
Time and Asynchrony in Interactions
among Distributed Real-Time Objects?

Ichiro Satoh?? and Mario Tokoro???

Department of Computer Science, Keio University
3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

Abstract. This paper presents a framework of specification and verifi-
cation for distributed real-time object-oriented systems. An earlier paper
[17] introduced a process calculus to describe distributed objects using
local clocks. However, it is appropriately based on synchronous com-
munication and thus cannot sufficiently model asynchronous communi-
cation in distributed systems. In this paper we propose a new process
calculus with the ability to express asynchronous message passing, com-
munication delay, and delayed processing. It can describe temporal and
behavioral properties of distributed real-time objects. Based on the new
calculus, we develop a verification method by means of algebraic order
relations. The relations are speed-sensitive and can decide whether two
distributed real-time objects are behaviorally equivalent and whether
one of them can perform its behaviors faster than the other. They offer
a suitable method to prove the correctness and the reusability of real-
time objects in asynchronous communication settings. Some examples
are shown to demonstrate utilities of the calculus and the relations.

1 Introduction

The notion of concurrent object-oriented computation [21] provides a powerful
method to design and develop distributed systems. This is because objects are
logically self-contained active entities interacting with one another through mes-
sage passing; whereas in distributed systems, processors cooperate by sending
messages over communication networks. However, these networks have commu-
nication delays, a function of geographic distance, communication bandwidth,
and communication protocol overhead. The delay is often non-deterministic and
seriously affects the arrival timings of messages. Also, for efficiency reasons, com-
munication among remote processors is asynchronous instead of synchronous, al-
though asynchronous communication has more unpleasant non-deterministic as-
pects. This is because in synchronous communication the sender must be blocked
for at least the round-trip time of the message, including communication delay.
? Part of this work has been done while the first author was visiting Rank Xerox

Research Centre, Grenoble Laboratory, France.
?? Email: satoh@mt.cs.keio.ac.jp, Partially supported by JSPS Fellowships for Japanese

Junior Scientists.
??? Email: mario@mt.cs.keio.ac.jp, Also with Sony Computer Science Laboratory Inc.

3-14-13 Higashi-Gotanda, Shinagawa-ku, Tokyo, 141, Japan.

Therefore, delay and asynchrony in communication create serious difficulties
in the design and development of distributed systems, even if these systems
are based on the object-orientation concept. To construct correct programs for
distributed real-time systems, we need to analyze the influences of delay and
asynchrony on the behavioral and temporal properties of the systems. In this
paper we address this problem and propose a framework of specification and
verification for distributed real-time object-oriented systems with these features.

The framework consists of two parts: a description language and a verifi-
cation method for distributed real-time object-oriented systems. The language
is formulated as a process calculus [2, 11, 12], because the powerful expressive
capability of process calculi allows many features of concurrent objects to be
naturally modeled [10, 15]. For example, objects can be viewed as processes;
interactions among objects can be seen as communications; and encapsulation
can be modeled by the restriction of visible communications. However, ordinary
process calculi are based on synchronous communication and lack the notion of
time. Therefore, in this paper we develop a new timed extended calculus, called
TACS (Timed calculus for Asynchronously Communicating Systems), with the
ability to express communication delay, asynchronous message passing, and de-
layed processing. It allows us to describe temporal and behavioral properties
of remotely located real-time objects and their asynchronous interactions with
communication delay. In earlier papers [16, 17] the authors introduced timed ex-
tended process calculi, called RtCCS and DtCCS, for real-time concurrent and
distributed object-oriented computing. Unfortunately, these calculi are based on
synchronous communication and thus cannot provide any general framework for
asynchronous interactions among distributed objects.

On the other hand, our verification method is formulated on the basis of
algebraic relations over objects described in the language. In asynchronous com-
munication settings, a sender object needs only to deliver messages given in its
behavioral specification to its receiver objects at earlier timings than those spec-
ified in its temporal specification. It is very convenient to provide a verification
method which decides if two objects can send and receive the same messages and
if one of them (e.g., an implementation of an object) can perform faster than
the another (e.g., the specification of the object). Also, we have many occasions
to replace an older object (a slower object) in a system with a new, faster ob-
ject. In such a reconstruction, we need to guarantee that the older object can
really be replaced by the first object without altering the behavioral properties
or lowering the performance characteristics of the whole system. Therefore, we
define algebraic order relations which distinguish between behaviorally equiva-
lent objects performing at different speeds. The relations allow us not only to
compare two distributed real-time objects with respect to their performances
but also to prove that a faster object can behaviorally replace a slower object
and that, when embedding the faster object, the new system can really perform
faster than the old one.

Organization of this paper: In the next section we briefly present our basic

ideas concerning the process calculus and then define its syntax and semantics.
In Section 3 we define two timed pre-bisimulations that can relate two processes
according to their speeds. In Section 4 we briefly survey some related work, and
the final section contains some concluding remarks.

2 Language

The language called TACS, on which our verification framework is based, is for-
mulated as a process calculus [2, 11, 12]. It has the ability to express most fea-
tures of distributed real-time object-oriented computing: communication delay,
asynchronous message passing, and delayed processing. Its syntax and semantics
are essentially similar to those of CCS [11], except for the extensions.4

Basic Framework

Before formally defining TACS, we summarize its basic idea.

Non-blocking Message Send:
In distributed systems, communication between remotely located objects is often
realized by means of one-way asynchronous message passing. However, most of
process calculi are essentially based on synchronous communication, and thus we
need to introduce the ability to express non-blocking message send.5 We adapt
an approach to express an asynchronous message by creating a process that does
not do anything except for being received by an input port for the message. This
is similar to the methods developed in several existing work [3, 10].

The Passage of Time and Delaying Processing:
We assume that time is discrete and that the passage of time in every processor
elapses at the same rate.6 The passage of one time unit is represented as a
transition that proceeds synchronously in all objects, written as transition ;.
Also, most distributed real-time systems have behaviors that depend on the
passage of time. We introduce an operation that explicitly suspends its execution
for a specified period. It is written as 〈t〉. For example, 〈t〉.S is idle for t time
units and then behaves as S.

4 In this paper, for focusing temporal aspects in distributed real-time systems, we avoid
to introduce the expressive capability for a distributed system where topological
connections between objects can change dynamically; but our calculus can easily
model such a system by incorporating with the port-passing mechanism developed
in [12].

