A Spatial Communication Model for Ubiquitous Computing Services

Ichiro Satoh
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail: ichiro@nii.ac.jp

Abstract

The paper presents an approach for location-aware commu-
nications in ubiquitous computing environments. It is con-
structed on a symbolic location model, which links every-
day objects, including non-smart objects and places, with
counterpart objects, which are executable software com-
ponents that are dynamically organized like a tree based
on geographical containment, such as in a user-room-floor-
building hierarchy. The approach enables physical entities
and places to communicate with one another through their
counterpart objects, even when the entities and places are
not smart. It supports a mechanism to detect objects and
communicate with them according to their locations. This
paper presents the design for the approach and describes
an implementation of it.

1 Introduction

Recent technological advances have enabled parts of the
real world to be turned into so-called smart spaces. In fact,
computers are embedded into everyday objects, including
appliances, chairs, and walls and sensing devices are al-
ready present in almost every room of modern buildings or
houses and in many of the public facilities in cities. Such
spaces perceive their environments with the help of sensors,
interpret this information, and hence derive context based
on their perceptions. This information is then communi-
cated in many cases to provide additional information to
other objects and context-aware services.

However, not all objects need to become smart to com-
municate with other objects. Moreover, smart objects,
which have processors and network interfaces, cannot al-
ways communicate with other objects, for reasons of excess
power consumption. Therefore, everyday objects and smart
objects should delegate communications between other ob-
jects to additional computers whose capabilities are more
widespread and efficient. They also tend to communicate
with other objects, which are in the same room or close to

them, rather than those in different rooms or on different
floors. Therefore, they need to detect their communication
partners according to where they and their partners are lo-
cated.

This paper addresses a location-aware communication
approach to ubiquitous computing environments. The key
idea behind the approach is to provide physical objects, in-
cluding smart and everyday objects, with counterpart ob-
jects, which are constructed as executable software com-
ponents. The counterpart objects for smart objects com-
municate with one another on behalf of direct communica-
tion between their targets through wired or wireless com-
munication, as much as possible. These counterpart objects
were organized in a general location model we presented
in a previous paper [13], where the model represented geo-
graphical containment relationships between physical enti-
ties and places, e.g., a user-room-floor-building hierarchy,
as a tree structure of their counterpart entities. That ap-
proach provided a mechanism enabling communication be-
tween counterpart objects. This paper addresses location-
based and personalized services in indoors, e.g., in build-
ings and houses, rather than in outdoor settings.

The remainder of this paper presents an approach to
building and managing location-based and personalized in-
formation services in pervasive computing environments
(Section 2), and presents the design of our framework (Sec-
tion 3) and its implementation (Section 4). We describe
some experience we have had with several applications,
which we used the framework to develop (Section 5). We
briefly review related work (Section 5), and concluse with a
summary (Section 6).

2 Approach

Many researchers have explored location models for the
physical world and existing ones can be classified into two:
physical-location and symbolic-location [2, 6]. The former
represents the position of people and objects as geomet-
ric information. A few outdoor-applications like moving-
map navigation can easily be constructed on such physical-

location models. Most emerging applications, on the other
hand, require a more symbolic notion, i.e., place. This is
generically the human-readable labeling of positions. A
more rigorous definition is an evolving set of both commu-
nal and personal labels for potentially overlapping geomet-
ric volumes, e.g., the names of rooms and buildings. An
object contained in a volume is reported to be in that place.

The approach presented in this paper addresses sym-
bolic location as a programming model that directly maps to
event-driven application programming. For example, when
people enter a place, services should be provided from their
portable terminal or stationary terminals should provide
personalized services to assist them. Our model also in-
troduces the containment relationship between spaces. This
is because physical spaces are often organized in a contain-
ment relationship, where each space is often composed of
more than one sub-space. For example, each floor is con-
tained within at most one building and each room is con-
tained within at most one floor. Therefore, our location
model is constructed as a tree, based on geographical con-
tainment.

There have been a variety of location-sensing systems.
They can be classified into two types: tracking and posi-
tioning. The former, including RFID tags, measures the lo-
cation of other objects. The latter, including GPS, measures
its own location. Since it is almost impossible to support
all kinds of sensors, the model aims at supporting various
kinds of tracking sensors, e.g., RFID-, infrared-, or ultra-
sonic tags as well as computer vision, as much as possible.
The model can have a mechanism for managing location-
sensors outside itself so that it is designed independently
of these. It transforms geometric information about the po-
sitions of objects into corresponding containment relations,
but it allows application-specific services to explicitly know
where the geometric information locations measured by the
Sensors are.

2.1 Design principles

Our model has the following features that existing models
do not.

