
MobileSpaces: A Framework for Building Adaptive Distributed

Applications Using a Hierarchical Mobile Agent System

Ichiro Satoh ∗

Department of Information Sciences, Ochanomizu University
2-1-1 Otsuka Bunkyo-ku Tokyo 112-8610, Japan

E-mail: ichiro@is.ocha.ac.jp

Abstract

This paper presents a new framework for constructing mo-
bile agents. The framework introduces the notion of agent
hierarchy and inter-agent migration and thus allows a group
of mobile agents to be dynamically assembled into a single
mobile agent. It provides a powerful method to construct
a distributed application, in particular a large-scale mobile
application. To demonstrate how to exploit our framework,
we construct an extensible and portable mobile agent system
based on the framework. The system is implemented as a
collection of mobile agents and thus can dynamically change
and evolve its functions by migrating agents that offer the
functions. Also, mobile agent-based applications running on
the system can naturally inherit the extensibility and adapt-
ability of the system.

1 Introduction

Mobile agents are autonomous programs that can travel from
computer to computer under their own control. They can pro-
vide a convenient, efficient, and robust framework for im-
plementing distributed applications including mobile appli-
cations. On the other hand, component-based software devel-
opment technology is being used widely [14] as a powerful
approach for the development of distributed applications. The
technology allows us to combine a collection of subcompo-
nents into an application or a large-scale component. How-
ever, existing mobile agent systems unfortunately lack any
mechanism for structurally assembling more than one mobile
agent. This is a serious limitation in the development of a
mobile agent-based application which is large in scale and
complicated.

Moreover, a mobile agent system often needs to be used
in heterogeneous environments, for example PDAs, embed-
ded computers, and wireless networks, and is often required
to provide visiting agents with the services that they need

∗Also with PRESTO, Japan Science and Technology Corporation

and may not have been initially supported. However, most
existing mobile agents systems are inherently dependent on
particular environments and cannot dynamically evolve and
adapt themselves to the requirements of visiting agents and
the execution environments.

To solve the above problems, this paper proposes two con-
cepts, agent hierarchy and inter-agent migration. The former
means that each mobile agent can be a container of other mo-
bile agents inside itself, and the latter allows mobile agents
to move inside other mobile agents as well as inside other
computers. These concepts enable us to organize more than
one mobile agent into a single mobile agent and introduce
agent migration as a meta mechanism of dynamically chang-
ing and extending mobile agent-based applications. We try
to construct a extensible and portable mobile agent system
built on the Java language [2]. The system is characterized in
that it allows a group of mobile agents to be composed hier-
archically and its architecture itself is structured based on the
concepts.

We should explain the reason our hierarchical mobile
agent model is needed in the development of distributed ap-
plications. Although existing software development method-
ologies, including object orientation, construct large and
complex mobile applications, such applications are essen-
tially static and monolithic in the sense that they are not
adaptable. Moreover, a large-scale application software pro-
gram is often constructed as a collection of subcomponents.
Consequently, a mobile application needs to be migrated as a
whole with all its subcomponents. Our hierarchical model
can naturally introduce mobile agents as mobile software
components and can easily construct a large-scale and adapt-
able mobile application as a compound mobile agent.

This paper consists of the following sections. In Sec-
tion 2, we present the basic ideas of the system presented
in this paper. Section 3 presents a mobile agent system called
MobileSpaces. In Section 4, we outline agent programs in
the system and applications running on the system, and in
Section 5 we describe the current implementation status and
present some results of our basic evaluation. Section 6 sur-

1

veys related work and Section 7 gives some concluding re-
marks.

2 Basic Concepts

Our mobile agents are computational entities like other mo-
bile agents. When each agent migrates, not only the code
of the agent but also its state can be transferred to the des-
tination. Furthermore, our mobile agent framework has the
following unique concepts:

• Agent Hierarchy: Each mobile agent can be contained
within one mobile agent.

• Inter-agent Migration: Each mobile agent can migrate
between mobile agents as a whole with all its inner
agents.

migrationstep 1

step 2

Agent A Agent B

Agent C

Agent D
Agent E

Agent A Agent B

Agent C

Agent D
Agent E

Figure 1: Agent Hierarchy and Inter-agent Migration

Mobile agents are organized in a tree structure and mi-
grated as shown Figure 1. When an agent contains other
agents, we call the former agent a parent the latter agents
children. We call the agents which are nested by an agent,
the descendent agents of the agent, and conversely we call
the agents which are nesting an agent, the ancestral agents of
the agent. Parent agents are responsible for providing their
own services and resources to their children, and can directly
access services and resources offered by their children.

