
A Timed Calculus for
Distributed Objects with Clocks

Ichiro Satoh
satoh@mt.cs.keio.ac.jp

Mario Tokoro ∗

mario@mt.cs.keio.ac.jp

Department of Computer Science, Keio University
3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

Tel: +81-45-560-1150 Fax: +81-45-560-1151

Abstract. This paper proposes a formalism for reasoning about distributed
object-oriented computations. The formalism is an extension of Milner’s CCS
with the notion of local time. It allows to describe and analyze both locally
temporal and behavioral properties of distributed objects and interactions a-
mong them. We introduce timed bisimulations with respect to local time. These
bisimulations equate distributed objects if and only if their behaviors are com-
pletely matched and their timings are within a given bound. The bisimulations
provide a method to verify distributed objects with temporal uncertainties and
real-time objects with non-strict time constraints.

1 Introduction

Distributed systems consist of more than one processor loosely coupled by commu-
nication networks with inherent delay1. The notion of concurrent object-oriented
computation [25] is considered as a powerful means to design and develop distributed
systems. This is because objects are logically self-contained active entities interacting
with one another through message passing. Recently, many programming languages
for distributed systems were developed based on this notion [1, 22].

Communication delay is the most featuring characteristic of distributed systems.
It prevents objects from sharing a global clock among all processors. Many distribut-
ed systems need real-time facilities to manage time critical responses and interactions
with the real world. These facilities have to be materialized by clocks on local pro-
cessors instead of the shared global clock. However, such clocks can never run at the
same rate. Relative differences among clocks that cannot be ignored may lead coop-
erations among local processors to failure. In order to develop correct programs for
distributed systems, we must take this problem into consideration. Hence, we need a

∗Also with Sony Computer Science Laboratory Inc. 3-14-13 Higashi-Gotanda, Shinagawa-ku,
Tokyo, 141, Japan.

1Geographical distance between processors manifests in communication delay.

theoretical model for describing and analyzing both locally temporal properties and
functionally behavioral properties of distributed object-oriented computing.

A number of computing models for describing and verifying distributed systems
have been proposed based on temporal logic, automata, and process calculi. However,
most of them are intended to model only behavioral aspects in distributed computing
and thus lack in the ability of representing temporal properties. Others can manage
only temporal properties based on the global time which cannot be essentially realized
in distributed systems. Consequently, they can not model the notion of local time in
distributed systems. In the fields of artificial intelligence and real-time systems, some
logical systems to deal with different time scales have been proposed in [4, 7, 16].
However they cannot sufficiently model time based on local clocks which may drift in
distributed systems. Also, some researchers have explored methods for agreement on
processes’ time by using clock synchronization [10, 13] and for maintaining local time
based on causality by using time-stamps [9, 12]. However the former methods cannot
cope with systems where communication delay is unpredictable. The latter methods
lose real-time duration between events.

The goal of this paper is to develop a formalism for reasoning about distribut-
ed object-oriented computations, in particular, local time properties in computation.
The formalism is based on an existing process calculus, CCS [14]. This is because CCS
allows us to easily model many features of concurrent objects by means of its pow-
erful expressive capabilities [8, 18]. For example, objects can be viewed as processes;
interactions among objects can be seen as communications; and encapsulation can be
modeled by the restriction of visible communications. However, CCS essentially lacks
in the notion of local time and thus we need to extend CCS with it. Indeed the authors
introduced a timed extended process calculus, called RtCCS, for real-time concurrent
(but non-distributed) object-oriented computing in an earlier paper [21]. RtCCS is
an extension of CCS [14] with timeout operator and timed observation equivalences.
The extensions make RtCCS unique among other timed process calculi [5, 6, 15, 17].
However, the extensions are based on the global time and thus RtCCS, like other
timed calculi, cannot represent the notion of local time in distributed systems. In
this paper, we develop a process calculus called DtCCS (Distributed timed Calculus
of Communication Systems), by extending CCS with the notion of local time in order
to explicitly describe and analyze both temporal properties based on local time and
behavioral properties in distributed object-oriented computing2. Based on DtCCS,
we furthermore develop theoretical proof techniques for distributed objects.

The organization of this paper is as follows: in the next section, we first informally
introduce our approach to extend CCS with the notion of local time. Section 3
defines the syntax and the semantics of DtCCS and then presents how to describe
distributed objects along with some examples in DtCCS. In Section 4 we present
timed bisimulations based on local time and study their basic theoretical properties,
and then we present some examples to demonstrate the usefulness of our formalism.
The final section contains some concluding remarks and future works.

2There have indeed been some process calculi for distributed computing [2, 3, 11] but they are
extensions of CCS with the concept of process locations and not local time.

2 Basic Framework

In this section, we present a brief introduction to our formalism.

Time in Distributed Computing

Before giving an exposition of our formalism, we first present the basic idea for mod-
eling local time. If relative motion of all processors is negligible, from Einstein’s
Relativity, the passage of physical time in every processor elapses at the same rate.
On the other hand, each local clock progresses at its own rate. Clock rates are differ-
ent from each other and these rate may vary within a certain bound. Hence, we can
envisage local clocks as follows: each actual local clock reads its own current time by
translating the passage of the global time into its own time coordinate according to its
own measurement rate. Therefore, local times which are measured by different clocks
may be different from one another, although the clocks share the same global time.
Summarizing this discussion, we give the following two basic assumptions on time in
distributed computing: (1) all processors in a distributed system share the conceptual
global time, and (2) the local clock of each processor measures the global time according
to its own time unit and precision. We will hereafter call a clock running at a given
constant rate as a constant clock, and call a clock running at a dynamically drifting
rate within a given bound as a variable clock.

