
Semantics for a Real-Time
Object-Oriented Programming Language

Ichiro Satoh ∗

satoh@mt.cs.keio.ac.jp

Mario Tokoro †

mario@mt.cs.keio.ac.jp

Department of Computer Science, Keio University
3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

Abstract

This paper presents a framework to define a semantic-
s for a real-time object-orientation programming lan-
guage and to verify programs written in the language.
The semantics is defined as the collection of transla-
tion rules that map the syntactic constructions of the
language into expressions in a process calculus extend-
ed with the notion of time. By using the expressive ca-
pabilities of the calculus, the semantics can appropri-
ately capture temporal features of the language such as
timeout exception and execution time, and concurren-
t object-oriented features such as concurrency, class,
and object creation. Particularly, since it can restric-
t the number of concurrent activities which take place
simultaneously, it allows to analyze and predict tempo-
ral and behavioral properties of programs executed even
with a number of processors smaller than the number
of active objects. Through an example, we illustrate a
method of analyzing real-time programs.

1 Introduction

Real-time systems are getting popular nowadays.
Real-time systems have to control and interact many
active devices such as other computers, sensors, and
actuators. Besides, concurrent object-oriented com-
putation [22, 24] is based on interactions with active
entities. The concept of concurrent object-orientation
is considered as a powerful methodology to design
and implement real-time systems. Recently, many
real-time programming languages have been proposed
based on this concept, for example see [8, 19].

Real-time systems need to meet certain time con-
straints. The correctness of programs for real-time
systems depends not only on the functionally behav-

∗Partially supported by JSPS Fellowships for Japanese Ju-
nior Scientists

†Also with Sony Computer Science Laboratory Inc. 3-14-13
Higashi-Gotanda, Shinagawa-ku, Tokyo, 141, Japan

ioral results of computations but also on the time at
which the results are produced. However, the dynamic
features of concurrent object-orientation such as run-
time object creation, concurrency, and message pass-
ing make it difficult to predict the temporal properties
of systems. This is because these features seriously af-
fect the execution time of programs and the number of
concurrent activities. Also, the features highly depend
on the behavioral properties of programs such as the
contents of program variables. Consequently, to de-
velop correct real-time systems based on the concept
of concurrent objects, we need the support of an anal-
ysis for both the temporal and behavioral properties
of the systems, particularly including the dynamical
features of concurrent objects.

One typical approach is to develop higher abstraction
models for reasoning about real-time systems based on
petri nets, temporal logic, and process calculi. Howev-
er, we believe that real-time systems should be spec-
ified and verified at the program level rather than
at such higher levels, since the former is the nota-
tion where programs are written, debugged, and main-
tained.

In the past few years, several researchers have pro-
posed frameworks to reason about programs described
in (non object-oriented) real-time programming lan-
guages, based on denotational semantics and tempo-
ral logic. However, these frameworks cannot inher-
ently capture most dynamical features of concurrent
objects. Also, the execution models of these frame-
works are rather unrealistic, for example the maximum
parallelism which allows each activity to have its own
processor, or the interleaving which allows at most one
activity to be executed any time.

In this paper, we investigate a temporal semantics
for a real-time programming language with dynami-
cal features such as object (or process) creation and
message passing. The objective of the semantics is to

provide a general framework to predict and analyze
both the temporal and the behavioral properties of
programs written in such a langauge, through the di-
rect analysis of program statements. Particularly, we
take the number of concurrent activities into consid-
eration, since the execution time of programs is highly
dependent on the number of available processors.

We first propose a simple language RT which has pe-
culiar features of real-time languages and concurrent
object-oriented ones. We also adopt a process cal-
culus as a meta-language for the semantics definition.
This is because process calculus is a well-studied theo-
ry for concurrency and provides algebraic frameworks
for analyzing and substituting objects. However, ordi-
nary process calculi cannot model the temporal prop-
erties of real-time systems. We thus introduce a timed
extended process calculus, called RtCCS [15], which
is an extension of Milner’s CCS [11] with the notion
of quantitative time. Then, the semantics is defined
in the form of translation rules for the syntactic con-
structions of the language. A translation rule for a
construction encodes the behavioral and the tempo-
ral properties of the construction into corresponding
expressions in RtCCS. We can strictly analyze RT ’s
arbitrary programs through the theoretical framework
of RtCCS.

The organization of this paper is as follows: In the nex-
t section we informally introduce a real-time object-
oriented programming language, called RT . Sec-
tion 3 defines a timed extended process calculus,
called RtCCS, as a meta-language for our semantic-
s framework. In Section 4 we give the semantics of
RT through the translation into the calculus. Sec-
tion 5 surveys some related work. In Section 6, we
present some concluding remarks. Finally in Ap-
pendix we present a sketch of an analysis of RT pro-
grams through an example.

2 RT : a Real-Time Object-Oriented
Language

This section summarizes the syntax and the informal
semantics of RT .

Syntax of RT

The syntax of RT is defined in Figure 1. We use the
following syntactic meta variables in the definition:
Prog is a set of programs, Class a set of class declara-
tions, Stat a set of statements, Exp a set of expressions,
Bool a set of boolean expressions, Dec a set of variable
declarations, C a class name, M a method name, and
X a program variable name.

Prog ::= program Class is Dec in Stat endp

Class ::= class C is Dec new Stat Method endc
| Class Class

Method ::= method M(X) is Dec in Stat endm
| Method Method

Dec ::= var X
| Dec Dec

Stat ::= X := Exp
| return Exp
| wait Exp
| if Bool then Stat else Stat endif
| while Bool do Stat od
| Stat ; Stat

Exp ::= 0|1|2| · · ·
| X
| error
| C::new
| X::M(Exp) timeout Exp

Bool ::= Exp == Exp
| true
| false

Figure 1: Syntax of RT

Informal Semantics of RT

We here give the informal semantics of RT . An RT
program consists of objects. An object is an instance
which is created by its class1. Each object has an
object identifier, variables to store its internal da-
ta, methods, and at most one activity (i.e. a sin-
gle thread). The interaction among objects is based
on the style of remote procedure call, but the called
method can continue to be active after returning the
result to the caller object. Moreover, in order to de-
scribe real-time properties, RT has a method call with
timeout exception and a delay command to suspend
programs for a specified time.