5 In our framework, we assume that the order of message arrival is indeterminate.
6 By using the method developed in [17], we can easily introduce the ability to express

multiple and inaccurate clocks.

Location-dependent Communication Delay:
Communication delay for a message is defined as the difference between the
time at which an object is ready to send the message and the time at which the
message reaches its destination object. The length of communication delay is
often dependent on the distance between the locations of the sender and receiver
objects. Therefore, we introduce the concept of object (or process) location as
developed in [5] and then represent communication delay as a pair consisting of
the sender location and the receiver location.7 Each object has its location name
and can receive only the messages that can arrive at the location. For example,
we write object S at location ` which sends message a to an object at location
`′ as `′↑a.S : `.

Syntax

We first define several notations that we will use hereafter.

Definition 2.1

• Let M be an infinite multi-set of message names, ranged over by a,b,. . ..
• Let Loc be an infinite set of location names, ranged over by `,`1,`2,. . ..
• Let T be the infinite set of the positive natural numbers including 0.
• Let D ⊆ Loc × Loc → 2T be a set of multivalued functions, called commu-

nication delay functions, ranged over by delay , ut
In our framework, we describe distributed real-time objects by means of the
expressions defined below. In order to clarify our exposition, we divide the ex-
pressions into two groups: expressions for describing local objects and expressions
for describing located objects.

Definition 2.2 The set S of local object expressions, ranged over by S, S1, S2, . . .
is the smallest set containing the following expressions:

S ::= `↑a.S (Asynchronous Message Send)
|

∑
i∈I ↓ai.Si (Selective Message Receive)

| 〈t〉 . S (Delaying Processing)
| S |S (Parallel Execution)
| S \ N (Message Encapsulation)
| A

def= S (Recursive Definition)

The set P of located object expressions, ranged over by P,P1, P2, . . . is the
smallest set containing the following expressions:

P ::= S :` (Located Object)
| P |P (Parallel Execution)
| P \ N (Message Encapsulation)

7 The concept in this paper is used only for expressing communication dependent on
locations; we do not intend to investigate the concept itself.

where N is a subset of M, I is a finite index set {1, 2, . . . , n}, t is an element
of T , and A is an element of a constant object expression. We assume that in
A

def= S if S contains A, A occurs only within subexpressions in S of the form∑
i∈I ↓ ai.S

′
i or 〈t〉 . S′ (t > 0) in S. We also assume that ai is not an empty

name in
∑

i∈I ↓ ai.S
′
i. We write 0 for an empty summation (i.e.,

∑
i∈∅ ↓ ai.Si)

and abbreviate `↑a.0 to `↑a, and ε↑a.0 to ↑a.0, where ε is an empty location
name. We often use the more readable notation ↓ a1.S1 + · · ·+ ↓ an.Sn instead
of

∑
i∈{1,...,n} ↓ai.Si and write A :` def= S :` if A

def= S. ut

The intuitive meaning of constructors in S (P) is as follows:

• `′ ↑ a.S : sends sends message a to a object at location `′, and continues to
execute S without blocking.

•
∑

i∈I ↓ai.Si behaves as Si if it receives message ai. 0 represents a terminated
or deadlocked object.

• 〈t〉.S is idle for t time units and then behaves like S.
• S1 |S2 allows S1 and S2 to execute in parallel at location `.
• S \ N encapsulates all messages in set N .

• A
def= S says that A is defined as S. S is allowed to include A.

• S :` is an object located at `.
• P1 |P2 allows S1 and S2 to execute in parallel at location `.

We define a function to extract the name of an object location from P expres-
sions.

Definition 2.3 The function |·|Loc : P → 2Loc, which presents the location
names of objects, is defined as follows:

|S :`|Loc = {`}, |P1|P2|Loc = |P2|Loc ∪ |P2|Loc, |P \ N |Loc = |P |Loc ut

Semantics

The operational semantics of TACS is given by two kinds of state transition
relations: →⊆ P×P (called behavioral transition) and ;⊆ P×P (called temporal
transition). Throughout this paper we will use a structural equivalence (≡) over
expressions. This is the method followed by Milner in [12] to deal with the π-
calculus. The use of a structural equivalence provides a basic equivalence between
objects and allows us to concentrate on the investigation of inequalities between
objects in the following section.

Definition 2.4 ≡ is the least syntactic equivalence defined by the following
equations:

P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3 P | 0 :` ≡ P
(S1 | S1) : ` ≡ S1 : ` | S1 : ` 0 :` \ N ≡ 0 :` S \ N :` ≡ S : ` \ N

P \N1\N2 ≡ P \N2\N1 (P | `′↑a.0 :`)\N ≡ P \N | `′↑a.0 :` where a 6∈ N
〈0〉.S :` ≡ S :`

We now present the operational semantics of our language.

Definition 2.5 Behavioral transition →⊆ P × P (written P → P ′) is the
least binary relation given by the following axioms and rules.

`′↑a . S :` → S :` | 〈t〉 . ε↑a.0 :`′ (t ∈ delay(`, `′) and `′ is not ε)
∑

i∈I ↓ai.Si :` | ε↑ai.0 :` → Si :` | 0 :`

P1 → P1
′

P1 | P2 → P1
′ | P2

P → P ′

P \ N → P ′ \ N

S :` → S′ :`

A :` → S′ :`
(A def= S) P1 ≡ P1

′, P1 → P2, P2 ≡ P2
′

P1
′ → P2

′

where delay ∈ D. We often write (≡)∗ → (≡)∗ as → when not ambiguity. ut

Definition 2.6 Temporal transition ;⊆ P × P (written P ; P) is the least
binary relation defined by the following axioms and rules.

