
void duplicate(MDContext mdcx) throws IllegalAccessException;
void leave(MDContext mdcx, URL dst) throws IllegalAccessException;
void arrive(MDContext mdcx, URL src) throws IllegalAccessException;
void add(MDContext mdcx, URL src) throws IllegalAccessException;
void remove(MDContext mdcx, URL src) throws IllegalAccessException;
....

}

A component, which implements the MDLifecycleListener interface, can define
the processing it requires as the behaviors of the methods. These methods can also
define processing for authentication and content rights management. Note that, even
when a component does not support the interface, the Java virtual machine invokes
the writeObject() or method of a component, before the component is marshaled
or after it is unmarshaled. The MDContext class in the MDLifecycleListener
interface defines service methods available in components as follows:

class MDContext implements java.io.Serializable {
public void go(URL url) throws NoSuchHostException { ... }
public URL save(URL url) throws IOException { ... }
public ComponentID duplicate() { ... }
....

}

When a component executes go() or save(), the runtime system migrates (or stores)
the component, including its inner components, to the component (or in the file) speci-
fied as url. The duplicatee()method makes a replica of the component itself.

5 java.awt.Container is a subclass of java.awt.Component.

20