Program: A program construction Prog consists of
class declarations, global program variable declara-
tions, and a sequence of statements which is invoked
at the beginning of program execution.

program Class is Dec in Stat endp

Class and Method Declaration: Classes serve as
templates from which instance objects can be created.

1RT does not provide inheritance mechanism. This is be-
cause inheritance in concurrent object-oriented languages often
causes unexpectable synchronization time, called inheritance
anomaly (see, e.g. [10]). We need further investigation about
inheritance mechanism for concurrent object-oriented languages
with time constraints.

All objects in the same class contain the same struc-
ture: internal data and methods. A class declaration
defines the class name, its instance variables, its initial
statements, and its methods.

class C in Dec new Statnew

method M1(X1) is Dec1 in Stat1 endm
...

...
method Mn(Xn) is Decn in Statn endm

endc

where C is a class name, Dec the declarations of in-
stance variables for each instance of the class, Statnew

a sequence of statements which is invoked at the cre-
ation of the instance, and Mi the name of a method
of the instance. Deci is the local variable declarations
of method Mi and Stat i the body of method Mi.

Dynamic Object Creation: When the following ex-
pression is evaluated, an instance object is created ac-
cording to the class definition of class C and then the
expression returns the identifier of the created object.

C::new

Method Call with Timeout: In RT ’s method call,
the caller is blocked until a reply is received from the
called method. If the reception of the reply is within a
specified time, the expression is evaluated as the reply
value, otherwise as error.

X ::M(Exp1) timeout Exp2

where a message M with an argument parameter Exp1

is sent to an indicated object by the object identifier
stored in X . The result of Exp2 indicates the deadline
time of the timeout.

Delaying Execution: In real-time systems, it is of-
ten useful to make programs wait for a specified peri-
od. RT provides an operation to suspend the execu-
tion as many time units as the value of the expression
Exp.

wait Exp
Asynchronous Return: When the following state-
ment is executed, the called method returns the value
of expression Exp to its caller object and can continue
to execute its following statements. Note that after
the evaluation of this statement, the sender and re-
ceiver object can execute concurrently.

return Exp

Although RT has no asynchronous communication
mechanism, this return can cause a communication
to be viewed as an asynchronous one 2.

2Please note that the asynchronous return can realize the
future synchronization [24].

3 RtCCS : A Meta Language for Tem-
poral Semantics

This section introduces a meta-language called Real-
time Calculus of Communicating Systems (RtCCS) for
our semantics definition3. It is an extension of CCS
[11] with with the ability of expressing the passage of
time and behavior depending on time.

The passage of time is represented as a special ac-
tion: √ called tick action. The action is a synchronous
broadcast message over all processes. A tick action
corresponds to the passage of one time unit. Also,
to represent behaviors dependent on the advancing of
time, we introduce a special binary operator: 〈 , 〉t,
called a timeout operator. 〈P,Q〉t has the semantics
of timeout handling. 〈P,Q〉t behaves as P if P can
execute an initial transition within t time units, and
behaves as Q if P does not perform any action within
t time units.

Syntax of RtCCS

The syntax of RtCCS is essentially the same as that of
CCS, except for two newly introduced temporal prim-
itives: tick action √ and timeout operator 〈 , 〉t.
We presuppose that A is a set of communication ac-
tion names and A the set of co-names. Let a,b,. . .
range over A and a,b,. . . over A. An action a is the
complementary action of a and a ≡ a. Let L ≡ A∪A
be a set of action labels ranged over `, `′, Let τ
denote an internal action, and √ a tick action. Finally
let Act ≡ A ∪A ∪ {τ}, ranged over by α,β,. . ..

The set E of RtCCS expressions ranged over by
E, E1, E2, . . . is defined recursively by the following
abstract syntax:

E ::= 0 | X | α.E | E1 + E2 | E1|E2

| E[f] | E \ L | recX : E | 〈E1, E2〉t
where t is an element of the set of natural number
containing an element 0 and f is a relabeling function,
f ∈ Act → Act and f(τ) = τ . We assume that L is
a subset of L, and that X is always guarded 4. For
convention, instead of recX : E, we shall often use
the more readable notation X

def= E. We denote the
set of closed expressions by P(⊆ E), ranged over P,Q.

Intuitively, the meanings of constructions are as fol-
lows: 0 represents a terminated process; α.E performs

3In this paper the calculus is given only in outline. For details
please consult the authors’ other paper [15].

4X is guarded in E if each occurrence of X is only within
some subexpressions α.E′ in E where α is not an empty element;
c.f. unguarded expressions, e.g. recXX or recXX + E.

an action α and then behaves like E; E1 + E2 is the
process which may behave as E1 or E2; E1|E2 rep-
resents processes E1 and E2 executing concurrently;
E[f] behaves like E but with the actions relabeled by
function f ; E \ L behaves like E but with actions in
L∪ L̄ prohibited; recX : E binds the free occurrences
of X in E.

Operational Semantics of RtCCS

The semantics of RtCCS is given as a labeled transi-
tion system 〈 E , Act ∪ {√}, { µ−→ | µ ∈ Act ∪ {√} } 〉
where

µ−→ is a transition relation (
µ−→⊆ E × E). It is

structurally given in two phases. The first phase de-
fines the relation α−→ for each α ∈ Act . The inference
rules determining α−→ are given in Figure 2. The sec-
ond phase defines the relation

√
−→ by inference rules

given in Figure 3.