Virtual counterparts: No physical objects or spaces may
specify their attributes or interact with one another, because
of limited resources. The model introduces the notion of
counterparts. These are digital representations of physical
entities or spaces. An application does not directly interact
with physical objects or places, but with their virtual coun-
terparts. The model spatially binds the positions of entities
and spaces with the locations of their virtual counterparts
and, when they move in the physical world, it deploys their
counterparts at proper locations within it.

Inter-counterpart communications: Smart objects and
spaces may not have sufficiently powerful computing and
communicating capabilities to exchange contextual infor-
mation with other objects. Counterpart objects communi-
cate with other counterpart objects on behalf of their tar-
get objects or places. Instead, when these target objects or
places communicate through X-10 and infrared, their coun-
terparts can communicate with them through their proto-
cols.

Location-based service discovery: People often want to
communicate with those who are in front of them rather
than those in other rooms. Services running on a device
should be valid within the bounding region surrounding the
device, limiting their presence in space. The model uses
location as its primary attribute for discovering and select-
ing services. Inter-counterpart communications select po-
tential communication partners according to where these
are located. An entity, including a person, physical object,
or a computing device can specify the kind of surround-
ing in which it is willing to interact with its communication
partners, e.g., visual, audio, or manual-manipulation, which
will enable it to interact with devices.

Capability-awareness: Location-based and personalized
services must be executed at computing devices whose ca-
pabilities can satisfy their requirements and that are at loca-
tions where the services should be provided. The model
can maintain the locations and capabilities of computing
devices as well as those of physical entities and services.
It also manages the deployment of application-specific ser-
vices according to changes in the locations of physical enti-
ties, spaces, and computing devices. That is, the model does
not distinguish between physical entities, spaces, comput-
ing devices, including the computers that maintains them,
or application-specific services.

2.2 Location-aware communications

Location awareness is important to enable computing de-
vices and services to communicate. People often want to
communicate with others in front of them in the same room
rather than with those in other rooms. Such near-field com-
munications are required not only between humans but also
between human-machine interfaces and between machines
in ubiquitous computing environments (Figure 1). Context-
aware services for a user should be provided at computers
within the bounding region surrounding his or her presence
in space. People should only be able to access location-
bound services, e.g., the printers and lights provided in a
space, when they enter the space by carrying their terminals
or using public terminals located within it. Some devices

are controlled according to the requirements of their sur-
rounding environments. For example, an electronic fan in a
room should turn on when the current temperature is hotter
than the recommended temperature specified for the room.

s,

Communicatigh within room

Room 1 Room 2

Figure 1. Component migration between
computers

The approach presented in this paper was inspired by
our previous work, called SpatialAgents [11], which is an
infrastructure that enables services to be dynamically de-
ployed at computing devices according to the positions of
people, objects, and places that are attached to RFID tags.
The previous framework lacked any general-purpose world
model and specified the positions for physical entities ac-
cording to just the coverage areas of the RFID readers so
that it could not represent any containment relationship be-
tween physical spaces, e.g., rooms and buildings. More-
over, we presented another location model, called M-Space
[13]. The previous model was aimed at integrating be-
tween software-based services running on computing de-
vices and service-provider computing devices, whereas the
model presented in this paper is aimed at modeling the con-
tainment relationship between physical and logical entities,
including the computing devices and software for defining
services. This paper also presents a hierarchical structure
for components and intercomponent interactions.

3 M-Space:
Spaces

Location Model for Smart

This section outline the M-Space model.
3.1 Containment relationship model

This model is unique to other existing location models, be-
cause it not only consists of data elements but also pro-
grammable elements, called components, as virtual coun-
terpart objects of physical entities or places. The model
represents facts about entities or places in terms of the se-
mantic or spatial containment relationships between com-
ponents that are associated with these entities or places.

SC SC
PC (Service)

VC (User) (Service)

VC (Floor)
Corelation
Com‘puter B User
Roomy2 im [Room 3
[PDA

F e
l;T*]
/L O e

Computer A Room 1

Figure 2. Rooms on floor in physical world
and counterpart components in location
model.

e Virtual counterpart: Each component is a virtual
counterpart of a physical entity or place, including
the coverage area of the sensor, computing device, or
service-provider software.

e Hierarchical structure: Each component can be con-
tained within at most one component according to con-
tainment relationships in the physical world and cy-
berspace. It can move between components as a whole
with all its inner components.

Components are organized within an acyclic-tree struc-
ture, like Unix’s file-directory. When a component con-
tains other components, we call the former a parent and
the latter children. When physical entities, spaces, and
computing devices move from location to location in the
physical world, the model detects their movements through
location-sensing systems and changes the containment re-
lationships between components corresponding to moving
entities, their sources, and destinations. Figure 2 shows
the correlation between spaces and entities in the physical
world and their counterpart components. Each component
is a virtual counterpart of its target in the world model and
maintains the target’s attributes. Each component can ex-
plicitly have a substitute or representation of itself within
its descendants, like Unix’s symbolic link. The substitute
is still a component but has no attributes. When it receives
components or control messages, it automatically forwards
the visiting components or control messages to its original

component.