Mobile Agents as Mobile Components

The first concept enables us to construct a mobile application
by organizing more than one mobile agent, instead of con-
structing a large and monolithic mobile agent. The second
concept allows a group of mobile agents to be treated as a
single mobile agent. This is needed for the development of a
mobile application, because a large-scale mobile application
is often composed of a collection of subcomponents. Conse-
quently, our mobile agents can be viewed as the mobile soft-
ware components that have been studied in component-based
software development technology [14].

Extensibility and Adaptability

Our concepts can make use of agent migration as a meta
mechanism for changing and evolving a system consisting
of one or more mobile agents. Each parent agent gives its
own services and resources to its children. Therefore, when a
mobile agent wants different services, the agent can acquire
those services by migrating to the agent providing those ser-
vices.

Also, our framework allows a system to be constructed
as a collection of mobile agents. Such a system can cus-
tomize its structure and its functions by migrating agents into
it, while the system is running. In this paper, we try to con-
struct a mobile agent system whose runtime system itself is
implemented based on the framework. The system is exten-
sible in the sense that it can dynamically change and adapt
itself to its environment and the requirements of its executing
mobile agents.

3 The MobileSpaces Mobile Agent
System

This section presents a mobile agent system named Mo-
bileSpaces. The system can execute and migrate mobile
agents that are incorporated with the framework presented in
the previous section. Moreover, the architecture of the system
is characterized in being based on the framework.

It is built on the Java virtual machine and mobile agents
are given as Java objects [2]. The structure of the system
is similar to a micro-kernel architecture as shown in several
operating systems. That is, it consists of two parts: a core
system and subcomponents as shown in Figure 2. The for-
mer offers only minimal and common functions independent
of the underlying environment. The latter is introduced as
a collection of subcomponents outside the core system and
provides the other functions. All the subcomponents are im-
plemented as mobile agents so that these subcomponents can
be dynamically added to and removed from the system by
migrating and replacing the corresponding agents.

3.1 The Core System

The core system is made as small as possible for the sake of
portability and offers only the following minimal facilities:
(1) agent hierarchy management, (2) agent execution man-
agement, and (3) serialization and deserialization of agents.

Agent Hierarchy Management

Each agent hierarchy is given as a tree structure in which each
node contains a mobile agent and its attributes. Agent migra-
tion in an agent hierarchy is performed as merely a transfor-
mation of the tree structure of the hierarchy. Since each agent

Java Virtual Machine

MobileSpaces

Core System
Agent
Hierarchy
Manager

Agent
Execution
Manager

Agent
Serialization
Manager

Transmitter
Agent

Storage
Agent

Agent A

Agent C

Agent B

Agent D

Agent E

Agent F

subcomponents implemented
as mobile agents

Mobile Agents

Figure 2: Architecture of MobileSpaces

hierarchy is basically maintained inside a computer, when an
agent is moved in the same agent hierarchy, it and its descen-
dent agents can still be running. Also, the core system cor-
responds to a stationary agent, called the base agent, at the
root node of the tree structure. Consequently, agents can be
viewed as the only constituent of our mobile agent system.

Each destination agent can judge whether it accepts a new
visitor or not beforehand, whereas a visiting agent can know
the available methods provided by the destination agent by
using the class introspector mechanism of JDK 1.1. Also, an
agent can be dynamically replaced by a new agent which is
equipped with all the public methods supported by the orig-
inal one, but the current implementation of our system does
not allow the new agent to inherit any internal state of the old
agent.

Agent Execution Management

The core system can control all the agents in its agent hierar-
chy, under the protection of the JDK1.1 security manager.

Each agent has direct control of its descendent agents.
That is, an agent can instruct its descendent agents to move
to other agents, serialize and destroy them. Moreover, each
agent can directly invoke all the public methods of its descen-
dent agents.1

In contrast, each agent has no direct control over its an-
cestral agents. Instead, each agent can have a collection of
service methods which can be accessed by its children, in-
stead of its descendant. A child agent can invoke the service
methods provided by its parent under the control of the par-
ent. In addition, each agent can access the service methods
provided by its ancestral stationary agents, including the base
agent.