Extensions of CCS

According to the above assumptions, we develop a formalism for reasoning about
behavioral and temporal properties of distributed objects by using a language based
on CCS. In order to represent the temporal properties of distributed systems, we need
to extend CCS with the ability of representing local time properties in distributed
systems. To do this, we introduce three temporal primitives: timed behavior, global
time, and local clock. We briefly summarize these extensions3 as follows:

• Timed Behavior. The behavior of distributed systems is dependent on the
passage of time, such as delaying process and timeout handling. Particularly,
in distributed systems timeout handling is a crucial part for failure detection
in communication network and other processors. Therefore, we introduce a
special binary operator having the semantics of timeout handling, written as
〈 , 〉t, and called a timeout operator. For instance, 〈P, Q〉t behaves as P if P
can execute an initial transition within t units of time, and behaves as Q if P
does not perform any action within t units of time.

• Global Time. We assume that all processors share the conceptual global time.
The passage of the global time is represented as a special action. The action is a
synchronous broadcast message over all objects and corresponds to the passage
of one unit of the global time. It is described as a

√
, called a tick action. Please

note that, in our formalism, the existence of the global time does not implies
the existence of an actual global clock: it only provides the time that each local
clock may measure.

3The extensions, except for local clock, are essentially equivalent to ones in RtCCS in [21].

• Local Clock. Local clocks are given as special mappings from time instants on
local time into corresponding time instants on the global time, according to its
own time unit and precision. The mapping defines how many time instants on
the global time corresponds to the length of one time unit in the local time.
Conversely, local time on each processor is given as a collection of all the time
instants which can be translated into the global time by the mapping. In order
to represent a variable clock, the clock may be given as a non-deterministic
mapping.

In our calculus, descriptions of objects with respect to local times are translated into
ones in the global time. The descriptions are interpreted based only on the global time.
Thus, we obtain a uniform way to easily analyze distributed objects with their own
local times. As a result, we can use many pleasant properties of timed process calculi
based on global time, including the proof techniques of RtCCS presented in [21]. The
translation maps time values with respect to local time in the descriptions into values
with respect to the global time. Our method of interpreting the descriptions on local
time may seem to be similar to that of [4, 16]. However, the latter is intended to deal
with different time scales in specification and cannot sufficiently model time based on
variable clocks in distributed systems.

3 Definition

This section first presents the basic definitions for time related notations and then
defines the syntax and the semantics of the calculus.

3.1 Time Domain

In our formalism, time is represented as a time domain composed of time instants.
An instant represents a time interval from an initial time and we restrict the instants
to be discrete, instead of continuous. Each time domain corresponds to a local time
measured by one local clock. We assume a special time domain which is a finest and
absolute reference time basis for all local times and is called the global time domain.

Definition 3.1 Let T denote the set of the positive integers including 0. We call
T a time domain.

T ≡ N ∪ {0} where N is a set of natural numbers.

Especially, the global time domain is denoted as TG. ut

All occurrences of any instant times on local time domains correspond to instant times
in the global time domain. The linkage between a local time domain and the global
time domain is given as the following mapping.

Definition 3.2 Let T` be a local time domain and δmin, δmax ∈ TG : 0 < δmin ≤ δmax.
A clock mapping θ : T` → TG is defined as follows: for all t ∈ T`,

θ(t)
def
=

{
0 if t = 0
θ(t − 1) + δ if t > 0 where δ ∈ { d ∈ TG | δmin ≤ d ≤ δmax}

where we call θ a clock mapping, or simply a clock. We let {θ(t)} denote { tG | ∀tG ∈
TG : tG = θ(t)}. Particularly, if δmin = δmax, we call θ a constant clock and hereafter

will sometimes abbreviate the definition of θ as θ(t)
def
= δt. ut

In above definition, δ corresponds to the interval of one time unit on the local time
domain according to the global time domain. δmin is the lower bound of that interval
and δmax the upper bound of that interval. Also {θ(t)} means the set of the whole
time values can be evaluated in θ(t).

We present some examples of clock mappings.

Example 3.3 Examples of clock mappings

(1) The clock mapping of a constant clock whose time units is three units of the

global time, is denoted as follows: θ(t)
def
= 3t.

(2) The clock mapping of a variable clock whose time unit varies from two to four
units of the global time is given as follows:

θ(t)
def
=

{
0 if t = 0
θ(t − 1) + δ if t > 0 where δ ∈ {2, 3, 4}

ut

As previously mentioned, time is discrete in the calculus. Therefore, if an event is
executed between two consecutive time instants, we say that the event occurs at the
earlier time instant. Also, if two or more events occur between two consecutive time
instants, we say that the events occur at the same time.

Here, we present the inverse of clock mapping. It maps a time instant on global time
into the coordinates of local time.

Definition 3.4 The inverse mapping of θ: T` → TG is defined as follows:

{θ−1(tG)} def
= { t | ∀t ∈ T` : min {θ(t)} ≤ tG < max {θ(t + 1)} }

where tG ∈ TG. ut

To demonstrate how θ−1(t) works, we show an inverse mappings.

Example 3.5 Examples of clock inverse mappings
Recall θ in (2) of Example 3.3. We present a few of the possible results of its
inverse mapping θ−1(t) as follows: {θ−1(1)} = {0}, {θ−1(2)} = {0, 1}, {θ−1(3)} =
{0, 1}, {θ−1(4)} = {1, 2}, {θ−1(6)} = {1, 2, 3}, {θ−1(8)} = {2, 3, 4}, . . . ut

We show an alternative definition of the inverse mapping below.

Proposition 3.6 Let θ: T` → TG and φ : TG → T` be the following functions. We
have that for all tG ∈ TG: {φ(tG)} is equivalent to {θ−1(tG)}.