〈t〉 . S :` ; 〈t − 1〉 . S :` (t > 0) ε↑a .0 :` ; ε↑a .0 :`
∑

i∈I ↓ai . Si :` ;
∑

i∈I ↓ai . Si :`

P1 ; P1
′, P2 ; P2

′, P1 | P2 6→
P1 | P2 ; P1

′ | P2
′

P ; P ′

P \ N ; P ′ \ N

S :` ; S′ :`

A :` ; S′ :`
(A def= S) P1 ≡ P1

′, P1 ; P2, P2 ≡ P2
′

P1
′

; P2
′

where we often write (≡)∗ ; (≡)∗ as ; when not ambiguity. ut

Remarks on the above transition rules:

• The first axiom of Definition 2.5 shows that a non-blocking message send,
`′↑a.S :`, is translated into two parallel processes: 〈t〉.ε↑a.0 :`′ and S :`. The
former corresponds to the asynchronous message. Before it can be received
by an object at location `′, it is suspended for the amount of communica-
tion delay from ` to `′, written as delay(`, `′). If communication delay is
indeterminate, the suspension time is a time value among all the possible
communication delays. The latter corresponds to the subsequent computa-
tion. Note that it can continue to execute without any blocking.

• The second axiom of Definition 2.5 defines the semantics of message recep-
tion. A message can be consumed only by a receiver having a corresponding
input port at the same location as the message’s destination location.

• Our semantics forces message sending and receiving to be performed as soon
as they are executable, without unnecessary delay. This pre-emptiveness al-
lows us to estimate the necessary execution time of interactions among dis-
tributed objects and express several important timed operations, including
timeout handling.8

In the following section we introduce two order relations with the notion of re-
mote observation, using conceptual observers residing at specified locations and
making comparisons between two remote objects (or object groups) by means
of sending arbitrary messages to the objects and receiving messages from these.
The observers can know only the length of the passage of time and the messages
which can arrive at their own locations. They cannot observe any encapsulated
computation nor any message passing at the locations except their own loca-
tions. The formal representation of the notion is given as labels for behavioral
transitions like the weak transitions presented in [11].9 We define the labeled
transitions as follows:

Definition 2.7 Let a range over M, t range over T , and `, `′ range over L.
The labeled translations are denoted as follows:

• P
〈t〉↑a−→→` P ′ is defined as P →∗ 〈t〉ε↑a.0 :` | P ′

• P
〈t〉`′↓a−→→ ` P ′ is defined as 〈t〉`′↑a.0 :` | P →∗ P ′

• P ;→t P ′ is defined as P →∗ ;→∗ · · · →∗ ;→∗
︸ ︷︷ ︸

t times

P ′

where P →∗ P ′ is given as P → · · · → P ′. ut

The above labeled transitions have the following intuitive meaning: P
〈d〉↑a−→→` P ′

means that P behaves as P ′ and an observer located at ` receives message a

from P after d time units; P
〈d〉`′↓a−→→ ` P ′ means that an observer located at `

sends message a to an object at location `′ after d time units and P behaves as
P ′. Object P may receive the message if it is located at `′; P ;→t P ′ means that
P becomes P ′ after t time units and arbitrary times of internal computations.

The following example illustrates how to describe distributed real-time ob-
jects in TACS.

Example 2.8 We describe a simple communication protocol for an unreliable
communication network. The protocol consists of a sender object at location `S

and a receiver object at location `R. The sender sends a message to the receiver
(`R ↑ send) and waits for an acknowledgment (↓ ack). If it cannot receive the
acknowledgment within eight time units, it retransmits the message. The receiver
receives the message (↓ send) and then returns an acknowledgment (`S ↑ ack).
These objects are described as follows:
8 We leave details of a non pre-emptive version of this calculus to another paper [19].
9 We can formalize the relations without using labels for transitions. However, the use

of labeled transitions allows us to present and prove some properties of the relations
more simply.

Sender :`S
def= (`R↑send . (↓ack.0+ ↓ timeout .Sender) |

〈8〉 . `S↑ timeout .0) \ {timeout} :`S

Receiver :`R
def= ↓send . `S↑ack .0 :`R

We assume that communication from `S to `R takes 3±1 time units and may oc-
casionally fail, and one from `R to `S takes 2±1 time units and may occasionally
fail.

delay(`S , `R) = {2, 3, 4} ∪ {∞}
delay(`R, `S) = {1, 2, 3} ∪ {∞}
delay(`S , `S) = {0}

where ∞ corresponds to a communication failure. By expanding (Sender : `S

| Receiver : `R) \ {send , ack} in the above transition, we can strictly analyze
both the behavioral properties and the temporal properties of the entire system,
including the influence of non-determinacy in communication delay.

For lack of space, when delay(`S , `R) is three time units and delay(`R, `S) is
two time units, we demonstrate interactions between them as follows:

(Sender :`S |Receiver :`R) \ {send , ack}
→ (〈3〉 . ε↑send .0 :`R | ((↓ack .0+ ↓ timeout . Sender) :`S |

〈8〉 . `S↑ timeout .0 :`S) \ {timeout} | ↓send . `S↑ack .0 :`R) \ {send , ack}
;3 (ε↑send .0 :`R | ((↓ack .0+ ↓ timeout . Sender) :`S |

〈5〉 . `S↑ timeout .0 :`S) \ {timeout} | ↓send . `S↑ack .0 :`R) \ {send , ack}
→ (((↓ack .0+ ↓ timeout .Sender) :`S |

〈5〉 . `S↑ timeout .0 :`S) \ {timeout} | `S↑ack .0 :`R) \ {send , ack}
→ (((↓ack .0+ ↓ timeout .Sender) :`S |

〈5〉 . `S↑ timeout .0 :`S) \ {timeout} | 〈2〉 . ε↑ack .0 :`S |0 :`R) \ {send , ack}
;2 (((↓ack .0+ ↓ timeout .Sender) :`S |

〈3〉 . `S↑ timeout .0 :`S) \ {timeout} | ε↑ack .0 :`S) \ {send , ack}
→ (0 :`S |0 :`R) (successful)

3 Verification for Distributed Real-Time Objects

This section presents two algebraic order relations on distributed real-time ob-
jects with respect to speed. In the last few years, many timed equivalence rela-
tions for synchronously communicating processes (or objects) have already been
explored in timed extended process calculi (for example see [13, 14, 16]). These
relations equate two processes only when their temporal and behavioral proper-
ties completely match. The temporal strictness of these relations is appropriate in
verifying synchronously communicating real-time objects. This is because every
sender object must synchronize its receiver one in synchronous communication
settings Therefore, even if a sender object can send messages earlier than its

temporal specification, the object may not send them at earlier timings, where
its receiver object is as fast as the specification.