Each agent can have one or more activities which are im-
plemented by using the Java thread library. Furthermore, the

1The current implementation of MobileSpaces permits a parent agent to
obtain references to the Java objects corresponding to its descendants.

core system maintains the life-cycle of agents: initialization,
execution, suspension, and termination. When the life-cycle
state of an agent is changed, the core system issues certain
events to the agent and its descendent agents. The system can
impose specified time constraints on all method invocations
between agents in order to avoid being blocked forever.

It is worth mentioning why we have imposed the restric-
tion that a mobile agent may not access any services sup-
ported by ancestral agents other than their parent and sta-
tionary agents. This restriction is a key idea for allowing
successful migration to occur. If it were not imposed, then
migrating an agent could mean that the descendants of that
agent might suddenly find they could no longer access ser-
vices upon which they relied.

Serialization and Deserialization of Agents

When an agent is transferred, it has to be marshaled into a
bit-stream and then unmarshaled from it later. The core sys-
tem provides a mechanism for marshaling and unmarshaling
the states of agents. The reader may wonder why the mech-
anism is provided by the core system instead of subcompo-
nents. This is because the core system has to check whether
the serialized agent is valid or not in order to protect the
whole system against invalid or malicious agents. The cur-
rent implementation of our system uses the standard JAR file
format for passing agents that can support digital signatures,
allowing for authentication.

Our system uses the Java object serialization package for
marshaling agents. The package does not support the captur-
ing of stack frames of threads. Consequently, our system can-
not serialize the execution states of any thread objects.2 In-
stead, when an agent is serialized, the core system propagates
certain events to its descendent agents in order to instruct the
agent to stop its active threads, and then automatically stops
and serializes them after a given time period.

3.2 Mobile Subcomponents

The core system supports only the functions independent of
the underlying environment. Instead, the other functions are
provided by subcomponents implemented as mobile agents
outside of the core system. Also, agent migration is intro-
duced as a basic mechanism for obtaining and changing func-
tions provided by subcomponents. That is, when an agent
wants to make use of a new function, the agent migrates into
one of the agents which can offer the function.

Agent Migration between Computers

Agent migration between different computers is offered by
subcomponents, called transmitter mobile agents, instead of

2This limitation is not serious in the development of real mobile agent-
based applications, as discussed in [13].

the core system. Transmitter agents are allocated on hosts.
Each transmitter agent can exchange its inner agents with
each other through its favorite communication protocol (as
shown in Figure 3). When a mobile agent is preparing for a
trip, the agent migrates itself into an appropriate transmitter
agent.

The transmitter suspends the moving agent (including its
nesting agents) and then serializes its state, classes, and desti-
nation address into a proper form for its communication pro-
tocol. Next, it transfers the serialized agent to a transmitter
agent on the destination side. The transmitter agent receives
the data and then reconstructs an agent (including its nesting
agents) according to the data.

Each runtime system can be equipped with more than one
transmitter agent in order to exchange agents through vari-
ous communication protocols and networks. We have already
implemented several transmitter agents which can transport
their inner agents via several communication protocols such
as TCP, UDP, and SMTP.

Transmitter Agent Transmitter Agent

serialized agents

migration
Agent A Agent B Agent A Agent B

migration

network

Computer A Computer B

Agent A Agent B

Figure 3: Transmitter Mobile Agents

Storage Service

Although the core system can serialize the states of agents
into a bit-stream, the way to store and restore such a bit-
stream in secondary storage is often dependent on the under-
lying system, such as operating system and hardware. There-
fore, we introduce storage agents which can store their inner
agents on secondary storages in their favorite ways. When
an agent is to be stored onto a disk, the agent migrates into
a storage agent corresponding to the disk. The storage agent
serializes and stores the states and codes of its visiting agents
as persistent data on the disk.

We have implemented a lot of mobile agent-based sub-
components for supporting various services for agents, such
as agent termination, agent duplication, inter-agent commu-
nication, and resource management in addition to agent mi-
gration and storage.

3.3 Adaptability

Our system allows its functions to evolve and adapt to the ex-
ecution environment and the requirements of visiting agents
by migrating and changing mobile agent-based subcompo-
nents for supporting the functions.