θ(t)
def
=

{
0 if t = 0
θ(t − 1) + δ if t > 0 where δ ∈ { d ∈ TG | δmin ≤ d ≤ δmax}

{φ(tG)} def
= { t | ∀t ∈ T` : btG/δmaxc ≤ t ≤ btG/δminc }

where δmin, δmax ∈ TG : 0 < δmin ≤ δmax. ut

Note that the definitions of the clock mapping and its inverse mapping are different
from that of usual functions in mathematics.

3.2 Notation and Syntax

Here we present the syntax of DtCCS. The syntax is an extension of Milner’s CCS
[14] by introducing a tick action, a timeout operator, and clock translation rules.

A few preliminary definitions are needed before giving the definition of the syntax.
We first define notation conventions which we will follow hereafter.

Definition 3.7

• Let A be an infinite set of communication action names, ranged over by a,b,. . ..

• Let A be the set of co-names, ranged over by a,b,. . . where an action a is the
complementary action of a, and a ≡ a.

• Let L ≡ A ∪A be a set of action labels, ranged over by `, `′,

• Let τ denote an internal action which is unobservable from the outside.

• Let √ denote a tick action which represents the passage of one time unit.

• Let Act ≡ L ∪ {τ} be the set of behavior actions, ranged over by α,β,. . ..

• Let ActT ≡ Act ∪ {√} be the set of actions, ranged over by µ, ν,. . ..
ut

In our formalism, distributed objects are described by means of expressions as defined
below. In order to clarify our exposition, we divide the expressions into two groups:
sequential expressions for describing objects on a processor (or a node) with one
local clock, and interacting expressions for describing interactions among distributed
objects following different clocks.

Definition 3.8 The set S of sequential expressions, ranged over by S, S1, S2, . . . is
the smallest set which contains the following expressions:

S ::= 0 (Terminated Process)
| X (Process Variable)
| α.S (Sequential Execution)
| S1 + S2 (Alternative Choice)
| recX : S (Recursive Definition)
| 〈S1, S2〉t (Timeout)

where t is an element of a time domain. We assume that X is always guarded 4. We

shall often use the more readable notation X
def
= S instead of recX : S. ut

Intuitively, the meaning of constructors on S are as follows: 0 represents a terminated
and deadlocked object; α.S performs an action α and then behaves like S; S1 + S2

represents an object which may behave as either S1 or S2; recX : S binds the free
occurrences of X in S; 〈S1, S2〉t represents an object such that it behaves as S1 if S1

can execute an initial transition within t time units, whereas it behaves as S2 if S1

does not perform any action within t time units.

We now define the syntax of expressions for interactions among different processors
with local clocks as shown below. We assume that [[·]]θ is a clock translation mapping
which will be defined later. It allows sequential expressions following a local clock θ
to be translated into expressions on the global time domain TG.

Definition 3.9 The set P of interacting expressions on local time, ranged over by
P, P1, P2, is defined by the following grammar:

P ::= [[S]]θ (Local Object)
| P1|P2 (Parallel Composition)
| P [f] (Relabeling)
| P \ L (Encapsulation)

where θ is a clock mapping. We assume that f ∈ Act → Act , f(τ) = τ , and L ⊆ Act .
ut

The informal meaning of constructors of P is as follows: [[S]]θ represents a sequential
expression S executed on a processor (or a node) with a local clock θ; P1|P2 allows P1

and P2 to execute in parallel; P [f] behaves like P but with the actions in P relabeled
by function f ; P \ L behaves like P but with actions in L ∪ L̄ prohibited.

3.3 Semantics

As we noted already, the definition of the semantics of DtCCS consists of two parts:
clock translation rules, written as [[S]]θ, which translate expressions on a local time
into expressions on the global time, and structural transition rules which define the
mean of all constructors in expressions on the global time.

Expressions on Local Time

We here define the clock translation rules [[S]]θ . We first present the key idea of the
rules. In order to translate expressions on local time into expressions on the global
time, we translate all local time values in expressions on local time into time values
on the global time. In our formalism only the deadline time of the timeout operator
corresponds to such time values. We introduce special translation rules which map
each deadline time on local clocks in expressions into deadline time based on the global
time, by using the clock mapping.

4X is guarded in S if each occurrence of X is only within some subexpressions α.S′ in S where α
is not an empty element; c.f. unguarded expressions, e.g. recX : X or recX : X + S.

Definition 3.10 Let T` be a local time domain and θ be a clock mapping from T`

to TG. The clock translation rule [[·]]θ is recursively defined by the following syntactic
rewriting rules.

[[0]]θ −⇀ 0

[[X]]θ −⇀ X

[[α.S]]θ −⇀ α.[[S]]θ′

[[S1 + S2]]θ −⇀ [[S1]]θ′ + [[S2]]θ′

[[recX : S]]θ −⇀ recX : [[S]]θ′

[[〈S1, S2〉t]]θ −⇀ 〈[[S1]]θ′ , [[S2]]θ′′〉θ′(t)

where θ′, θ′′
def
= θ such that ∀t` ∈ T` : θ′(t`) = θ(t`), θ′′(t`) + θ(t) = θ(t` + t). ut

We briefly explain the intuitive meaning of the main rules. The third rule translates
an unpredictable synchronization time for waiting for α into an unpredictable time
on the global time domain. The fourth rule shows that all alternative subsequences
in a processor share the same clock. The last rule means that the deadline time t on
local clock θ is mapped into deadline time on the global time.

We show some notable points on the above clock translation rules.

• Hereafter we will often omit the −⇀ translation if it is understood from the
context.