α.E
α−→ E

E1
α−→ E′

1

E1 + E2
α−→ E′

1

E2
α−→ E′

2

E1 + E2
α−→ E′

2

E1
α−→ E′

1

E1|E2
α−→ E′

1|E2

E2
α−→ E′

2

E1|E2
α−→ E1|E′

2

E1
a−→ E′

1, E2
a−→ E′

2

E1|E2
τ−→ E′

1|E′
2

E
α−→ E′, α /∈ L ∪ L

E \ L
α−→ E′ \ L

E
α−→ E′

E[f]
f(α)−→ E′[f]

E{recX : E/X} α−→ E′

recX : E
α−→ E′

E1
α−→ E′

1 , t > 0

〈E1, E2〉t α−→ E′
1

Figure 2: Transition Rules for α−→

`.E
√

−→ `.E 0
√

−→ 0

E1

√
−→ E′

1, E2

√
−→ E′

2

E1 + E2

√
−→ E′

1 + E′
2

E1

√
−→ E′

1, E2

√
−→ E′

2, E1|E2 6 τ−→
E1|E2

√
−→ E′

1|E′
2

E
√

−→ E′

E \ L
√

−→ E′ \ L

E
√

−→ E′

E[f]
√

−→ E′[f]

E{recX : E/X}
√

−→ E′

recX : P
√

−→ P ′
E1

√
−→ E′

1 , t > 0

〈E1, E2〉t
√

−→ 〈E′
1, E2〉t−1

E2
µ−→ E′

2

〈E1, E2〉0 µ−→ E′
2

Figure 3: Transition Rules for
√

−→
We will hereafter use the passage of data values be-
tween RtCCS expressions. RtCCS with value passing
is easily derived from ordinary RtCCS by the follow-
ing syntactically translation. We assume that D is the

set of data values and that there are value variables
x, y and a value expression d. For each expression E
without free value variables, it is translated to Ê as
shown in Figure 4.

E Ê

a(x).E
∑

d∈D
ad. Ê[d/x]

a(d).E ad.Ê

τ.E τ.Ê∑
i∈I

Ei

∑
i∈I

Êi

E1|E2 Ê1|Ê2

E[f] Ê[f̂] where f̂(ld) = f(l)d

E \ L Ê \ {ld|l ∈ L, d ∈ D}
〈E1, E2〉t 〈Ê1, Ê2〉t
if true then E1 else E2 Ê1

if false then E1 else E2 Ê2

Figure 4: Translation of Expressions with Value into
RtCCS Expressions

4 Translation Semantics for RT Based
on RtCCS

We here give the formal semantics of RT as the col-
lection of the translation rules mapping the syntactic
constructions of RT into expressions in RtCCS. The
main source of inspiration is the semantics of a parallel
imperative language M given by R. Milner in Chap-
ter 8 of his book [11]. However, our work differs in
the following ways: our target language is a real-time
object-oriented language and our semantics can cap-
ture the temporal properties of the language as well
as its behavioral ones.

Particularly, in order to ensure that real-time pro-
grams satisfy their time constraints, we need to pre-
dict the execution time of programs. Therefore, in
our semantics the expressiveness of execution time is
introduced. In this paper we assume that execution
time for every statement in Dec and Stat is tstat units
of time5. Also, the execution time of a concurrent pro-
gram is highly dependent on the number of physical
processors. We introduce a restriction on the number
of activities which may take place simultaneously.

Combinators

When translating the RT constructions into RtCCS,
we will use two combinators: “Into(x)” and “Before”
as defined below. Particularly, the latter plays a key
role of our temporal semantics.

The result of evaluating Bool and Exp expression
is always communicated via res. The combinator

5Note taht our semantics can be easily adapted to the more
general case.

“Into(x)” is used to transmit its value to the right
process.

P Into(x) Q
def
= (P |res(x).Q) \ {res}

P Before Q
def
= run.(P [b/done]|

b.〈0, idle.Q〉tstat) \ {b}
Processor

def
= run.idle.Processor

MachineN
def
= Processor | · · · |Processor︸ ︷︷ ︸

N

Above tstat is the execution time of a construction
in Stat and Dec. We will often omit parentheses in
such a way that, for example, “P Before QBefore R”
denotes “P Before (QBefore R)”6. Precedence of the
combinators is “Into(x)”, “Before” in that order.

The combinator “Before” is used for modeling the fol-
lowing three properties: sequential concatenation, the
execution time of a statement, and the restriction on
the number of concurrent activities.

(1) We adopt output action done as a signal of suc-
cessful termination of every expression represent-
ing Stat and Dec statement. The combinator must
receive input action done from its left expression
before it invokes its right expression. Consequent-
ly, the left expression terminates and then the
right one can be executed.

(2) By using RtCCS’s timeout operator 〈 , 〉t, the
combinator suspends its right expression at least
for tstat time units after the reception of done from
its left one. This suspension represents the execu-
tion cost of the statement on the left.

(3) The combinator must receive action run from a
Processor before it invokes its left process. Also,
a Processor which has already sent run to a Before
combinator, cannot send run to another combina-
tor before receiving idle. As a result, the num-
ber of Processor is as well as the maximal number
of Before whose left expressions can be execut-
ed. MachineN corresponds to a parallel computer
with N processors.

We demonstrate a derivation of expressions represent-
ing three statements executed concurrently by two
processors as follows:

Machine2|(P1 Before Q1)|
(P2 Before Q2)|(P3 Before Q3)

6Note that P Before 0 6= P and P Before (QBefore R) 6=
(P Before Q)Before R, unlike the Before combinators devel-
oped in [11, 14, 20, 21].