On the other hand, in asynchronous communication settings, sender objects
do not have to synchronize their receiver objects and thus can send messages
as soon as they can. Therefore, in the settings real-time objects do not need
to completely match their own temporal specification, and need only to deliver
messages to their receiver objects at earlier timings than those given in their
specification.10 This reveals that in the verification of asynchronous communi-
cating real-time objects, “speed-sensitive” order relations are more suitable and
practical than the above timed equivalences. In this section, we investigate alge-
braic order relations that decide whether two real-time objects are behaviorally
equivalent and whether one of them can perform faster than the another.

Relating Objects with Respect to Speed

Before defining the relations, we first illustrate the basic idea behind them.
Suppose two simple objects: A1

def= 〈1〉 . `↑a.S :`A and A2
def= 〈3〉 . `↑a.S :`A, where

` is a conceptual observer’s location. A1 can send message a to the observer after
one time unit, and A2 can send the same message after three time units. That is,
A1 can send the message sooner than A2. Therefore, we would consider object A1

to be faster than object A2. Now we define such a speed-sensitive order relation
based on the notion of the observation bisimulation [11].

Definition 3.1 A binary relation R ⊆ (P × P) × T × 2Loc is a t-speed pre-
bisimulation on L if (P1, P2) ∈ RL

t (t ∈ T and L ⊆ Loc) implies, for all a, b ∈
M∪ {ε}, `, `′ ∈ L, and d ∈ T ;

(i) ∀`1, ∀m1, ∀P1
′ : P1

〈d〉`1↓a−→→ ` ;→m1
↑b−→→`′ P1

′ then

∃`2, ∃m2, ∃P2
′ : P2

〈d〉`2↓a−→→ ` ;→m2
↑b−→→`′ P2

′ and (P1
′, P2

′) ∈ RL
t−m1+m2

(ii) ∀`2, ∀m2, ∀P2
′ : P2

〈d〉`2↓a−→→ ` ;→m2
↑b−→→`′ P2

′ then

∃`1, ∃m1, ∃P1
′ : P1

〈d〉`1↓a−→→ ` ;→m1
↑b−→→`′ P1

′ and (P1
′, P2

′) ∈ RL
t−m1+m2

where `1 ∈ |P1|Loc, `2 ∈ |P2|Loc. We let P1 �L
t P2 if there exists a t-speed pre-

bisimulation such that (P1, P2) ∈ RL
t . We call �L

t speed order on L. We shall
often abbreviate �L

0 as �L. ut

In the above definition, RL
t is a family of relations indexed by a non-negative time

value t. Intuitively, t is the relative difference between the time of P1 and that of
P2; that is, it means that P1 precedes P2 by t time units.11 �L

t starts with a pre-
bisimulation indexed by t (i.e., RL

t) and can change t as the bisimulation proceeds
10 In our framework the order of the message arrival is assumed to be indeterminate;

but if the order is sensitive, messages will need to be delivered without violating the
order.

11 This means that the performance of P1 is at most t time units faster than that of
P2.

if t ≥ 0. L corresponds to the set of observable locations. The bisimulation makes
two objects interact with arbitrary objects at L and relates them according to
the temporal and behavioral results of the interactions. P1 (or P2) may be an
object or a group of objects at the same or different locations.

We here state the informal meaning of P1 �L
t P2. We first assume that

conceptual observers are at locations in L and that P1 precedes P2 by t time
units. An observer at location ` (` ∈ L) sends a message to P1 after d time units

(written as P1
〈d〉`1↓a−→→ ` in (i)). It also sends the same message to P2 after d time

units (written as P2
〈d〉`2↓a−→→ ` in (ii)). And then an observer at location `′ (`′ ∈ L)

receives return messages from both objects, P1 and P2, after m1 time units and
m2 time units respectively (written as ;→m1

↑b−→→`′ P1
′ and ;→m2

↑b−→→`′ P2
′).

If the arrival time of the return message from P1 is earlier than that from P2,12

and if P1
′ and P2

′ can be successfully observed in (P1
′, P2

′) ∈ RL
t−m1+m2

in the
same way, the observers judge that P1 and P2 are behaviorally equivalent and
that P1 can perform its behaviors faster than P2.

We show several basic properties of the order relation below.

Proposition 3.2 Let P,P1, P2, P3 ∈ P t, t1, t2 ∈ T , and L ⊆ Loc then,

(1) P �L
t P

(2) If P1 �L
t1 P2 and P2 �L

t2 P3 then P1 �L
t1+t2 P3

where for all ` ∈ L and ˙̀ ∈ |P |Loc, delay(`, ˙̀) and delay(˙̀, `′) are constant. ut
From these results, we see that P �L P and that if P1 �L P2 and P2 �L P3

then P1 �L P3. Hence, �L is a preorder relation.

Proposition 3.3 Let P1, P2 ∈ P , L ⊆ Loc, and t, t1, t2 ∈ T then,

(1) If P1 �L
t P2 and t ≤ t′ then P1 �L

t′ P2

(2) If P1 �L
t P2 and L′ ⊆ L then P1 �L′

t P2 ut
This proposition is significant in revealing the meanings of the indexes of �L

t .
Proposition (1) means that P1 performs at most t time units faster than P1

because of P1 �L
t P2. Hence, P1 can still perform at most t′ time units faster

than P1 if t ≤ t′. (2) means that L in �L
t corresponds to all the locations at

which the observer can send and receive messages, and two objects ordered by an
observer can be still ordered by another observer having a more limited scope.

Proposition 3.4 Let S1 :`, S2 :`, P1, P2 ∈ P , L ⊆ Loc, and t, d ∈ T then,

(1) If S1 :` �L
t S2 :` then ↓a.S1 :` �L

t ↓a.S2 :`
(2) If S1 :` �L

t S2 :` then 〈d〉.S1 :` �L
t

〈d〉.S2 :`
(3) If S1 :` �L

t S2 :` then `′↑a.S1 :` �L
t `′↑a.S2 :`

(4) If P1 �L
t P2 then P1 \ N �L

t P2 \N ut
12 Note that P2 already precedes P1 by t time units. Thus, the relative difference be-

tween the arrival time of the message from P2 and that from P1 is t−m1 +m2 time
units.

Remark We defined the relation where its index t may not be zero in order to
investigate basic properties. We will usually use �L

0 in verifying systems.

Example 3.5 We present some examples to demonstrate how �L works. To
simplify, we assume that communication delay can be ignored.