• By the definition of P, expressions applicable to [[·]]θ are restricted to expres-
sions in S. This means that expressions to model internal interactions, such
as concurrency and encapsulation, among objects sharing the same clock can-
not be translated into the global time by [[·]]θ. However, this restriction never
results in unavoidable difficulties in describing distributed systems. This is be-
cause any expression for interaction on the same clock can be reduced to an
equivalent sequential expression in S by using the expansion rules shown in
Corollary 1 and Proposition 10 of [21]. Therefore, we first translate expressions
for interacting objects following the same clock into expressions in S using the
expansion rules and then we can apply [[·]]θ to the translated expressions.

Expressions on Global Time

The clock translation rules can completely eliminate all [[·]]θ from expressions in P.
Therefore, in order to define the operational semantics of DtCCS, we need to give
semantics to all syntactical constructors in P except [[·]]θ. The semantics is given in
terms of a labeled transition system [20]. The operational semantics of the language
which consists of the translated expressions on the global time, is given as a labeled
transition system 〈 P, ActT , { µ−→ | µ ∈ ActT } 〉 where

µ−→ is a transition relation

(
µ−→⊆ P ×P where P contains no constructor [[S]]θ). The definition of the semantics

is structurally given in two phases. The first phase defines the relations
α−→ for each

α ∈ Act . The inference rules determining
α−→ are given in Figure 1. This is based

on the standard operational semantics for CCS except for the addition of the timeout

α.P
α−→ P

P1
α−→ P ′

1 implies P1 + P2
α−→ P ′

1, P2 + P1
α−→ P ′

1

P1
α−→ P ′

1 implies P1|P2
α−→ P ′

1|P2, P2|P1
α−→ P2|P ′

1

P1
a−→ P ′

1, P2
ā−→ P ′

2 implies P1|P2
τ−→ P ′

1|P ′
2

P
α−→ P ′ implies P [f]

f(α)−→ P ′[f]

P
α−→ P ′, α /∈ L ∪ L implies P \ L

α−→ P ′ \ L

P{recX : P/X} α−→ P ′ implies recX : P
α−→ P ′

P1
α−→ P ′

1 , t > 0 implies 〈P1, P2〉t α−→ P ′
1

P2
α−→ P ′

2 implies 〈P1, P2〉0 α−→ P ′
2

Figure 1: Operational Rules of P on Global Time

0
√

−→ 0

`.P
√

−→ `.P

P1

√
−→ P ′

1, P2

√
−→ P ′

2 implies P1 + P2

√
−→ P ′

1 + P ′
2

P1

√
−→ P ′

1, P2

√
−→ P ′

2, P1|P2 6 τ−→ implies P1|P2

√
−→ P ′

1|P ′
2

P
√

−→ P ′ implies P [f]
√

−→ P ′[f]

P
√

−→ P ′ implies P \ L
√

−→ P ′ \ L

P{recX : P/X}
√

−→ P ′ implies recX : P
√

−→ P ′

P1

√
−→ P ′

1 , t > 0 implies 〈P1, P2〉t
√

−→ 〈P ′
1, P2〉t−1

P2

√
−→ P ′

2 implies 〈P1, P2〉0
√

−→ P ′
2

Figure 2: Temporal Rules of P on Global Time

operator. The new action
√

does not effect any rule. The second phase defines the

relation
√

−→ by inference rules given in Figure 2.

Let us give some remarks on the definition of the semantics.

• The syntax and the semantics of the translated expressions on the global time
domain essentially coincide with these of RtCCS [21]. Therefore, the translated
expressions enjoy proof techniques presented in [21] for RtCCS, such as timed
strong equivalence and timed observation equivalence.

• As previously mentioned, there have been many time extended process calculi.
The syntax and the semantics of the expressions translated into the global time
domain (i.e. RtCCS) are somewhat similar to some of them. Detail comparisons
can be found in [21].

• In DtCCS, external actions cannot be performed before their partner actions
in other objects are ready to communicate it. Objects must perform

√
actions,

while waiting for partner actions corresponding to their external actions. If
an object can perform any executable communication (including τ), it must
perform the communication immediately, instead of idling unnecessarily.

3.4 Examples on Description of Distributed Objects

In order to illustrate how to describe distributed object in DtCCS, we present some
simple examples.

Example 3.11 Interaction between distributed objects
We suppose interaction between a client and a sever object on different processors by
means of remote procedure call.

• The client object (Client) sends a request message (req) and then waits for a
return message (ret). If the return message is not received within 6 units of
local time, then it sends the request message again.

• Upon reception of a request message (req), the server object (Server) sends a
return message (ret) after an internal execution of 5 units of local time.

These objects are denoted as follows:

Client
def
= req .〈ret .0,Client〉6

Server
def
= req .〈0, ret .Server〉5

We assume that the client and server objects are allocated to different processors.
The time unit of variable clock θc for the client varies from 4 to 6 units of the global
time. The time unit of variable clock θs for the server varies from 3 to 5 units of the
global time. θc and θs are defined as follows:

θc(t)
def
=

{
0 if t = 0
θc(t − 1) + δc if t > 0

where δc ∈ {4, 5, 6}

θs(t)
def
=

{
0 if t = 0
θs(t − 1) + δs if t > 0

where δs ∈ {3, 4, 5}

By [[·]]θ mapping rules, the client and the server are mapped on the global time
domain as shown below. From the definition of θc and θs, there are multiple results
for θc(6) ∈ {24, 25, ..36} and θs(5) ∈ {15, 16, ..25}:

[[Client]]θc
−⇀ · · ·−⇀ req .〈ret .0, [[Client]]θc

〉θc(6)
[[Server]]θs

−⇀ · · ·−⇀ req .〈0, ret .[[Server]]θs
〉θs(5)