τ (run)−→ idle.Processor |run.idle.Processor |
((P1[b/done]|b.〈0, idle.Q1〉tstat) \ {b})|

(P2 Before Q2)|(P3 Before Q3)

τ (run)−→ idle.Processor |idle.Processor |
((P1[b/done]|b.〈0, idle.Q1〉tstat) \ {b})|

((P2[b/done]|b.〈0, idle.Q2〉tstat) \ {b})|
(P3 Before Q3)

−→ · · ·

where P1, P2, P3 are expressions representing state-
ments. They indicate their termination at done. Only
two of the expressions can become active and the other
must suspend at least until one of the active expres-
sions terminates.

Remarks
• Note that Before does not have to receive run from

the same Processor. Consequently, statements in the
same instances may be executed by different Proces-
sors.

• Since in RtCCS an executable communication (in-
cluding τ) always precedes √ action, a communica-
tion must be executed as soon as it becomes exe-
cutable. Consequently, if there is a Processor which
is ready to send run, a statement waiting run can be
executed immediately without unnecessary idling.

• Indeed our Before seems to be the same as the
Before combinators of similar works [11, 14, 20, 21],
in which it is used as a sequential composition
between two expressions representing statements.
However, our combinator is unique in representing
the execution time of a statement and processor as-
signment.

• The reader may imagine a scenario where more than
N processes execute concurrently because in Before
combinators nested applications, the final process is
never locked7. However, in our semantics definition
such a final process always represents a semantic ele-
ment with trivial computational cost. This problem
can actually be ignored.

Translation Rules

We now give the semantics by the translation rule [[]]
defined for each individual syntactic construction in
RT . We first define some notations used in our se-
mantics. Let Id def= {0, 1, . . .} be the set of the iden-
tifiers of instance objects. Let Int def= {0̂, 1̂, . . . , n̂, . . .}
be the set of integers.

7Suppose (· · · Before R1)|(· · · Before R2)|(· · · Before R3).
R1, R2, R3 can be executed concurrently even on two proces-
sors.

[[n]] = res(n̂).0 n ∈ Int (E1)
[[X]] = readX(x).res(x).0 (E2)

[[error]] = res(error).0 (E3)
[[C:: new]] = newC .idC(i).res(i).0 (E4)

[[X::M(Exp1) timeout Exp2]] = [[Exp2]] Into(t)([[Exp1]] Into(x)(readX(i).

(〈calli,M (x).reti,M (y).reply(y).0 , abort.0〉t |
〈reply(z).res(z).0 , res(error).(abort.0 + reply(z).0)〉t)
\{reply, abort})) (E5)

[[true]] = res(true).0 (B1)
[[false]] = res(false).0 (B2)

[[Exp1 == Exp2]] = [[Exp1]] Into(x1) ([[Exp2]] Into(x2)(res(equal(x1, x2)).0)) (B3)

where equal(x1, x2) =

{
true if x1 = x2

false otherwise

Figure 5: Translation of Expressions in Exp and Bool

[[X := Exp]] = [[Exp]] Into(x) writeX(x).done.0 (S1)

[[return Exp]] = [[Exp]] Into(x) ans(x).done.0 (S2)

[[wait Exp]] = [[Exp]] Into(t) 〈0, done.0〉t (S3)
[[if Bool then Stat1 else Stat2 endif]] = [[Bool]] Into(x) if x then [[Stat1]] else [[Stat2]] (S4)

[[while Bool do Stat od]] = W (S5)

where W
def
= [[Bool]] Into(x) if x then [[Stat]] Before W else done.0

[[Stat1 ; Stat2]] = [[Stat1]] Before [[Stat2]] (S6)

Figure 6: Translation of Statements in Stat

Variable Declaration: We give the translation
rules of variable declarations as below. The mean-
ing of the declaration of a variable X is to create a
storage location for X . The location is represented as
a RtCCS process LocX . A value or an object identifier
can be stored in the variable by sending a new value
y on action writeX . Reading of a value from X is ac-
complished by receiving the stored value x from action
readX . We here define the access sort of variable. Let
LX

def= {readX , writeX} be the access sort of LocX and
LDec

def=
⋃

LX where X is declared in Dec.
[[var X]] = LocX |done.0

LocX
def
= writeX(x).Loc′

X(x)

Loc′
X(x)

def
= writeX(y).Loc′

X(y)

+ readX(x).Loc′
X(x)

[[Dec1 Dec2]] = [[Dec1]] Before [[Dec2]]

To give a feel for our translation semantics we show
that “varX varY · · · ” is encodes into RtCCS expres-
sions by using the translation rules as follows:

[[varX varY · · ·]]
= [[varX]] Before [[varY]] Before [[· · ·]]
= run.(LocX |done.0[b/done]|b.〈0 , idle.

run.(LocY |done.0[b/done]|b.〈0 , idle.[[· · ·]]〉tstat)

\{b}〉tstat) \ {b}

From the translated expression we can analyze the
temporal properties of the variable declarations.
For example, we can know that the execution of
“varX varY ” takes two tstat time units, since the
expression contains two run.〈0, idle. · ·〉tstat sequences.

Expression: The translation rules of Exp and Bool
constructions are listed in Figure 5. Every process
representing a construction Exp and Bool terminates
by yielding up its result through the output action res
into an Into combinator.

(E4) requests a process representing the class declara-
tion of class C to create an instance of C via newC , and
then it receives the identifier of the created instance
via idC .

Next we consider the translation of RT ’s method call
with timeout exception. There are two timeout excep-
tion cases: the method cannot be invoked within the
deadline time, and the method has been invoked but
cannot return its result within the deadline time. In
the latter case, the caller must receive the result even
after it timeouts. These exceptions are represented by
using two RtCCS’s 〈 , 〉t.

[[class C is Dec new Stat Method endc]] = ClassDecC where (C1)

ClassDecC
def
= newC .getid(i).idC(i).