The model also offers at least two basic events, entering
and leaving, which enable application-specific services to
react to actions in the physical world. Readers may think
that this hierarchical model is similar to the notion of hi-
erarchical mobile agents presented in our previous paper
[10]. However, that enabled large-scale mobile applica-
tions to be composed from multiple mobile agents, whereas
the present model is aimed at modeling the physical world.
When one or more spaces, e.g., the coverage areas of sen-
sors, geographically collapse or overlap, our model simply
treats these spaces as coexistent components. As a result,
two coexistent spaces may contain an entity. The model
allows one of the two VCs corresponding to the spaces to
have a component bound to the entity and the other to have
a substitute for the component.

3.2 Component

The model is unique to existing location models because
it not only maintains the location of physical entities, such
as people and objects, but also the locations of computing
devices and services in a unified manner. There are VCs
illustrated in Figure 2.

e The virtual counterpart component (VC) is a digital
representation of a physical entity, such as a person
or object, except for the computing device itself, or
physical place, such as a building or room,

e The proxy component (PC) bridges the model and
computing device, and maintains a subtree of the
model or executes services located in a VC.

e The service component (SC) is software that de-
fines application-specific services dependent on physi-
cal entities or places.

For example, a car carries two people and moves from loca-
tion to location with its occupants. The car is mapped into a
VC on the model and this contains two VCs that correspond
to the two people. The movement of the car is mapped into
the VC migration corresponding to the car, from the VC
corresponding to the source to the VC corresponding to the
destination. Also, when a person has a computer for execut-
ing services, his or her VC has a PC, which represents the
computer and runs SCs to define the services.

3.2.1 Virtual counterpart component

A person, physical object, or place can have more than one
VC, and each VC can contain other VCs and PCs according
to spatial containment relationships in the physical world.
However, unlike other existing location models, ours does
not distinguish between entities and places in the physical

world; some entities can be viewed as spaces, e.g., cars and
desks, in the sense that they can contain other entities in-
side them. This permits places to be mobile. For example,
a car carries two people and moves from location to loca-
tion with its occupants. The car in the model has a VC that
contains two VCs corresponding to the two people. The
movement of the car is mapped from the migration of the
VC corresponding to the car, to the VC corresponding to
the destination location.

3.2.2 Proxy component

VCs can have software to define the context-dependent ser-
vices inside them. However, they may not have the abil-
ity to execute in the software, because none of the com-
puting devices that maintain these have unlimited computa-
tional resources. Instead, there are two facilities by which
services can be provided. The first is to forward such ser-
vices to computing devices embedded in or visiting a space
and execute them on the devices. The second is to di-
rectly use services provided by computing devices within a
space. We introduced proxy components to maintain the lo-
cation of computing devices and used the devices as service
providers. Our model also classifies PCs into two sub-types
that handle computing devices according to their functions.

(a) Proxy component for services (PCS)

Software

module
v

(I

Forwarding
Computer 1 for

executing service module

&

Computer 2 for
managing space model

(b) Proxy component for legacy computing device (PCL)

Computer 1 VC

Computer 2 for
managing space model

Figure 3. Two types of proxy components

e The first component, i.e., PCS (PC for Service
provider), is a proxy of a computing device that can
execute services (Figure 3(a)). If such a device is in a
place, its proxy is contained in the VC corresponding
to the space. When a PCS receives software for defin-
ing services, it forwards this to the device to which it
refers. After the PCS forwards the software, it enables
other components to fetch the software as if this were
n 1t.

e The second component, called PCL (PC for Legacy de-
vice), is a proxy of a computing device that cannot ex-
ecute SCs (Figure 3(b)). If such a device is in a space,
its proxy is contained in the VC corresponding to the
space and it communicates with the device through the
device’s favorite protocols.

These components are unique to other existing location
models and are useful in maintaining and using computing
devices.

3.2.3 Service component

We should reuse existing location-based and personalized
services as much as possible. The model introduces several
typical software components, e.g., Java Beans and Java Ap-
plets as service provider programs. However, such existing
components may not be suitable for our model. Each SCis a
wrapper for software modules to define application specific
services and each specifies the attributes of its services, e.g.,
the requirements that a device must satisfy to execute these
services. The model maintains the locations of services by
using SCs.

4 Location-aware Communication

This model provides location-aware communications be-
tween components corresponding to physical entities and
places, computing devices, and services. It introduces each
component as a service provider for its parent, descendants,
or neighboring components.