The interaction between the objects is described as the following parallel composition:

([[Client]]θc
|[[Server]]θs

) \ {req , ret}

where \{req , ret} makes internal communications encapsulated from the environment.
The result of the interaction is dependent on the evaluated values of θc(6) and θs(5).
Here we show some of the possible results:

(1) In the case of θc(6) = 30 and θs(5) = 20:

([[Client]]θc
|[[Server]]θs

)\{req, ret}
τ−→ (〈ret .0, [[Client]]θc

〉30|〈0, ret .[[Server]]θs
〉20)\{req, ret}

(
√

−→)20 (〈ret .0, [[Client]]θc
〉10|ret .[[Server]]θs

) \ {req , ret}
τ−→ (0|[[Server]]θs

) \ {req , ret}
(successful)

In the above case (i.e. θc(6) > θs(5)), the client can always receive the return
message before it goes into timeout.

(2) In the case of θc(6) = 24 and θs(5) = 25:

([[Client]]θc
|[[Server]]θs

)\{req, ret}
τ−→ (〈ret .0, [[Client]]θc

〉24|〈0, ret .[[Server]]θs
〉25)\{req, ret}

(
√

−→)24 ([[Client]]θc
|〈0, ret .[[Server]]θs

〉1) \ {req , ret}

(
√

−→)1 ([[Client]]θc
|ret .[[Server]]θs

) \ {req , ret}
(failure)

In the above case, the client goes into timeout before receiving a return message
ret because of θc(6) ≤ θs(5). Thus, the objects goes into a deadlock.

DtCCS allows us to analyze explicitly how the differences among local clocks affect
the result of interactions in distributed computing. ut

Note that the deadline time of the timeout operator in Server means execution steps
for handling the request in the server. θs in [[Server]]θs

represents an index on the
performance of a processor executing the server. For example, the larger δs in θs is, the
faster the processor is. The result shows that the clock translation rules [[·]]θ allows us
to represent differences among processors’ performances as well as differences among
processors’ clocks.

Example 3.12 Embedding Asynchronous Communication with Delay
We illustrate an embedding of an asynchronous communication mechanism in DtCCS.
The key idea of the embedding is to express asynchronous communication in terms
of synchronous communication and a messenger creation, i.e. asynchronous message
sending is represented by creating a process which can engage only in an input action
with the same name of the message. Note that this embedding is very similar to the
ways to express asynchronous communication developed in [8, 11].

Let ↑a.P and ↓a.P denote asynchronous sending and receiving expressions, respec-
tively. ↑a.P sends a message to the target name a and continues to execute P without
waiting the reception of the message. ↓a.P behaves like P after receiving a message
with a target name a. These expressions are encoded by expressions of DtCCS as
follows:

(1) First we describe the case we can neglect the transmission delay of the commu-
nication.

↑a.P ≡ (c.P |c.a.0) \ {c} (Asynchronous Sending)
↓a.P ≡ a.P (Receiving)

where we assume that newly introduced name c does not appear in P .

Note that ↑a .P can continue to execute P without blocking before ↑a is received
by another object.

(2) Next we take communication delay into consideration. In the above expression
c.a.0 corresponds to a communication channel for the message and thus we extend
c.a.0.

↑a.P ≡ (c.P |[[c.〈0, a.0〉1]]θd
) \ {c} (Asynchronous Sending)

θd(t)
def
=

{
0 if t = 0
θd(t − 1) + δd if t > 0

where δd ∈ { d | dmin ≤ d ≤ dmax}

where dmin and dmax correspond to the minimum and maximal delay of the trans-
mission, respectively. The multiple results of θd(1) allows us to model uncertain
delay time within a given bound (dmin ≤ d ≤ dmax).

(3) We extend the server object of Example 3.11 with asynchronous communication.

Server
def
= ↓req .〈0, ↑ret .Server〉5

We derive an expansion of Server as follows:

[[Server]]θs
≡ req .〈0, (c.[[Server]]θs

|c.〈0, ret .0〉θd(1)) \ {c}〉θs(5)
req−→ 〈0, (c.[[Server]]θs

|c.〈0, ret .0〉θd(1)) \ {c}〉θs(5)

(
√

−→)θs(5) (c.[[Server]]θs
|c.〈0, ret .0〉θd(1)) \ {c}

τ−→ ([[Server]]θs
|〈0, ret .0〉θd(1)) \ {c}

req−→ · · ·

where θs were already defined in Example 3.11.

The server can receive the next req message while ret is being transmitted, and
thus not yet received. ut

4 Bisimulation Based on Local Time

This section defines two timed bisimulations. In the earlier paper [21], the author
provided temporally strict equivalences in which timed equivalent objects must com-
pletely match their time properties as well as their functional behaviors. However, the
temporal properties of any two distributed objects may not completely match one an-
other because local processors may not compute at exactly the same speed and local
clocks may not run at the same rate. It is natural and practical that two objects on

different processors can be treated as equivalent only if their behaviors are completely
matched and differences in their timings are within a given bound. Therefore, we
develop such equivalences by extending the notion of bisimulation [19, 14] and study
some theoretical properties of them. Hereafter we will only deal with expressions with
no occurrences of free5 process variables.

Definition 4.1 Optimistically Timed Bisimulation
A binary relation Rθ is a optimistically timed bisimulation on clock θ (θ : T` → TG) if
(P, Q) ∈ Rθ implies, for all α ∈ Act ,

(i) ∀m ∈ TG, ∀P ′: P (
√

−→)m α−→ P ′ ⊃ ∃n ∈ TG, ∃Q′: Q(
√

−→)n α−→ Q′

∧ {θ−1(m)} ∩ {θ−1(n)} 6= ∅ ∧ (P ′, Q′) ∈ Rθ.