(ClassDecC |([[Dec]] Before [[Stat]] Before BodyC,i) \ LDec)

BodyC,i
def
= ([[Method]](C, i)|endm.BodyC,i) \ {endm}

[[Class1 Class2]] = [[Class1]]|[[Class2]] (C2)

Figure 7: Translation Rules of Class Declarations in Class

[[method M(X) isDec in Stat endm]](C, i)

= calli,M(x).(ans(y).reti,M (y).0|LocX |writeX(x). (M1)

([[Dec]] Before [[Stat]] Before endm.0) \ LDec) \ LX \ {ans} (M1)
[[Method1 · · · Methodn]](C, i) = [[Method1]](C, i) + · · · + [[Methodn]](C, i) (M2)

Figure 8: Translation Rules of Method Declarations in Method

The translated expression first evaluates Exp2 and
Exp1 and then performs readX to obtain the identi-
fier i of the destination object from LocX . Then, it
invokes method M of an instance with the identifier
by sending calli,M . If the invocation is possible with-
in the deadline time, the first timeout operator waits
the result at reti,M and then transmits the result to
the second one via reply, otherwise it sends abort. If
the second recieves the result at reply within the dead-
line time, it yields the result at res, otherwise it yields
error.

Statement: The translation rules for Stat construc-
tions are given in Figure 6. In (S1), the value of the e-
valuation of Exp is stored in LocX via writeX . In (S2),
the value of the evaluation of Exp is sent to a process
representing the called method. In (S3), 〈0, done.0〉t
suspends done to be performed for t units of time.

Class Declaration: The translation of class dec-
laration is given in Figure 7. Class C is represented
by a process which receives a request for instance cre-
ation at newC and obtains a new identifier through
getid from process ObjId . Then, it returns the iden-
tifier of the new instance through idC and creates
([[Dec]] Before [[Stat]] Before BodyC,i) \ LDec which
corresponds to an instance of class C. Note that
the instance variables are encapsulated by restriction
“\LDec”.

Method Declaration: Figure 8 defines the trans-
lation of method declarations. The methods of
an instance are invoked by receiving calli,M . The
method body process first stores the argument val-
ue x of calli,M in its local variable LocX and then
executes [[Stat]]. After receiving the return value at
ans from (S2), it transmits the value to the caller
through reti,M and then continues into the following

statement. Note that the translation of a sequence
Method1 · · ·Methodn allows at most one execution in
an instance to take place concurrently.

Program: Finally, we define the translation of pro-
gram declaration as shown in Figure 9. ObjId is a
name server which generates a unique identifier for
each object.

Initial
Program
Statements

Instance C,i
Class C
Declaration

Method
Body

Instance
Variables

new C

ObjId

getid

id C (i)

Processor 1Program
Variables

read Xwrite X

call i,M
ret i,M

Initial Stetements

run

idle

NProgram
write X

write X

read X

read X

idlerunnew C

Figure 10: The Structure of Translation of Prog

Remarks

• By the ability of restricting the number of concurren-
t activities, it can easily capture various execution
models. For example, when N = 1, it can simulate
the interleaving and when N = ∞, the maximum
parallelism.

• When there are less processors than the number of
active objects, a scheduling policy is required to
make good use of the available processors and re-
sources. The timing properties of real-time systems
highly depend on such a scheduling. For simplicity,
our semantics however makes minimal assumptions
about the scheduling and lacks the concept of fair-
ness. The concept of scheduling and priority is left
to our future study.

[[program Class is Dec in Stat endp]]
= [[Class]]|ObjId0 |MachineN |([[Dec]] Before [[Stat]] Before 0) \ LDec (P1)

where ObjIdi
def
= getid(i).ObjIdi+1

Figure 9: Translation of Program in Prog

5 Related Work

This section presents an overview of related work. Sev-
eral denotational semantics have been explored for
reasoning about real-time languages based on CSP
[5]8, for example in [6, 7, 9, 18]. In these semantic-
s, the behavior and timing of programs are associated
with elements of linear history records. The execution
models of the semantics developed in [9, 7] are unfor-
tunately based on unrealistic models: the maximum
parallelism or the interleaving and thus cannot rep-
resent the execution of processes sharing processors.
Also, in [18] a pseudo upper bound of simultaneous
activities is realized by introducing the utility rate of
processors. On the other hand, our semantics can arbi-
trarily restrict the number of activities that can take
place simultaneously. In [6] the author investigated
denotational semantics for real-time processes sharing
processors. However, the semantics assumes that pro-
cesses are fixedly assigned a particular processor and
thus cannot model processes being switched from one
processor to another. Also, the semantics developed
in [6, 7, 9, 18] inherently deal with only static system-
s and thus cannot capture most dynamical features
of concurrent object-orientation such as dynamic cre-
ation of computational entities and dynamic sharing
of communication handles.

There have been several timed extended process cal-
culi in for example [2, 13, 15, 17, 23] for reasoning
about real-time systems. However, their description
is often at a too high abstraction level and thus does
not always reflect on the details of programs for these
systems. CSR [3] is a specification language whose
semantics is defined by using a timed extended pro-
cess calculus [2]. This approach is similar to ours, in
which RT programs are translated into RtCCS. How-
ever, CSR cannot capture most dynamic features of
concurrent object-orientation and cannot restrict the
number of active processes.

In the remainder of this section we compare our work
with some existing semantics for (non real-time) con-
current object-oriented programming languages based

8There have been many temporal extensions of CSP, e.g.,
[4, 17] but they are rather true process calculi because of lacking
high-level language constructions.

on process calculi. In [14, 20, 21], semantics for con-
current object-oriented programming languages are
derived from a translation semantics for a parallel im-
perative programming language M into CCS expres-
sions developed in [11], like ours. However, these se-
mantics do not inherently have the notion of time and
cannot specify the number of active objects which may
execute simultaneously. In [14], semantics definition
for concurrent object-oriented languages with inheri-
tance is studied based on CCS but lacks any method
for verifying programs. We believe that the way of
modeling inheritance developed in [14] can easily be
applied to our semantics definition. In [21] the au-
thor describes a semantics for POOL [1] based on π-
calculus [12] which is an extension of CCS to accom-
modate port passing, whereas in [20] a semantics for a
language like POOL based on a higher order process
calculus which is an extension of CCS to accommo-
date process passing. However, in our approach such
port or process passing is never required.