The approach presented in this paper uses the spatial co-
location of physical entities as primary attributes for select-
ing communication partners. The model supports two types
of location-aware communications according to the loca-
tions of communication partners. !

e Vertical communication supports interactions be-
tween parent counterparts and their child counterparts
in the model. Therefore, the former’s target entities
or spaces are spatially contained in the latter’s target
spaces in the physical world. The former can continue
its communications with the latter, as long as it moves
to another space.

e Horizontal communication supports interactions be-
tween counterparts contained by the same counter-
parts. The former’s and the latter’s targets are con-
tained in the same space. That is, communication part-
ners are relocated in the same physical space. Part-
ners are selected according to their spatial co-location
rather than their identity.

'The model supports communications whose partners may be on dif-
ferent subtrees, but such communications need authentication.

The current implementation supports three primitives, i.e.,
event passing, method invocation, and stream communica-
tion, according to the spatial relations between communi-
cation partners. Since the model can be maintained on dif-
ferent computers, it provides programs for counterpart ob-
jects with syntactic and (partial) semantic transparency for
remote interactions by using proxy elements that have the
same interfaces as the remote counterparts themselves.

Components can be dynamically deployed at computing
devices according to changes in the locations of physical en-
tities, spaces, and other components. Figure 4 shows the ba-
sic structure of the runtime system for the model and com-
ponent migration between two runtime systems.

Horizontal communication Vertical
communication

[Component K]
Component J
(Component H | Component |

[Componenl E}-{Component F]

Component D)
,~6omponent migration — A

Component B \‘\’CgmponentD} /,’,
S=3

Component Al Component G
Location Component| |Comporent Component| | Component| | Location
Model Event Deploynent Deployment Event Model
Managemenf | Management SerwcL\ Serialized Service Managemenf Management
Java Virtual Machine | components [] Java Virtual Machine]

Transport Protocol]

OS/Hardware]
Computer 2

TCP session

l |
[Transport Protocol } {—/
[OS/Hardware] [

Computer 1

Figure 4. Component migration between
computers

Our model is maintained as a tree structure, where each
node contains a component and its attributes in a proxy
component. It can also be maintained not only by central-
ized database servers but also by more than one computing
device. The model introduces a proxy component, called
PCM (Proxy Component for Model), for a subtree main-
tained on a different computer. Each PCM is a proxy for
a subtree that its target computing device maintains and is
located in the subtree that another computing device main-
tains. As a result, it can attach the former subtree to the
latter. When a PCM receives other components and con-
trol messages, it automatically forwards the visiting com-
ponents or messages to the device to which they refers (and
vice versa) by using a component migration mechanism,
like PCSs. Therefore, even when the model consists of
subtrees that multiple computing devices maintain, it can
be treated as a single tree. Note that a computing device
can maintain more than one subtree. Since the model does
not distinguish between computing devices that maintain
subtrees and computing devices that can execute services,
the former can be the latter. Although the model can be
automatically configured according to results measured by
its underlying location-sensing systems, it provides us with

graphical user interfaces developed as active documents,
called MobiDoc [14].

5 Implementation

To evaluate the model described in this section, we imple-
mented a prototype system that was built on it. The model
itself is independent of programming languages but the cur-
rent implementation uses Java (J2SE or later versions) as an
implementation language for components. Each component
was implemented as a collection of Java objects.

Virtual counterpart component

Each VC in the current implementation is defined as a sub-
class of abstract class VirtualComponent, which has
some built-in methods that are used to control its mobility
and lifecycle. It is bound to at least one entity or space in
the physical world and is located at the VC that spatially
contains the entity or place.
class VirtualComponent extends Component {

void setIdentity(String name) { ... }

void setAttribute(String attribute, String value){ ...

String getAttribute(String attribute) {..}

ComponentInfo getParentComponent() { ... }
ComponentInfo[] getChildren() { ... }

ServiceInfo[] getAncestorServices(Attribute attr) { ...
ServiceInfo[] getNeighboringServices (Attribute attr) { ...

Object execService(ServiceInfo si, Message m)
throws NoSuchServiceException { ... }

}

By invoking setIdentity, a VC can assign the sym-
bolic name of the physical entity or space that it repre-
sents. For example, a VC refers to the coverage area of
an RFID reader and it has the identity of the reader. By in-
voking setAttribute, a VC can record attributes about
its entity or space inside it. e.g., owner and size. Each VC
can provide its inner components as a service provider with
services defined inside it . Furthermore, it allows them to
access the service methods provided by the SCs contained
within it.