(ii) ∀n ∈ TG, ∀Q′: Q(
√

−→)n α−→ Q′ ⊃ ∃m ∈ TG, ∃P ′: P (
√

−→)m α−→ P ′

∧ {θ−1(m)} ∩ {θ−1(n)} 6= ∅ ∧ (P ′, Q′) ∈ Rθ.

We let “∼θ” denote the largest optimistically timed bisimulation, and call P and Q

optimistically timed bisimilar if P ∼θ Q. Also if θ(t)
def
= t, we let ∼ denote ∼θ. ut

Let us describe the informal meaning of ∼θ. If P ∼θ Q, an observer following clock
θ cannot distinguish between the behavioral contents and the timings of P and Q.
Especially, when the running rate of the clock drifts, there may be measurement errors
due to the drift. The observer leaves these errors out of consideration. Therefore, ∼θ
optimistically equates the temporal properties of two objects.

Proposition 4.2 ∀S1, S2 ∈ S, S1 ∼ S2 iff [[S1]]θ ∼θ [[S2]]θ ut

This proposition shows a relationship between the optimistically timed bisimilarity
and the clock translation rules.

Next we define the pessimistic counterpart of ∼θ.

Definition 4.3 Pessimistically Timed Bisimulation
A binary relation Rθ is a pessimistically timed bisimulation on clock θ (θ : T` → TG

and ∀t ∈ T` : max{θ(t)} ≤ min{θ(t + 1)}) if (P, Q) ∈ Rθ implies, for all α ∈ Act ,

(i) ∀m ∈ TG, ∀i ∈ {θ−1(m)}, ∀P ′: P (
√

−→)m α−→ P ′ ⊃ ∃n ∈ TG, ∃Q′: Q

(
√

−→)n α−→ Q′ ∧ max{θ(i)} ≤ n < min{θ(i + 1)} ∧ (P ′, Q′) ∈ Rθ.

(ii) ∀n ∈ TG, ∀j ∈ {θ−1(n)}, ∀Q′: Q(
√

−→)n α−→ Q′ ⊃ ∃m ∈ TG, ∃P ′: P

(
√

−→)m α−→ P ′ ∧ max{θ(j)} ≤ m < min{θ(j + 1)} ∧ (P ′, Q′) ∈ Rθ.

We let “'θ” denote the largest pessimistically timed bisimulation, and call P and Q

pessimistically timed bisimilar if P 'θ Q. Also if θ(t)
def
= t, we let ' denote 'θ. ut

5An occurrence of a variable X in an expression P ∈ P is called bounded if it occurs in a
subexpression of the form recX : P ′. Otherwise it is called free.

We show the informal meaning of 'θ. If P and Q are pessimistically timed bisimilar
on θ, an observer according to clock θ cannot distinguish between their behavioral
contents and between their timings. When θ is a variable clock, there may be mea-
surement errors due to the drift of θ. The observer in 'θ takes these errors into con-
sideration and equates only objects whose temporal and behavioral properties cannot
constantly be distinguished by the observer, regardless of whether the errors affect
the measurement result of θ or not. Hence, 'θ pessimistically equates the temporal
properties of two objects.

Since 'θ is a particular instance of ∼θ, we have the following relationship between
∼θ and 'θ

Proposition 4.4 ∀P1, P2 ∈ P, If P1 'θ P2, then P1 ∼θ P2. ut

The above proposition shows that 'θ is more strict than ∼θ. Another interesting
fact is that ∼θ coincides with 'θ if clock θ is a constant clock.

We show some useful relations for proving substitutability between two distributed
objects.

Proposition 4.5 ∀P1, P2 ∈ P : P1 ∼θ P2, ∀Q ∈ P such that Q ∈ P contains no
timeout operator.

(1) α.P1 ∼θ α.P2 (2) P1 + Q ∼θ P2 + Q
(3) P1 \ L ∼θ P2 \ L (4) P1[f] ∼θ P2[f]
(5) P1|Q ∼θ P2|Q

where the same results holds for 'θ. ut

Since distributed object-oriented computing is based on interaction among objects
executing concurrently, the following substitutability for parallel composition provides
a method to verify interactions among distributed objects.

Proposition 4.6 ∀P1, P2 ∈ P, ∀S ∈ S, If P1 'θ P2, then P1|[[S]]θ ∼θ P2|[[S]]θ ut

This proposition shows that if an object according a clock θ interacts with one of two
objects which cannot be distinguished by an observer following the same clock θ, the
object itself cannot notice any difference in its interactions with either object.

Preorder on Clocks

It is well known that any actual clocks are different in their measurement unit and
precision. Based on such unit and precision, we here formulate some order relations
over local clocks and further study interesting relationships between the preorders and
the timed bisimulations.

We define order relations over clock functions.

Definition 4.7 Let T1, T2, T` be local time domains,

(i) Granularity Preorder Let θ1 : T1 → TG and θ2 : T2 → TG.
If ∀t2 ∈ T2, ∃t1 ∈ T1 : {θ1(t1)} = {θ2(t2)}, then θ1 is finer than θ2, written
as θ1 ≤ θ2.

(ii) Precision Preorder Let θ1 : T` → TG, and θ2 : T` → TG.
If ∀t` ∈ T` : {θ1(t`)} ⊆ {θ2(t`)}, then θ1 is more precise than θ2, written as
θ1 v θ2.

ut
Intuitively, θ1 ≤ θ2 means that one time unit of θ2 corresponds to more than one time
unit of θ1. θ1 v θ2 means that θ2 is less accurate than θ1.