6 Conclusion

In this paper we developed a semantics for a real-time
object-oriented programming language. The seman-
tics is defined as a collection of translation rules from
the syntactic constructions of the language into ex-
pressions in a timed extended process calculus, called
RtCCS. By using the translation rules we can encode
RT ’s arbitrary programs into expressions in RtCC-
S without losing any properties of the programs. S-
ince RtCCS provides a theoretical framework to rea-
son about real-time computation, we can strictly an-
alyze and predict the temporal and behavioral prop-
erties of RT ’s programs through their corresponding
expressions in RtCCS. Particularly, the semantics is u-
nique in expressing the execution time and the upper
bound of concurrent activities. It allows to analyze the
temporal properties of programs executed with fewer
processors than the number of active objects. Also,
the approach presented in this paper is not essential-
ly dependent on RT but is a general framework for
reason about this kind of real-time languages with dy-
namical features such as runtime object (or process)
creation, concurrency, and communication.

Finally, we point out our future works. We will at-

tempt to define and compare various real-time lan-
guages through this semantics framework. Also, the
semantics implicitly assumes a global clock, whereas in
distributed systems such a global clock cannot inher-
ently be realized. We have already developed a process
calculus based on non global clocks in [16]. We plan to
investigate a semantics for distributed real-time pro-
gramming languages by using the calculus.

Acknowledgements

We are grateful to Vasco Vasconcelos (Keio Universi-
ty) for helpful comments on an earlier version of this
paper. We would like to thank anonymous referees for
providing many constructive and valuable suggestions.

References

[1] America, P., de Bakker, J., Kok, J., and Rutten, J.,
Operational Semantics of a Parallel Object-Oriented
Language, Proceedings of ACM POPL’87, p194-208,
1987.

[2] Gerber, R. and Lee, I., A Resource-Based Priori-
tized Bisimulation for Real-Time Systems, Proceed-
ings of CONCUR’90, October, LNCS 458, p263-277,
Springer-Verlag, 1990.

[3] Gerber, R. and Lee, I., A Layered Approach to Au-
tomating the Verification of Real-Time Systems, IEEE
Transaction on Software Engineering, Vol.18, No.9,
p768-784, 1992.

[4] Gerth, R. and Boucher, A., A Timed Failure Se-
mantics for Extended Communicating Processes, Pro-
ceedings of ICALP’87, LNCS 267, p95-114, Springer-
Verlag, 1987.

[5] Hoare, C. A. R., Communicating Sequential Process-
es, Prentice Hall, 1985.

[6] Hooman, J., A Denotational Semantics for Shared
Processors, Proceeding of PARLE’91, LNCS 506,
p184-201, Springer-Verlag, 1991.

[7] Huizing, C. Gerth, R. and deRover, W.P, Full Ab-
straction of a Real-Time Denotational Semantics
for an OCCAM-like Language, Proceeding of ACM
POPL’87, p223-237, 1987.

[8] Ishikawa, Y., Tokuda, H., and Mercer, C.W., Object-
Oriented Real-Time Language Design: Construc-
tion for Timing Constraints, Proceeding of E-
COOP/OOPSLA’90, 1990.

[9] Koymans, R. Shyamasundar, R.K, deRover, W.P,
Gerth, R., and Arun-Kumer, S, Compositional Se-
mantics for Real-Time Distributed Computing, Infor-
mation and Computation, Vol.79, No.3, p210-256,
1988.

[10] Matsuoka, S., Taura, K., and Yonezawa, A., Highly
Efficient and Encapsulated Re-use of Synchronization
Code in Concurrent Object-Oriented Languages Pro-
ceedings of ACM OOPSLA’93, p109-126, 1993.

[11] Milner, R. Communication and Concurrency, Pren-
tice Hall, 1989.

[12] Milner, R., Parrow, J., and Walker, D., A Calculus of
Mobile Processes Part 1 & 2, Technical report ECS-
LFCS-89-85 & 86, University of Edinburgh, 1989.

[13] Nicollin. X., and Sifakis, j., An Overview and Syn-
thesis on Timed Process Algebras, Proceedings of
CAV’91, LNCS 575, p376-398, Springer-Verlag, 1991.

[14] Papathomas, M., A Unifying Framework for Process
Calculus Semantics of Concurrent Object-Based Lan-
guages and Features, Proceeding of Workshop on Con-
current Object-Based Concurrent Computing, LNCS
612, p53-79, Springer-Verlag, 1992.

[15] Satoh, I., and Tokoro, M., A Formalism for Real-Time
Concurrent Object-Oriented Computing, Proceedings
of ACM OOPSLA’92, p315-326, 1992.

[16] Satoh, I., and Tokoro, M., A Timed Calculus for
Distributed Objects with Clocks, Proceedings of E-
COOP’93, LNCS 707, p326-345, Springer-Verlag,
1993.

[17] Schneider, S., Davies, J., Jackson, D.M., Reed, G.M.,
Reed, J.N., and Roscoe, A.W., Timed CSP: Theo-
ry and Practice, Proceedings of REX Workshop on
Real-Time: Theory and Practice, LNCS 600, p640-
675, Springer-Verlag, 1991.

[18] Shade, E., and Narayana, K.T., Real-Time Se-
mantics for Shared Variable Concurrency, Informa-
tion and Computation, Vol. 102, No.1, p56-82, 1993.