(1) 〈1〉.`↑a.〈3〉.`↑b.0 :`′ �L 〈2〉.`↑a.〈2〉.`↑b.0 :`′ where ` ∈ L

We verify this relation. We assume the following relation RL
0 = (〈1〉.` ↑

a.〈3〉.`↑b.0 :`′, 〈2〉.`↑a.〈2〉.`↑b.0 :`′).

We first prove that the relation satisfies (i) in Definition 3.1. If 〈1〉.`↑a.〈3〉 `↑
b.0 :`′ ;→1 ↑a−→→` 〈3〉 `↑b.0 :`′ then

〈2〉.`↑a.〈2〉.`↑b.0 :`′ ;→2 ↑a−→→` 〈2〉.`↑b.0 :`′ and
(〈3〉.`↑b.0 :`′, 〈2〉.`↑b.0 :`′) ∈ RL

0−1+2.

Moreover, 〈3〉.`↑b.0 :`′ ;→3 ↑b−→→` 0 :`′ then
〈2〉.`↑b.0 :`′;→2 ↑b−→→` 0 :`′ and (0 :`′,0 :`′) ∈ RL

1−3+2.

We can verify that RL
0 satisfies (ii) in Definition 3.1 in the same way.

(2) 〈1〉. ↓a.〈3〉.`↑b.0 :`′ 6�L 〈2〉. ↓a.〈2〉.`↑b.0 :`′ where ` ∈ L

It is enough to consider a counterexample. Suppose 〈1〉. ↓ a.〈3〉.` ↑ b.0 :

`′
〈3〉`′↓a−→→ ` ;→3 〈3〉.`↑ b.0 : `′, while 〈2〉. ↓ a.〈2〉.`↑ b.0 : `′

〈3〉`′↓a−→→ ` ;→3 〈2〉.`↑
b.0 :`′. Clearly, (〈3〉.`↑b.0 :`′, 〈2〉.`↑b.0 :`′) is not a timed pre-bisimulation.

(3) Next, assume these objects are allocated on different processors. For all ` ∈
L, the communication delay from `1 to ` is three time units and that from
`2 to ` is one time units: delay(`1, `) = {3} and delay(`2, `) = {1}. we have:

〈2〉.`↑a.〈2〉.`↑b.0 :`2 �L 〈1〉.`↑a.〈3〉.`↑b.0 :`1

Cooperationability for Distributed Real-Time Objects

It is very convenient to develop a pre-congruence with respect to speeds in order
to guarantee substitutability between two ordered objects. However, there is an
undesirable problem in defining such a pre-congruence with temporal inequality.
Suppose three objects: A1 : `A

def= 〈1〉.`B↑ a.0 : `A, A2 : `A
def= 〈4〉.`B↑ a.0 : `A, and

B1 : `B
def= ((↓ a.B′+ ↓ b.B′′) | 〈2〉.`B ↑ b.0) \ {b} : `B, B2 : `B

def= 〈1〉.((↓ a.B′+ ↓
b.B′′) | 〈2〉.`B↑b.0) \ {b} :`B, where delay(`A, `B) = 0. We clearly have A1 �L A2

and B1 �L B2 but cannot expect that A1|B1 �L A2|B2. This fact reveals
that a slower object cannot always be replaced by a faster object in a parallel
composition with other objects. This anomaly is traced to contexts that restrict
the capability to execute a particular computation due to the passage of time,
for example timeout handling in B1 and B2. In order to define a rational pre-
congruence with respect to speed, we here define another order relation which is
a little more strict than the �L

t relation, and a restricted expression.

Definition 3.6 A binary relation R ⊆ (P × P) × T × 2Loc is a t-timed pre-
bisimulation on L if (P1, P2) ∈ Rt

L (t ∈ T and L ⊆ Loc) implies, for all a, b ∈ M,
`, `′,∈ L, ˙̀ ∈ |P1|Loc ∪ |P2|Loc, and d1, d2 ∈ T such that d1 ≤ d2 + t;

(i) ∀m1, ∀P1
′ : P1

〈d1〉 ˙̀↓a−→→ ` ;→m1 P1
′ then

∀m2, ∃P2
′ : P2

〈d2〉 ˙̀↓a−→→ ` ;→m2 P2
′ and (P1

′, P2
′) ∈ RL

t−m1+m2

(ii) ∀m2, ∀P2
′ : P2

〈d2〉 ˙̀↓a−→→ ` ;→m2 P2
′ then

∀m1, ∃P1
′ : P1

〈d1〉 ˙̀↓a−→→ ` ;→m1 P1
′ and (P1

′, P2
′) ∈ RL

t−m1+m2

(iii) ∃m1, ∀P1
′ : P1 ;→m1

↑b−→→`′ P1
′ then

∃m2, ∃P2
′ : P2 ;→m2

↑b−→→`′ P2
′ and (P1

′, P2
′) ∈ RL

t−m1+m2

(iv) ∃m2, ∀P2
′ : P2 ;→m2

↑b−→→`′ P2
′ then

∃m1, ∃P1
′ : P1 ;→m1

↑b−→→`′ P1
′ and (P1

′, P2
′) ∈ RL

t−m1+m2

For P1, P2 ∈ P , we let P1 ≤L
t P2 if there exists a timed pre-bisimulation such

that (P1, P2) ∈ RL
t . We call ≤L

t timed order on L. We shall often abbreviate ≤L
0

as ≤L. ut

This relation is basically similar to �L
t except that the observer is a little strict.

That is, whereas the observer of �L
t sends a message to the concerned objects

after the same number of time units, the observer of ≤L
t sends a message to the

second (slower) object after arbitrarily more time units than the number of time
units after which it sends to the (faster) object. Also, to allow easier discussion
hereafter, we define a restricted expression below.

Definition 3.7 Let P ∈ P and L ⊆ Loc, if P ≤L
0 P , we call P a non-timeout

expression on L. ut

We show several basic properties of the timed order.

Proposition 3.8 Let P,P1, P2, P3 ∈ P be non-timeout expressions on L ∈ Loc
then,

(1) P ≤L
t P .

(2) If P1 ≤L
t1 P2 and P2 ≤L

t2 P3 then P1 ≤L
t1+t2 P3 ut

From the above result, for all P,P1, P2, P3 ∈ P such that P,P1, P2, P3 are non-
timeout expressions on L, we know that if P1≤L P2 and P2≤LP3 then P1≤LP3.
Hence, ≤L is a preorder relation on non-timeout expressions.