Proxy component

PCs are key elements in the model. According to the
types of computing devices, PCs can be classified into two
classes, i.e., PCS and PCL. Note that a computing device
can have different PCs.

e Proxy component for service provider (PCS) is a repre-
sentation of a computing device that can execute SCs.
It automatically forwards its visiting SCs to its target
device by using the component migration mechanism.
Each SC can have one or more activities that are im-
plemented by using the Java thread library. PCSs can

control all SCs inside them under the protection of
Java’s security manager. Furthermore, PCSs maintain
the life-cycle of SCs: i.e., initialization, execution, sus-
pension, and termination. When the life-cycle state of
an SC is changed, the runtime system issues certain
events to the SC and the SC’s descendent components
(and the SC’s parent component).

e Proxy component for legacy device (PCL) supports a
legacy computing device that cannot execute SCs due
to limited computational resources. It is located at a
VC corresponding to the space that contains its target
device. It establishes communication with its target de-
vice through its favorite approach, e.g., serial commu-
nications and infrared signals. For example, a televi-
sion, which does not have any computing capabilities,
can have an SC in the VC corresponding to the phys-
ical space that it is contained in and can be controlled
in, and the SC can send infrared signals to it.

Service component

Many computing devices in ubiquitous computing environ-
ments only have a small amount of memory and slower pro-
cessors. They cannot always support all services. Here,
we introduce an approach to dynamically installing the up-

tgraded software that is immediately required in comput-

ing devices that may be running. SCs are mobile software
that can travel from computing device to computing device,
which is achieved by using mobile agent technology. The
current implementation assumes SCs to be Java programs.
They can be dynamically deployed at computing devices.
Each SC consists of service methods and is defined as a
subclass of the abstract class ServiceComponent. Most
serializable JavaBeans can be used as SCs.

class ServiceComponent extends Component {
void setName(String name)

Host getCurrentHost() { ... }

void follow(ComponentID id) throws
NoComponentException { ... }

void setComponentProfile(
ComponentProfile cpf) { ... }

Hosts[] getNeighboringHosts() { ... }

Host[] getCandidateHosts(Host[] hosts) {..}

}

When an SC migrates to another computer, not only the pro-
gram code but also its state are transferred to the destination.
For example, if an SC is included in a VC corresponding
to a user, when he or she moves to another location, it is
migrated with the VC to a VC corresponding to the loca-
tion. The model allows each SC to specify the minimal (and
preferable) capabilities of PCSs that it may visit, e.g., ven-
dor and model class of the device (i.e, PC, PDA, or phone),
its screen size, number of colors, CPU, memory, input de-
vices, and secondary storage, in CC/PP (composite capabil-

ity/preference profiles) form [16]. All SCs can register such
capabilities by invoking setComponentProfile().

Vertical communication

All components can send events to invoke callback methods
provided their children can subscribe to the events that they
are interested in so that they can receive these events. Each
component can be viewed as a service provider for its an-
cestral and child components. That is, it can provide them
with the service methods explicitly defined inside it. When
a component invokes the getAncestorServices () or
getChildServices() of the VirtualComponent
class with the attributes that it requires, the runtime system
searches for suitable services along the route of the com-
ponent’s tree structure from its parent or in its children. If
ancestral or parent components (or child components) have
service methods that match the attributes, the runtime sys-
tem returns a list of suitable service methods to the com-
ponent. The component can then access one of the meth-
ods by invoking execService () with an instance of the
Message class, which can specify the kind of message,
arbitrary objects as arguments, and deadlines for timeout
exceptions.

Horizontal communication

Each component can invoke service methods pro-
vided by its neighboring components, which are con-
tained in its parent. When a component invokes
getNeighboringServices () with the attribute that
specifies its requirements, the runtime system searches
for suitable services in its neighboring components. The
component can access one of the methods by invoking
execService() as in vertical communication. The
attributes can be written in XML. The model provides
a keyword-based search for each of the attributes as a
lightweight mechanism for discovering services because it
needs to be available for less powerful computing devices.

Intercomponent communication mecha-

nism

Each component hierarchy is maintained as a tree structure
where each node contains a component and its attributes in a
PCM. Each PCM attaches a subtree maintained by its target
computing device to a tree maintained by another comput-
ing device. It forwards its visiting components or controls
messages to its target device from the device that it is lo-
cated at, and vice versa, by using the component migration
mechanism. For example, when it receives SCs and VCs, it
transmits to its target device to deploy them at appropriate

nodes of the subtree maintained by the device. The contain-
ment relationship between components in this model can
be explicitly configured by users deploying PCMs in an-
other PCM. The framework supports three types of inter-
component communications.

e Remote method invocation supports vertical and hor-
izontal communications. It offers APIs for invoking
the methods of other components on local or differ-
ent computers with copies of arguments. Our pro-
gramming interface for method invocation is similar to
CORBA’s dynamic invocation interface and does not
have to statically define any stub or skeleton interfaces
through a precompiler approach, because ubiquitous
computing environments are dynamic.

e Publish/subscribe-based event passing supports verti-
cal and horizontal communications. Publish/subscribe
approaches are useful and efficient for capturing
changes in the physical world, because they provide
subscribers with the ability to express their interest
in an event so that they can be notified afterward of
any event fired by a publisher. The approach is use-
ful in minimizing the number of events passed to re-
mote computers. This model provides a generic re-
mote publish/subscribe approach using Java’s dynamic
proxy mechanism, which is a new feature of the Java 2
Platform since version 1.3.2

e Stream communication supports horizontal communi-
cations. The notion of a stream is highly abstracted
representing a connection to a communication chan-
nel. When partners are different computers, the model
enables two components on different hosts to establish
a reliable channel through a TCP connection managed
by the hosts.?