[19] Takashio, K., and Tokoro, M., DROL: An Object-
Oriented Programming Language for Distributed Real-
time Systems, Proceedings of ACM OOPSLA’92,
p276-294, 1992.

[20] Thomsen, B., Plain CHOCS: A Second Generation
Calculus for Higher Order Processes, Acta Informat-
ica, Vol.30, No.1, p1-59, 1993.

[21] Walker, D., π-Calculus Semantics of Object-Oriented
Programming Languages, Proceedings of Theoretical
Aspects of Computer Software’91, LNCS 526, p532-
547, Springer-Verlag, 1991.

[22] Wegner, P., Concepts and Paradigms of Object-
Oriented Programming, ACM OOPS Messenger,
Vol.1, No.1, August, 1990.

[23] Yi, W., CCS + Time = an Interleaving Model for
Real Time Systems, Proceedings of ICALP’91, LNCS
510, p217-228, 1991.

[24] Yonezawa, A., and Tokoro, M., (ed), Object-Oriented
Concurrent Programming, MIT Press, 1987.

program
class Writer is

var Y
method start(X) in

return true ;
Y := X::put(1) timeout 3 ;

· · · · · ·

endm
endc
class Reader is

var Y
method start(X) in

return true ;
Y := X::get(0) timeout 3 ;

· · · · · ·

endm
endc

class Buffer is
var Y

new
Y := error

method put(X) in
Y := X ;
return true

endm
method get(X) in

return Y
endm

endc
is

var B var R var W var X var Y
in

B := Buffer::new ;
W := Writer::new ;
R := Reader::new ;
X := W::start(B) timeout 5 ;
Y := R::start(B) timeout 5

endp

Figure 11: Reader/Writer Program

Appendix

In this appendix we show a sketch of an analysis of
a real-time program described in RT . We consider a
reader/writer problem program as shown in Figure 11.
This program is constituted of an instance object of
class Buffer, an instance object of class Writer, and
an instance object of class Reader. The writer (read-
er) instance is invoked by a start message and then
performs a get (put) method call with time constraint
and then continues its own execution. Note that since
in RT each instance contains at most one activity, the
put method and get method of the buffer instance are
never executed simultaneously.

By using the translation rules we will encode the pro-
gram presented in Figure 11 into expressions of RtCCS
as follows:

[[program · · · is · · · endp]] = Prog where

Prog
def
= ([[class Buffer · · · endc]]|

[[class Writer · · · endc]]|
[[class Reader · · · endc]]|
([[var B · · · var Y]] Before

[[B:=Buffer :: new; · · · timeout 5]])
ObjId0|MachineN)

where N is the number of available processors.

We introduce the following convenient notation to sim-
plify the translation expression,

(t).P
def= 〈0, P 〉t

where (t).P means that the execution of P is suspended
for t time units.

We first consider class Buffer declaration. The decla-
ration is translated into the RtCCS expressions shown
in Figure 12.

From the translated expression, we analyze the tempo-
ral properties of the instance of the class. For example,
there are two run· · ·(tstat)· · ·idle sequences in “newBuffer

· · · Body ′
Buffer,i” corresponding the initialization part

of the instance. Hence, we know that the initialization
time of an instance of Buffer is two tstat time units.
However, such a translated expression may be rather
complex. Therefore, we formulate a useful method to
reduce the complexity of the translated expressions,
by using an equivalence relation.

Definition 1 Let us define P
µ̂

=⇒ P ′ as P (τ−→
)∗

µ−→ (τ−→)∗P ′ if µ 6= τ and if otherwise P (τ−→)∗P ′.
A binary relation S ⊆ P × P is a timed weak bisim-
ulation if (P,Q) ∈ S implies, for all µ ∈ Act ∪ {√} is
given by:

(i) Whenever P
µ−→ P ′ then, for some Q′,

Q
µ̂

=⇒ Q′ and (P ′, Q′) ∈ S.

(ii) Whenever Q
µ−→ Q′ then, for some P ′,

P
µ̂

=⇒ P ′ and (P ′, Q′) ∈ S.

[[class Buffer var Y · · · endc]] = ClassDecBuffer where

ClassDecBuffer
def
= newBuffer .getid(i).idBuffer (i).(ClassDecBuffer |

run.((LocY |done.0)[b/done]|b.(tstat).idle.

run.((res(error).0|res(x).writeY (x).done.0) \ {res}[b/done]|b.(tstat).idle.
BodyBuffer ,i) \ {b}) \ {b} \ LY)

BodyBuffer ,i

def
= (calli,put(x).(ans(y).reti,put(y).0|LocX |writeX(x).(

run.((readX(z).res(z).0|res(u).writeY (u).done.0) \ {res}[b/done]|b.(tstat).idle.

run.((res(true).0|res(w).ans(w).done.0) \ {res}[b/done]|b.(tstat).idle.

endm.0) \ {b}) \ {b})) \ LX \ {ans}
+ calli,get(x).(ans(y).reti,get(y).0|LocX |writeX(x).(

run.((readY (z).res(z).0|res(u).ans(u).done.0) \ {res}[b/done]|b.(tstat).idle.

endm.0) \ {b})) \ LX \ {ans} | endm.BodyBuffer ,i) \ {endm}

Figure 12: Translation of Buffer class declaration

ClassDecBuffer ≈T ClassDec′
Buffer

ClassDec′
Buffer

def
= newBuffer .getid(i).idBuffer (i).(ClassDec′

Buffer |run.(LocY |(tstat).idle.

run.writeY (error).(tstat).idle.Body ′
Buffer ,i) \ LY)

Body ′
Buffer ,i

def
= calli,put(x).run.writeY (x).(tstat).idle.

run.reti,put(true).(tstat).idle.Body ′
Buffer ,i

+ calli,get(x).run.readY (y).reti,put(y).(tstat).idle.Body ′
Buffer ,i

Figure 13: Equivalent expression of Buffer class declaration

Let “≈T ” denote the largest timed weak bisimulation,
and call P and Q timed observation equivalent if P ≈T
Q.