Proposition 3.9 Let P1, P2 ∈ P , L ⊆ Loc, and t ∈ T then,

(1) If P1 ≤L
t P2 then P1 �L

t P2

(2) If in Proposition 3.3 every �L
t is replaced by ≤L

t , the proposition still hold.
ut

The first above result shows that �L
t at least includes ≤L

t . From the second re-
sult, we conclude that ≤L

t can preserve basic properties of �L
t shown in Propo-

sition 3.3.

Proposition 3.10 Let P1, P2 ∈ P , delay1, delay2 ∈ D such that ∀` ∈ L, ∀`2 ∈
|P2|Loc : delay1(`, `2) ≤ delay2(`, `2) and delay1(`2, `) ≤ delay2(`2, `),

If P1 ≤L
t P2 assuming delay1 then P1 ≤L

t P2 assuming delay2 ut

This proposition shows that a slower object is still slower even from an observer
residing at a further location. However, we cannot assume the similar proposition
about the first expression. That is, for all delay1, delay2 ∈ D such that ∀` ∈
L, `1 ∈ |P1|Loc : delay1(`, `1) ≥ delay2(`, `1) and delay1(`1, `) ≥ delay2(`1, `)
then, from P1 ≤L

t P2 assuming delay1, P1 ≤L
t P2 assuming delay2 is not usually

derived. This is because the observer of ≤L
t (and �L

t) cannot notice any difference
between its ordered objects before it receives their first messages.

Proposition 3.11 Let S1 :`, S2 :`, P1, P2 ∈ P , L ⊆ Loc, and t ∈ T then,

(1) If S1 :` ≤L
0 S2 :` then ↓a.S1 :` ≤L

0 ↓a.S2 :`
(2) If S1 :` ≤L

t S2 :` then `′↑a.S1 :` ≤L
t `′↑a.S2 :`

(3) If S1 : ` ≤L
t S2 : ` and L ∪ (|P1|Loc ∪ |P2|Loc) = ∅ then 〈t1〉.S1 :

` ≤L
t+t1−t2

〈t2〉.S2 :`

(4) If P1 ≤L
t P2 then P1 \ N ≤L

t P2 \ N ut

When L ∪ (|P1|Loc ∪ |P2|Loc) 6= ∅, we have that if S1 : ` ≤L
t S2 : ` and t1 ≤ t2

then, 〈t1〉.S1 :` ≤L
t

〈t2〉.S2 :`.
We now show a significant fact for proving substitutability between two be-

haviorally equivalent objects with different speeds.

Proposition 3.12 Let P1, P2, Q1, Q2 ∈ P be non-timeout expressions on L ⊆
L such that |P1|Loc, |P2|Loc, |Q|Loc ⊆ L, and let P1|Q1 and P2|Q2 be non-timeout
expressions on L.

If P1 ≤L
t P2 and Q1 ≤L

t Q2 then P1 |Q1 ≤L
t P2 |Q2 ut

We directly know that if P1 ≤L P2 and Q1 ≤L Q2 then P1|Q1 ≤L P2|Q2.
Intuitively, the result shows the following theoretically and practically signif-

icant facts:

• If two objects are behaviorally equivalent and one of the objects can perform
faster than the other, the faster object can behaviorally be substituted for
the slower one in a parallel composition.

• A parallel composition between the faster objects can really perform faster
than one between the slower ones. That is, a system when embedding the
faster objects can really perform faster than when embedding the slower
ones.

Remark The expressive power of non-timeout expressions is weaker than that
of P because any expressions which contain the anomalous contexts mentioned
above are no longer definable, for example ((↓a.A1+ ↓ b.A2) | 〈2〉.`↑ b.0) \ {b} : `
and (〈2〉. ↓a.0 | 〈4〉. ↓a.0) :`. However, we insist that this is not an unreasonable
restriction because we never lose the expressive capability for time-dependent
operations which make some other event executable due to the passing of time,
in particular this restriction never affects any required expressiveness of the
language in describing the real-time systems which contain no timeout handling,
including hard real-time systems.

On the contrary, every expression in P can satisfy all the propositions pre-
sented in this section, if we alter the fourth rule of Definition 2.6 into “P1 ; P1

′

and P2 ; P2
′ imply P1|P2 ; P1

′|P2
′”.13 However, this alternation allows an

executable communication to be suspended for arbitrary periods of time.

Example of Verification

For the remainder of this section we will present an example of the verification
of distributed real-time objects to demonstrate how the order relations work.

Example 3.13 We consider two printing service systems in a distributed sys-
tem. The first system consists of two remotely located objects: a printer object
(Printer1) at location `P and a console object (Console1) at location `C . We
denote the location of their environment as `.

idle
status

data

end

print

ok time time

location: l C location: l P
delay: 39 - 41 time units

Printer Object1 Console Object1

Fig. 1. The first printing service system

• Upon reception of a message (↓ print) from the environment, the console
object queries the status of the printer object (`P ↑ status). If it receives
a permission to send data (↓ idle), it sends data to the printer (`P ↑ data)
after an internal execution for 5 time units and waits for a completion notice
of the print (↓ end). After receiving the notice, it sends a message to the
environment (`↑ok).

13 We leave further details of this alternative semantics to another paper [19].

• The printer object waits for a query message (↓status) and then returns its
status (`C↑ idle) after 5 time units and waits for data transmission (↓data).
Since it takes 60 time units to print the data, it returns a print completion
notice (`C↑end) after 60 time units.

The two objects are described as follows:

Console1 :`C
def= ↓print . `P ↑status . ↓ idle . 〈5〉 . `P ↑data . ↓end . `↑ok .0 :`C

Printer1 :`P
def= ↓status . 〈5〉 . `C↑ idle . ↓data . 〈60〉 . `C↑end .Printer1 :`P

The first system is described as a parallel composition of the objects as follows:

(Printer1 :`P |Console1 :`C) \ N1 where N1
def= {status, idle, data, end}

The second system consists of three remotely located objects: a printer object
(Printer2) at location `P , an agent object (Agent) at location `A, and a console
object (Console2) at location `C . The agent object interacts with the printer
object and the console object. The printer object is identical to that in the first
system except for its message destinations.