Proposition 4.8 ≤ and v are preorder relations. ut

We here show relationships between ≤ and timed bisimilarities.

Proposition 4.9 ∀P1, P2 ∈ P, θ1 ≤ θ2, then

(1) If P1 ∼θ1
P2, then P1 ∼θ2

P2

(2) If P1 'θ1
P2, then P1 'θ2

P2 ut

Intuitively, this property will be exemplified by the following example: if two objects
cannot be distinguished by an observer following an accurate clock whose time unit is
one second, then they cannot be distinguished by another observer having an accurate
clock with the unit of one minute.

Below we present relationships between v and timed bisimilarities.

Proposition 4.10 ∀P1, P2 ∈ P, θ1 v θ2, then

(1) If P1 ∼θ1
P2, then P1 ∼θ2

P2

(2) If P1 'θ2
P2, then P1 'θ1

P2 ut
From Proposition 4.9 and 4.10, we assume θ1 ≤ θ2 and θ2 v θ3, then for any P and
Q, if P1 ∼θ1

P2 then P1 ∼θ3
P2.

The strictness of ∼θ (and 'θ) depends on clock θ. The orders of clocks are available
in specifications with respect to different time scales and precisions.

Example 4.11 We suppose two clocks θ±5% and θ±10% whose worst measurement
errors are ±5% and ±10% respectively.

θ±5%(t)
def
=

{
0 if t = 0
θ±5%(t − 1) + δ±5% if t > 0

δ±5% ∈ {95, ..100, ..105}

θ±10%(t)
def
=

{
0 if t = 0
θ±10%(t − 1) + δ±10% if t > 0

δ±10% ∈ {90, ..100, ..110}

Immediately we have θ±5% v θ±10%. Also, from Proposition 4.10, ∼θ±5%
is more strict

than ∼θ±10%
. We have for any P1 and P2, if P1 ∼θ±5%

P2, then P1 ∼θ±10%
P2. Clearly

the converse is not true. ut

Examples on Verification of Distributed Objects

For the remainder of this section we will present some examples of verification of
distributed objects by using the timed bisimilarities. We first illustrate how to equate
two objects whose temporal properties are different.

Example 4.12 Verification for Real-Time Objects
We consider two server objects as given below. The informal exposition of the objects
has already been described in Example 3.11.

ServerA
def
= req .〈0, ret .ServerA〉8

ServerB
def
= req .〈0, ret .ServerB〉9

We assume a constant clock θ(t)
def
= 6t. An observer according to θ cannot distinguish

between temporal properties of the objects, i.e. their execution times of 8 and 9 time
units, because of 1 ∈ {θ−1(8)} and 1 ∈ {θ−1(9)}. Hence, ∼θ can equate them even if
their temporal properties are different.

ServerA ∼θ ServerB c.f. ServerA 6∼ ServerB

This holds on 'θ as well as ∼θ. ut

• ∼θ (and 'θ) provides a useful method to verify real-time objects with non-
strict time constraints. For example, let ServerA be a specification of the
server object and ServerB be an implementation of the object. The above result
shows that the implementation completely satisfies the behavioral requirements
in the specification, and that the temporal differences between them is within
a permissible bound specified in terms of θ.

• Let us suppose a clock θ′ such that θ ≤ θ′. By Proposition 4.9 we can easily

prove ServerA ∼θ′ ServerB. For example, let θ̂(t)
def
= 12t then θ≤ θ̂. Hence, we

have ServerA ∼
θ̂

ServerB.

Next we show an example to illustrate how to equate distributed objects following
different clocks.

Example 4.13 Verification for Distributed Objects with Inaccurate Clocks
Let the client object be as follows:

Client
def
= req .〈ret .0,Client〉2

We assume that the program is allocated on two processors with local clocks, θ1 and
θ2, whose time unit may vary from 9 to 11 and from 10 to 12, respectively.

θ1(t)
def
=

{
0 if t = 0
θ1(t − 1) + δ1 if t > 0

θ2(t)
def
=

{
0 if t = 0
θ2(t − 1) + δ2 if t > 0

where δ1 ∈ {9, 10, 11} where δ2 ∈ {10, 11, 12}

An observer according to the following variable clock θ′(t) equates these objects.

θ′(t)
def
=

{
0 if t = 0
θ′(t − 1) + δ′ if t > 0

where δ′ ∈ {14, 15, 16}

[[Client]]θ1
∼θ′ [[Client]]θ2

c.f. [[Client]]θ1
6∼ [[Client]]θ2

This result shows that ∼θ and 'θ can equate two distributed objects even if the units
and precisions of their clocks are different. ut

We illustrate how to verify whether distributed objects can be substituted for each
other.

Example 4.14 Substitutability between Distributed Objects
Recall the two clients [[Client]]θ1

and [[Client]]θ2
, and clock θ′ already presented in

Example 4.13. We have:

[[Client]]θ1
'θ′ [[Client]]θ2

We suppose a server object being executed by a processor having the clock θ′. From
Proposition 4.6, we have:

Server
def
= req .〈0, ret .Server〉1

[[Client]]θ1
|[[Server]]θ′ ∼θ′ [[Client]]θ2

|[[Server]]θ′

Two pessimistically timed bisimilar objects on θ can be substitutable for each other
as long as they interact with any objects on the local clock θ. Therefore ∼θ and 'θ
provide a method to verify reusability and substitutability for distributed objects. ut

5 Conclusion

In this paper we have seen a way to formulate local time properties in distributed
computing, along with developing a formalism based on a minor temporal extension
of CCS [14]. The extension is based on the notion of local time and thus allows us to
model various local time aspects in distributed computing, such as inaccurate clocks
on local processors and timeout handling. The formalism provides a theoretical frame-
work to describe and analyze both temporal and behavioral properties of distributed
objects with temporal uncertainties and interactions among them.