Intuitively, if P and Q are timed observation equiva-
lent, each action of P must be matched by a sequence
of actions of Q with the same observable contents and
timings, and conversely.

The equivalence can equate objects (processes) that
are not distinguishable by the observable behavior and
the timing of their computations. Especially, encapsu-
lation in object-orientation prevents the internal com-
putation of an instance object from interacting with it-
s external environment, vice versa. Consequently, the
above timed equivalence is appropriate and practical
to equate two objects whose internal implementations
are different from one another. We leave the further
details on the equivalence to [15].

By using the equivalence, ClassDecBuffer can be trans-
formed into an equivalent process ClassDec′Buffer that
has substantially less complexity in its structure as
given in Figure 13. Since the simplified expression
completely coincides with its original one in their ex-
ternal behaviors and timings, we can easily analyze the
external properties of the class declaration through the
simplified expression.

Also, we should emphasize that the timed observation
equivalence provides a powerful method to verify real-
time programs. For example, let ClassDec′Buffer be a
specification of the buffer class and let ClassDecBuffer

be an implementation of the class. The result in Fig-
ure 13 shows that the implementation satisfies the ex-
ternal behavioral requirements and their timing ones
in the specification.

By using a similar way, we can reduce the complexity
of the other translated expressions as given in Figure
14.

We present notable algebraic properties of the timed
observation equivalence.

Proposition 2 Let P1 ≈T P2. Then

(1) α.P1 ≈T α.P2 (2) P1|Q ≈T P2|Q
(3) P1 \ L ≈T P2 \ L (4) P1[f] ≈T P2[f]
(5) 〈Q,P1〉t ≈T 〈Q, P2〉t

The above proposition shows that the timed observa-
tion equivalence is preserved by all operators that are
used to combine RtCCS expressions translated from
RT ’s class declarations, statements, and expression-
s. Therefore, we guarantee that the above simplified
expressions are substitutable for their own original ex-
pressions.

[[class Writer var Y · · · endc]] ≈T ClassDec′
Writer where

ClassDec′
Writer

def
= newWriter.getid(i).idWriter(i).(ClassDec′

Writer |
run.(LocY |(tstat).idle.Body ′

Writer ,i)) \ LY

Body ′
Writer ,i

def
= calli,start(j).(LocX |writeX(j).run.reti,start(true).(tstat).idle.

run.(〈callj,put(1̂).retj,put(x).reply(x).0 , abort.0〉3 |
〈reply(y).writeY (y).(tstat).idle. · · · · · ·Body ′

Writer ,i , reply(y).0 + abort.0 |
writeY (error).(tstat).idle. · · · · · ·Body ′

Writer ,i〉3) \ {reply, abort}) \ LX

[[class Reader var Y · · · endc]] ≈T ClassDec′
Reader where

ClassDec′
Reader

def
= newReader.getid(i).idReader(i).(ClassDec′

Reader |
run.(LocY |(tstat).idle.Body ′

Reader,i)) \ LY

Body ′
Reader,i

def
= calli,start(j).(LocX |writeX(j).run.reti,start(true).(tstat).idle.

run.(〈callj,get(0̂).retj,get(x).reply(x).0 , abort.0〉3 |
〈reply(y).writeY (y).(tstat).idle. · · · · · ·Body ′

Reader ,i , reply(y).0 + abort.0 |
writeY (error).(tstat).idle. · · · · · ·Body ′

Reader ,i〉3) \ {reply, abort}) \ LX

[[var B var W var R var X var Y]] Before [[B:=Buffer :: new; · · · Y:=R::start(B) timeout 5]] ≈T Initial ′

where Initial ′
def
= (run.(tstat).idle.)5

run.newBuffer .idBuffer (i).(tstat).idle.

run.newWriter .idWriter (j).(tstat).idle.

run.newReader .idReader (k).(tstat).idle. A

A
def
= run.(〈callj,start(i).retj,start(x).reply(x).0 , abort.0〉5 |

〈reply(y).(tstat).idle.B , reply(y).0 + abort.0 | (tstat).idle.B〉5) \ {reply, abort}
B

def
= run.(〈callk,start(i).retk,start(x).reply(x).0 , abort.0〉5 |

〈reply(y).(tstat).idle.0 , reply(y).0 + abort.0 | (tstat).idle.0〉5) \ {reply, abort}

Figure 14: Equivalent expressions of Reader, Write class and initial program

The entire program can be constructed by a parallel
composition of the simplified expressions as follow:

Prog ≈T Prog ′ where

Prog ′ def
= (ClassDec′

Buffer |ClassDec′
Writer |

ClassDec′
Reader |ObjId0|

MachineN |Initial ′)

By expanding the above simplified expressions9, we
can analyze both the behavioral properties of the en-
tire program and its temporal properties through the
theoretical framework of RtCCS. Particularly, the up-
per bound of available processors can be specified as
N in MachineN and thus we can predict the execution
of programs with a given number of processors. From
the above expression we know that, for example, let
N = 2, then put (or get) method call may occasional-
ly timeout and the execution of the program described
in Figure 11 takes from 14 tstat to 16 tstat time units.
The final content of variable Y in Writer’s instance
and that of Reader’s one are non deterministic. Let

9We omit the expansion and the detail analysis for lack of
space.

N ≥ 3, then no method calls timeouts and the exe-
cution of the program takes from 12 tstat to 13 tstat

time units (N = 3), or 12 tstat time units (N ≥ 4).
The final content of variable Y in Writer’s instance
and that of Reader’s one are deterministic (true and
1 respectively).