• Upon reception of a message (↓print), the console object sends the agent ob-
ject a printing request (`P ↑req) and then waits for a notice of printing start
(↓started). After receiving the notice, it sends a message to the environment
(`↑ok).

• The agent object receives a printing request message (↓req). After an internal
execution of 20 time units, it queries the printer about its status (`P ↑status).
If it receives the status (↓ idle), it sends data to the printer (`P ↑data) after
an internal execution of 20 time units, and then sends a message to the
console (`C↑started). After that, it waits for next print request (↓req) while
waiting for a print completion notice (↓end) from the printer object.

print

ok

idle

status

data

end

Agent Object Printer Object 2

req

started
time time time

location: l C location: l P location: l A

Console Object2

delay: 19 - 21
time units

delay 29 - 31
time units

Fig. 2. The second printing service system

These objects are described as follows:

Console2 :`C
def= ↓print . `A↑req . ↓started . `↑ok .0 :`C

Agent :`A
def= ↓req . 〈20〉 . `P ↑status . ↓ idle . 〈20〉 .

(`P ↑data . `C↑started . ↓end .0 |Agent) :`A

Printer2 :`P
def= ↓status . 〈5〉 . `A↑ idle . ↓data . 〈60〉 . `A↑end .Printer2 :`P

The whole second system is described as a parallel composition of the three
object as follows:

(Printer2 :`P |Agent :`A |Console2 :`C) \ N2

where N2
def= {req, status, idle, started, data, end}

We here compare the performances of these systems. We first assume that the
communication delay between `C and `P is 40 ± 1 time units, that between `A

and `P is 20 ± 1 time units, and that between `C and `A is 30 ± 1 time units.

delay(`P , `C) = delay(`C , `P) = {39, 40, 41}
delay(`A, `P) = delay(`P , `A) = {19, 20, 21}
delay(`C , `A) = delay(`A, `C) = {29, 30, 31}

We also assume that the other communication channels do not exist. By using
the timed order relation, the two systems are related as follows:

(Printer1 :`P |Console1 :`C) \ N1

≤L (Printer2 :`P |Agent :`A |Console2 :`C) \ N2

where L ⊆ Loc such that `, `A, `C , `P ∈ L

The above result shows that the two systems are behaviorally equivalent but
that the first system can perform faster than the second one.

Also, by using the timed order relation, we can verify that the systems satisfy
their specification. For example, let Spec :`C be a specification for the systems.

Spec :`C
def= ↓req . 〈300〉 . `↑ok .0 :`C

By using Definition 3.1, we conclude that:

(Printer1 :`P |Console1 :`C) \ N1 �L Spec :`C

(Printer2 :`P |Agent :`A |Console2 :`C) \ N2 �L Spec :`C

The above inequalities show that the two systems can execute the behaviors given
in the specification faster than the required execution time in the specification.

Next we will consider a reconstruction (or an improvement) of the second
system. Suppose another agent object (a new implementation) described as the
following Agent ′:

Agent ′ def= ↓req . 〈5〉 . `P ↑status . ↓ idle . 〈5〉 .
(`P ↑data . `C↑started . ↓end .0 |Agent ′)

When we apply the two agent expressions to Definition 3.1, we know the following
result:

Agent ′ :`A ≤L Agent :`A

The above inequality tells that Agent and Agent ′ are behaviorally equivalent
and Agent can perform faster than Agent ′. In order to improve the performance
of the whole second system, we replace Agent ′ by Agent in the system. We
will need to verify that the new second system really performs faster than the
old one without changing any behavioral properties. From the inequality and
Proposition 3.12, we can directly know the following desired fact:

(Printer2 :`P |Agent ′ :`A |Console2 :`C)\N2

≤L (Printer2 :`P |Agent :`A |Console2 :`C)\N2

This demonstrates that Agent ′ can be behaviorally substituted for Agent in the
second system and that the new second system can perform faster than the old
one.14 Moreover, by using the timed order relation we can compare the new
system and the first system.

(Printer2 :`P |Agent ′ :`A |Console2 :`C) \ N2

≤L (Printer1 :`P |Console1 :`C) \ N1

This holds for �L as well as ≤L.

4 Related Work

A number of frameworks for specifying and verifying distributed real-time sys-
tems have already been proposed based on temporal logic, automata, and process
calculi. However, although there is a close relationship between delay and asyn-
chrony in communication, general theories for modeling both delay and asyn-
chrony seem to have been neglected in favor of ad hoc methods. On the other
hand, several formal models for concurrent object-oriented computation have
previously been devised. Among these, process calculus [2, 6, 11, 12] is a well-
studied theory that can naturally model concurrent objects as communicating
processes. In this section we compare our work with some existing process calculi
for modeling asynchronous communication and real-time.

Recently, several researchers have explored process calculi-related framework-
s for asynchronous communication (inside or outside of object orientation set-
tings). Most of the frameworks introduced auxiliary mechanisms: buffering, for
example see [3, 7]. However, these extensions are not always suitable to deal with
computational aspects of process calculi. On the other hand, Honda and Toko-
ro in [10], and Agha et al. in [1] proposed process calculi based on the notion
of actor-like objects with asynchronous communication [9]. In particular, the

14 Note that all the expressions in this example are sound.

calculus in [10] is very similar to ours, in which it expresses asynchronous mes-
sages as newly created output processes. It also provides an equivalence theory
for asynchronous communicating objects. However, its purpose is to construct a
purely theoretical foundation for asynchronous communication with port passing
mechanism,15 and it does not provide any support for the notion of time.

There have been many timed extensions of process calculi for synchronous
communication, for example [8, 14, 16]. There is a notable work by Moller and
Tofts in [13] where the authors studied a preorder relation over timed processes
with respect to speed based on the bisimulation concept, like ours. However,
their order relation is seriously dependent on synchronous communication and
thus cannot deal with asynchronous interactions among distributed objects. Also
their calculus, unlike ours, allows an executable communication to be suspended
for arbitrary periods of time. As a result, the calculus cannot exactly analyze
the execution time of systems, and their relation shows only that a process
may possibly execute faster than another. On the other hand, in asynchronous
communicating settings such a speed sensitive order relation does not seem to
have been explored within process calculi.