Component migration mechanism

Component migration in a component hierarchy is merely
done as a transformation of the tree structure of the hier-
archy (Figure 5). When one component is moved to an-
other, a subtree, whose root corresponds to the component
and branches correspond to its descendent component is
moved to a subtree representing the destination. The cur-
rent system basically uses the Java object serialization pack-
age to marshal the components. The package does not sup-
port the stack frames of threads being captured. Instead,
when a component is serialized, the system propagates cer-
tain events within its embedded components to instruct the

2 As the dynamic creation mechanism is beyond our present scope, we
have left it for a future paper

3Since our channel relies on TCP, it can guarantee exactly-once com-
munication semantics across the migration of components.

agent to stop its active threads. When a component is trans-
ferred over a network, the runtime system stores the serial-
ized state and code of the component, including the compo-
nents embedded within it, into a bit-stream formed in Java’s
JAR file format, which can support digital signatures for
authentication. The system has a built-in mechanism for
transmitting the bit-stream through TCP sessions.

Step 1 Step 2
Component F
ComponentBr——

omponent B

migtion Component F

Component C

Component A

Component A

Component F

Component D| (Component E [Componem D] [Component E]
migration ‘
Component BJ {Component Cj Component B |Component CJ
Component A Component A

Figure 5. Component containment and migra-
tion

The model enables each component to confine its move-
ment within an ancestor component for reasons of secu-
rity and to protect privacy. When a component carries an-
other component beyond the latter’s range, the latter re-
mains within the range or terminates.

Location-sensor management

The model offers a mechanism for automatic configuration
to deploy components by using location-sensing systems.
To bridge PCMs and location-sensors, the model introduces
location-management systems, called LCMs, outside the
PCMs. All LCMs manage location sensors and maintain a
database where they store bindings between the references
of physical entities in sensors, e.g., the identifiers of RFID
tags attached to the entities and the identifiers of VCs corre-
sponding to the entities. Each LCM is responsible for dis-
covering VCs bound to entities or PCs bound to comput-
ing devices within the coverage areas of the sensors that it
manages. When an entity (or device) attached to an RFID-
tag and an LCM detect the presence of the entity (or de-
vice) within the coverage area of an RFID reader managed
by the LCM, the LCM searches its database for VCs (or
PCs) bound to the entity (or device) and informs comput-
ing devices that maintain the VCs (or PCs) about the VC
corresponding to the reader. The VCs (or PCs) migrate to
the reader’s VC. If the LCM’s database does not have any
information about the the entity (or device), it multicasts
query messages to other LCMs. If other LCMs have any
information about the entity, the LCM creates a default VC
as a new entity. When a tag is attached to an unknown de-

vice that can maintain a subtree or execute SCs, the LCM
instructs the VC that contains the device to create a default
PCM or PCS for the device. The current implementation
enables each component to have a deployment policy for
the location and migration of its target.*

Current status

A prototype implementation of this model was built with
Sun’s J2SE version 1.4 or later versions. It uses the Mo-
bilespaces mobile agent system to provide mobile compo-
nents and supports three commercial locating systems: El-
pas’s infrared tag sensing system, RF Code’s Spider (ac-
tive RF-tag system), and Alien Technology’s UHF-RFID
tag (passive RF-tag system). Although the current imple-
mentation was not built for performance, we measured the
cost of migrating a 4-Kbyte component (zip-compressed)
from the source to the destination recommended by an LSM
over a network. The latency of component migration to the
destination after the LSM had detected the presence of the
component’s tag was 390 ms and the cost of component mi-
gration between two hosts over a TCP connection was 41
ms. This experiment was done with two computing devices
that maintained the component tree, and source and desti-
nation computing devices, each of which was running on
one of six computers (Pentium-M 1.6 GHz with Windows
XP and J2SE ver. 5) connected through a Fast Ethernet net-
work. We believe that this latency is acceptable for location-
aware systems used in rooms or buildings.

6 Early Experience

This section describes how the model implements typical
applications and what advantages it has.