Based on the notion of bisimulation [14, 19], we defined bisimulations with respect
to local time. These bisimulations can equate two objects whose functional behaviors
completely match and whose timings are different within a given bound. The bisimu-
lations are appropriate and useful to verify distributed objects and real-time objects
with non-strict time constraints.

Finally, we would like to point out some further issues. The formalism is based
on synchronous communication but in many distributed systems asynchronous com-
munication may seem more appropriate. We plan to develop a calculus based on

asynchronous communication. Particularly, we believe that the study of time proper-
ties for asynchronous communications will provide us with concepts for programming
languages for distributed systems6. We are interested in investigating timed bisimula-
tion based on observation concept which can ignore internal behavior, i.e. τ -transition.
Besides, the extension for representing local time presented in this paper is essentially
independent of DtCCS. We are interested in whether the extension can be applied to
other timed formalisms based on global time, such as other timed calculi, real-time
temporal logic, and timed Petri nets.

Acknowledgements

We would like to thank an anonymous referee for providing many constructive and
valuable suggestions. We also thank Professor S. Matsuoka, and R. Pareschi for
significant suggestions. We are grateful to K. Takashio for stimulating comments and
discussions. We heartily thank V. Vasconcelos for very insightful comments on an
earlier version of this paper.

References
[1] Black, A., Hutchinson, N., July, E., and Levy, H., Object Structure in the Emerald

System, Proceedings of ACM OOPSLA’86, November, p78-86, 1986.

[2] Boudol, G., Castellani, I., Hennessy, M., and Kiehn, A., A Theory of Processes with
Localities, Proceedings of CONCUR’92, LNCS 630, p108-122, August, 1992.

[3] Castellani, H., and Hennessy, M., Distributed Bisimulation, Journal of ACM, Vol.36,
No.4, p887-911, 1989.

[4] Corsetti, E., Montanari, A., and Ratto, E., Dealing with Different Granularities in
Formal Specifications of Real-Time Systems, Real-Time Systems, Vol.3, No.2, May,
1991.

[5] Hansson, H., and Jonsson, B., A Calculus of Communicating Systems with Time and
Probabilities, Proceedings of 11th IEEE Real-Time Systems Symposium, p278-287,
December, 1990.

[6] Hennessy, M., On Timed Process Algebra: a Tutorial, Technical Report 2/93, University
of Sussex, 1993

[7] Hobbs, J. R., Granularity, Proceedings of 9th International Joint Conference Artificial
Intelligence, August, 1985.

[8] Honda, K., and Tokoro, M., An Object Calculus for Asynchronous Communication,
Proceedings of ECOOP’91, LNCS 512, p133-147, June, 1991.

[9] Jefferson, D. R., Virtual Time, ACM TOPLAS, Vol.7, No.3, 1985.

[10] Kopetz, H., Clock Synchronization in Distributed Real-Time Systems, IEEE Transac-
tions on Computers, Vol.36, No.8, p933-940, August, 1987.

[11] Krishnan, P., Distributed CCS, Proceedings of CONCUR’91, LNCS 527, p393-407,
August, 1991.

[12] Lamport, L., Time, Clocks, and the Ordering of Events in a Distributed System Com-
munication of the ACM, Vol.21, No.7, p558-565, July, 1978,

6The reader may refer to the authors’ preliminary work in this context, e.g. [23].

[13] Lundelius, J., and Lynch, N., An Upper and Lower Bound for Clock Synchronization,
Information and Control, Vol.62, p190-204, 1984.

[14] Milner, R., Communication and Concurrency, Prentice Hall, 1989.
[15] Moller, F., and Tofts, C., A Temporal Calculus of Communicating Systems, Proceedings

of CONCUR’90, LNCS 458, p401-415, August, 1990.
[16] Montanari, A., Ratto, E., Corsetti, E., and Morzeniti, A., Embedding Time Granu-

larity in Logical Specification of Real-Time Systems, Proceedings of EUROMICOR’91,
Workshop on Real-Time Systems, p88-97, June, 1991.

[17] Nicollin, X., and Sifakis, J., The Algebra of Timed Process ATP: Theory and Applica-
tions, IMAG Technical Report, RT-C26, 1990.

[18] Nierstrasz, O. M., and Papathomas, M., Viewing Objects as Patterns of Communicating
Agents, Proceedings of ECOOP/OOPSLA’90, October, p38-43, 1990.

[19] Park, D., Concurrency and Automata on Infinite Sequences, Proceedings of Theoretical
Computer Science, LNCS 104, p167-187, 1981.

[20] Plotkin, G. D, A Structural Approach to Operational Semantics, Technical Report,
Department of Computer Science, Arhus University, 1981.

[21] Satoh, I., and Tokoro, M., A Formalism for Real-Time Concurrent Object-Oriented
Computing, Proceedings of ACM OOPSLA’92, p315-326, October, 1992.

[22] Takashio, K., and Tokoro, M., DROL: An Object-Oriented Programming Language for
Distributed Real-time Systems, Proceedings of ACM OOPSLA’92, October, 1992.

[23] Tokoro, M., and Satoh, I., Asynchrony and Real-Time in Distributed Systems,
US/Japan Seminar on Parallel Symbolic Computing, October, 1992.

[24] Yi, W., CCS + Time = an Interleaving Model for Real Time Systems, Proceedings of
Automata, Languages and Programming’91, LNCS 510, p217-228, 1991.

[25] Yonezawa, A., and Tokoro, M., editors, Object-Oriented Concurrent Programming, MIT
Press, 1987.