Baeten and Bergstra in [3] proposed a process calculus with the ability to ex-
press asynchronous communication channel with latency and failure, based on a
timed extended calculus of ACP [2]. Their calculus introduces asynchronous mes-
sages by the creation of processes corresponding to the messages and describes
communication delay as a suspension of the created process for the length of the
delay time, like ours. However it does not have any speed-sensitive order relation
for asynchronously communicating processes.

5 Conclusion

In this paper we proposed a framework of specification and verification for dis-
tributed real-time object-oriented systems and studied its basic properties. The
framework is formulated on the basis of two algebraic order relations for a new
timed extended process calculus. The calculus is unique among existing process
calculi in expressing both delay and asynchrony in communication. It provides a
powerful method to describe temporal and behavioral properties of remotely lo-
cated real-time objects and their asynchronous interactions with communication
delay. Also we presented two speed-sensitive order relations. They are defined
based on the bisimulation concept and can decide whether two real-time objects
are behaviorally equivalent and whether one of them can perform its behaviors
faster than the other. Also, they allow us to guarantee that a faster object can
be functionally substituted for a slower one in a system and that the system em-
bedding the faster one can perform even faster than the systems embedding the
slower one. Since in asynchronous communication settings, it often is necessary
only to verify that real-time objects can perform faster than what is required by
15 For focusing temporal properties in distributed real-time objects, our calculus avoids

modeling a port passing mechanism, but we can easily introduce such a mechanism
into the calculus by using the approach developed in [12].

their specification, these relations offer a theoretical and practical foundation for
proving the correctness and the reusability of asynchronous interacting real-time
objects.

Finally, we would like to point out some further issues. Our framework is
not sensitive to the order of message arrival; but in several distributed systems,
arriving messages are often queued in FIFO order. We therefore are very in-
terested in developing a process calculus to reason about the arrival order of
messages. In this paper we inherently assume the existence of a global clock, but
in distributed systems each processor often follows its own local clock. We have
already developed a method for describing multiple local clocks in [17]. We plan
to introduce the method into the framework presented in this paper. We devel-
oped some techniques to define semantics for object-oriented real-time languages
with synchronous communication primitives based on a timed extended process
calculus in [18]. We believe that the calculus presented here allows us to de-
fine semantics of object-oriented real-time languages with various asynchronous
communication mechanisms.

Acknowledgments We are grateful to J. Sifakis (VERIMAG) for discussions
on the topics treated here. We would like to thank to R. Pareschi, J.-M. Andreoli,
K. Beesley (Rank Xerox Research Centre), and V. Vasconcelos (Universidade
Nova de Lisboa) for significant comments on earlier versions of this paper, and
anonymous referees for providing many constructive and valuable suggestions.

References

1. Agha, G., Mason, I., Smith, S., and Talcott, C., Towards a Theory of Actor Com-
putations, Proceedings of CONCUR’92, LNCS 630, p???-???, August, 1992.

2. Baeten, J. C. M., and Bergstra, J. A., Process Algebra, Cambridge University
Press, 1990.

3. Baeten, J. C. M., and Bergstra, J. A., Asynchronous Communication in Real S-
pace Process Algebra, Proceedings of Formal Techniques in Real-Time and Fault-
Tolerant System, LNCS 591, p473-491, May, 1991.

4. Bergstra, J. A., and Klop, J. W., Process Algebra with Asynchronous Communica-
tion Mechanisms, Seminar on Concurrency, LNCS 197, p76-95, 1985.

5. Boudol, G., Castellani, I., Hennessy, M., and Kiehn, A., A Theory of Processes
with Localities, Proceedings of CONCUR’92, LNCS 630, p108-122, August, 1992.

6. Brinksma, E., A tutorial on LOTOS, Proceedings, IFIP Workshop on Protocol
Specification, Testing and Verification, p73-84, North-Holland, 1986.

7. de Boer, F.S., Klop, J.W., and Palamidessi, Asynchronous Communication in Pro-
cess Algebra, Proceedings of LICS’92, p137-147, June, 1992.

8. Hennessy, M., On Timed Process Algebra: a Tutorial, Technical Report 2/93, Uni-
versity of Sussex, 1993

9. Hewitt, C., Viewing Control Structures as Pattern of Passing Messages, Journal
of Artificial Intelligence, Vol. 8, No.3, 1977.

10. Honda, K., and Tokoro, M., An Object Calculus for Asynchronous Communication,
Proceedings of ECOOP’91, LNCS 512, p133-147, June, 1991.

11. Milner, R., Communication and Concurrency, Prentice Hall, 1989.
12. Milner, R., Parrow. J., Walker, D., A Calculus of Mobile Processes, Information

and Computation, Vol.100, p1-77, 1992.

13. Moller, F., and Tofts, C., Relating Processes with Respect to Speed, Proceedings of
CONCUR’91, LNCS 527, p424-438, August, 1991.

14. Nicollin. X., and Sifakis, J., An Overview and Synthesis on Timed Process Algebras,
Proceedings of Computer Aided Verification, LNCS 575, p376-398, June, 1991.

15. Nierstrasz, O. M., and Papathomas, M., Viewing Objects as Patterns of Commu-
nicating Agents, Proceedings of ECOOP/OOPSLA’90, October, p38-43, 1990.

16. Satoh, I., and Tokoro, M., A Formalism for Real-Time Concurrent Object-Oriented
Computing, Proceedings of OOPSLA’92, p315-326, October, 1992.

17. Satoh, I., and Tokoro, M., A Timed Calculus for Distributed Objects with Clocks,
Proceedings of ECOOP’93, LNCS 707, p326-345, July, 1993.

18. Satoh, I., and Tokoro, M., Semantics for a Real-Time Object-Oriented Program-
ming Language, Proceedings of IEEE International Conference on Computer Lan-
guages, p159-170, May, 1994.

19. Satoh, I., and Tokoro, M., A Formalism for Remotely Interacting Processes, Pro-
ceedings of Workshop on Theory and Practice of Parallel Programming, November,
1994. Also a revised version will appear in LNCS, 1995.

20. Tokoro, M., and Satoh, I., Asynchrony and Real-Time in Distributed Systems, Pro-
ceedings of Parallel Symbolic Computing: Languages, Systems, and Application,
LNCS 748. p318-330, 1993.

21. Yonezawa, A., and Tokoro, M., editors, Object-Oriented Concurrent Programming,
MIT Press, 1987.