6.1 Follow-me applications

Since follow-me services are a typical application in ubiq-
uitous computing environments, we developed a follow-
me application system by using the approach presented in
this paper. For example, Cambridge University’s Sentient
Computing project [5] enabled applications to provide a
location-aware platform using infrared-based or ultrasonic-
based locating systems in a building. The platform can track
a user’s movements while he or she is moving around so
that the graphical user interfaces of the user’s applications
follow him or her. The model presented in this paper, on
the other hand, enables moving users to be naturally repre-
sented independently of location-sensing systems. Unlike
previous studies on applications, it can also migrate such

4Such policies are described as Java programs, but we plan to develop
a policy specification langauge.

applications themselves to computers near moving users.
That is, the model provides each user with more than one
VC and can migrate this VC to a VC corresponding to the
destination. We developed a mobile window manager as a
VC that could carry its desktop applications implemented as
SCs to another computer. When the VC bound to the user
migrates to the destination’s VC, the former detects appro-
priate service providers, which are implemented as PCs or
SCs within the latter VC by using horizontal communica-
tion mechanisms. Moreover, the former VC can detect and
coordinate PCs or SCs in the descendants of the destina-
tion’s VC by using the vertical communication mechanism.
For example, when a VC bound to a user arrives at a VC
bound to another room, it tries to communicate with PCLs
to control electric lights in the room to turn them on. Us-
ing the model presented in this paper, the window manager
could be easily and naturally implemented as a VC bound
to the user and desktop applications as SCs. They could
automatically be moved to a VC corresponding to the com-
puter that was in the current location of the user by an LCM
and they could then continue processing at the computer, as
outlined in Figure 6.

Step 1 Step 2
‘ 1 -

Component migration

Computer 1,7 N\, Computer 2

Computer 1

Computer 2

RFID- RFID- RFID-

iegder 5 Movement adA header r

Figure 6. Follow-me desktop applications be-
tween two computers.

ﬁ ~ reader|

6.2 Personal server

The second application was inspired by the personal server
proposed by Want [15]. We could easily implement inter-
actions between personal servers and stationary computers,
i.e., bwall-mounted smart displays and public terminals by
using this model. A user carries a handheld file-sharing
server that has no integral user interface, but has a proces-
sor, secondary storage, a wireless LAN network interface,
and is tied to an active RFID-tag. When he/her comes close
to a stationary computer, his/her personalized services are
dynamically deployed at smart TVs. When he/she carries
the server to a room with a TV, the model deploys the PCS
bound to the server at the VC corresponding to the room.
The TV has a PCL as its proxy. Although the PCL can for-
ward SCs to the server, it can still communicate with other

neighboring components, including the PCL, so that he/she
can view images stored in the server on the TV screen by
using the horizontal communication mechanism shown in
Figure 7. We developed a mechanism enabling communi-
cation between personal servers and embedded computers
[8]. The PCL can gather image data from the server and
then display these through the mechanism.

Smart TV
Personal

\ server

Figure 7. Smart TV executes PCL to access
image data from personal server to display
the GUI on its screen.

7 Related Work

Many researchers have explored location models for ubig-
uitous computing environments. Most existing models have
aimed at identifying and locating entities, e.g., people and
physical objects and computing devices in the physical
world. These existing models, including recent models pro-
posed a few years ago, can be classified into two types:
physical-location and symbolic-location models.> The for-
mer represents the position of people and objects as geo-
metric information, e.g., NEXUS [4, 1] and Cooltown [7].
A few applications like moving-map navigation can easily
be constructed on a physical-location model with GPS sys-
tems. However, most emerging applications require a more
symbolic notion, i.e., place. This place is generically the
human-readable labeling of positions. The latter represents
the position of entities as labels for potentially overlapping
geometric volumes, e.g., the names of rooms and buildings,
e.g., Sentient Computing [5] and EasyLiving [3]. Exist-
ing approaches assume that their models will be maintained
in centralized database servers, which may not always be
used in ubiquitous computing environments. Therefore, our
model should be managed in a decentralized manner and be
dynamically organized in an ad-hoc and peer-to-peer fash-
ion. Virtual Counterpart [9] supports RFID-based tracking

SExtensive works has been done for location-aware services but most of
these have been constructed based on either of the two models. Therefore,
we discuss typical examples of the two models.

systems and provides objects attached to RFID-tags with
Jini-based services. Since it enables objects attached to
RFID-tags to have their counterparts, it is similar to our
model. However, it only supports physical entities except
for computing devices and places. Our model does not
distinguish between physical entities, places, or software-
based services so that it can provide a unified view of ubig-
uitous computing environments, where not only physical
entities are mobile but also computing devices and spaces.

Several projects have proposed and developed commu-
nications between devices in ubiquitous computing envi-
ronments, e.g., UPnP, SDS, and Jini. However, most ex-
isting work has enabled devices to discover other devices
and services within local networks without any notion of
location. The notion of location-aware communications in
ubiquitous computing environments has attracted scant at-
tention thus far. This is a serious obstacle to the growth of
ubiquitous computing, because devices are often required
to coordinate with nearby devices or services running on
nearby computers rather than with remote devices, even
those that are connected to current local networks. Of these,
the RAUM system [2] supports location-aware communica-
tions based on a containment location model in ubiquitous
computing environments like our approach does. The sys-
tem aims at location-aware discovery and routing between
network-enabled devices, whereas the approach itself sup-
ports location-dependent communications between the vir-
tual counterparts of physical objects in addition to network-
enabled devices.

8 Conclusion

We presented an architecture for location-aware services
in ubiquitous computing environments. It consists of two
parts: a symbolic location model and a location-aware com-
munication mechanism. The former can be dynamically or-
ganized like a tree based on geographical containment, such
as that in a user-room-floor-building hierarchy and each
node in the tree can be constructed as counterpart objects
that are implemented as the executable software and proxies
of their physical target objects and places. The latter enables
counterpart objects to communicate with other counterpart
objects according to the geographical relationships between
their physical target objects and places. We designed and
implemented a prototype system based on the model and
demonstrated its effectiveness in several practical applica-
tions.

References

[1] M. Bauer, C. Becker, and K. Rothermel, Location Mmodels from
the Perspective of Context-Aware Applications and Mobile Ad Hoc
Networks, Personal and Ubiquitous Computing, vol. 6, Issue 5-6, pp.
322-328, Springer, 2002.

[2] M. Beigl, T. Zimmer, C. Decker, A Location Model for Communicat-
ing and Processing of Context, Personal and Ubiquitous Computing,
vol. 6 Issue 5-6, pp. 341-357, Springer, 2002

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

B. L. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer, EasyLiv-
ing: Technologies for Intelligent Environments, Proceedings of In-
ternational Symposium on Handheld and Ubiquitous Computing, pp.
12-27, 2000.

F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, and M. Schwehm,
Next Century Challenges: Nexus - An Open Global Infrastructure for
Spatial-Aware Applications, Proceedings of Conference on Mobile
Computing and Networking (MOBICOM’99), pp. 249-255, ACM
Press, 1999).

A. Harter, A. Hopper, P. Steggeles, A. Ward, and P. Webster, The
Anatomy of a Context-Aware Application, Proceedings of Confer-
ence on Mobile Computing and Networking (MOBICOM’99), pp.
59-68, ACM Press, 1999.

U. Leonhardt, and J. Magee, Towards a General Location Service for
Mobile Environments, Proceedings of IEEE Workshop on Services
in Distributed and Networked Environments, pp. 43-50, IEEE Com-
puter Society, 1996.

T. Kindberg, et al, People, Places, Things: Web Presence for the Real
World, Technical Report HPL-2000-16, Internet and Mobile Systems
Laboratory, HP Laboratories, 2000.

T. Nakajima and I. Satoh, Personal Home Server: Enabling Person-
alized and Seamless Ubiquitous Computing Environments, Proceed-
ings of 2nd International Conference on Pervasive Computing and
Communications (PerCom’2004), pp.341-345, IEEE Computer So-
ciety, March 2004.

K. Romer, T. Schoch, F. Mattern, and T. Dubendorfer, Smart Identi-
fication Frameworks for Ubiquitous Computing Applications, IEEE
International Conference on Pervasive Computing and Communi-
cations (PerCom’03), pp.253-262, IEEE Computer Society, March
2003.

I. Satoh, MobileSpaces: A Framework for Building Adaptive Dis-
tributed Applications Using a Hierarchical Mobile Agent System,
Proceedings of IEEE International Conference on Distributed Com-
puting Systems (ICDCS’2000), pp.161-168, April 2000.

I. Satoh, Linking Phyical Worlds to Logical Worlds with Mobile
Agents, Proceedings of International Conference on Mobile Data
Management (MDM’2004), IEEE Computer Society, January 2004.

I. Satoh, Software Testing for Wireless Mobile Computing, IEEE
Wireless Communications, vol. 11, no. 5, pp.58-64, IEEE Commu-
nication Society, October 2004.

I. Satoh, A Location Model for Pervasive Computing Environments,
Proceedings of IEEE 3rd International Conference on Pervasive
Computing and Communications (PerCom’05), pp,215-224, IEEE
Computer Society, March 2005.

1. Satoh, A Document-centric Component Framework for Document
Distributions, A Location Model for Pervasive Computing Environ-
ments, Proceedings of 8th International Symposium on Distributed
Objects and Applications (DOA’2006), Lecture Notes in Computer
Science (LNCS), vol.?, Springer, October (2006).

R. Want, The Personal Server - Changing the Way We Think about
Ubiquitous Computing, Proceedings of 4th International Conference
on Ubiquitous Computing (Ubicomp 2002), LNCS 2498, pp. 194-
209, Springer, September 2002.

World Wide Web Consortium (W3C), Composite Capabil-

ity/Preference Profiles (CC/PP), http://www.w3.org/ TR/NOTE-
CCPP, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