It is often argued that the advantage of agent migration lies
in the reduction of communication costs in distributed com-
puting settings. Although this argument is understandable,
our system can make use of agent migration as a meta opera-
tion for mobile agents. When an agent wants a service, it can
access the service by migrating itself to the agent which pro-
vides the service. The semantics and properties of an agent
are partially provided by its parent agent and these can be
changed by moving to other agents. In this sense, a par-
ent agent can be viewed as a meta interpreter of its children.
Agent migration in the agent hierarchy is accomplished with
the go() command and each mobile is referenced by Uni-
form Resource Locators (URLs). The following statement
requests an agent migration over the network.

go(new AgentURL("TCP-TRANSMITTER
://some.where.com/agent1/agent2"));

where TCP-TRANSMITTER denotes a transmitter agent
which migrates its inner agents at TCP-based communica-
tion. When an agent performs the above command, the agent
enters the transmitter agent to request that it is migrated into
an agent which is a child agent, named agent2, of the
agent1 agent included in the base agent running on the host
addressed as some.where.com.

In our framework, agent migration is introduced as a uni-
fied mechanism for operating mobile agents in addition to
agent migration as follows:

go(new AgentURL("FILE:///agent.jar"));

where FILE denotes a storage agent which can store its vis-
iting agents in a secondary storage. When an agent per-
forms this command, the agent migrates into the storage
agent in order to request for itself to be stored in a file, named
agent.jar.

Our system allows a single service to be offered by more
than one agent. Hence, each mobile agent can be provided its
required service by one of the most suitable agents which can
realize the service in the current execution environment.

To specify such suitable agents dynamically, our URLs
can contain the form $(variable), where variable de-
notes a variable name whose value is a string. These vari-
ables can be associated with environment variables provided
by the shell program or the operating system as a dynamic
URL (studied in [12, 15]). The current implementation of
our system ensures that the underlying operating system can
reflect changes in the values of its environment variables. We
show an extended URL including variables as follows:

$(TRANSMITTER)://some.where.com/agent1/agent2

where $(TRANSMITTER) is a variable for specifying trans-
mitter agents which can migrate their inner agents to re-
mote computers. When the value of the TRANSMIT-
TER environment variable is TCP-TRANSMITTER, which

specifies a transmitter agent, the above URL is inter-
preted as TCP-TRANSMITTER://some.where.com/
agent1/agent2. When the network environment is
changed, the operating system can detect the change and up-
date the value of the TRANSMITTER environment variable
so that the value refers to one of the most suitable agents in
the current execution environment. Consequently, agent mi-
gration can be dynamically adapted to the current network
environment.

4 Mobile Agents in the MobileSpaces
System

In the MobileSpaces system, each agent consists of an agent
program and an agent context implemented in Java language.
The former defines the behavior of the agent and offers meth-
ods directly accessed by its parent agent. The latter defines
methods indirectly accessed by its children, as shown in Fig-
ure 5. In addition, each agent has its own name based on
the agent hierarchy. Every agent is equipped with a mes-
sage queue for incoming messages and a message manager
for communication among its child agents.

Child Agent A

an event from the base
agent or an ancestor

event handler (listener)

method 1
method 2
method 3

state

service method 1

service method 2

callback

state

getService()

Child Agent B

Agent

agent
context

agent
program

Figure 4: MobileSpaces Mobile Agent

4.1 Agent Program

Every agent program has to be an instance of a subclass of
abstract class Agent. The Agent class consists of some
fundamental methods used to control the mobility and the
life-cycle of a mobile agent.

public class Agent extends MobileObject {
// (un)registering a context for its children
void addChildrenContext(Context context){ ... }
void removeChildrenContext(Context con-

text){ ... }
// registering listeners to hook certain events

void addDefaultListener(
DefaultEventListener listener){ ... }

void removeDefaultListener(
DefaultEventListener listener){ ... }

// registering a name in an environment variable
void register(String name, String value)

throws ... { ... }
// migrating the agent specified as url1 to
// the target agent specified as url2
void go(AgentURL url)

throws NoSuchAgentException ... { ... }
void go(AgentURL url1, AgentURL url2)

throws NoSuchAgentException ... { ... }
// asking its parent agent a message
void getService(Message msg)

throws NoSuchMethodException ... { ... }
// issuing an event to an agent specified as url
void dispatchEvent(AgentURL url, AgentEvent evt)

throws ... { ... }
....

}

We explain some methods defined in the Agent class as fol-
lows:

• When an agent performs the go(AgentURL url)
method, the agent migrates itself to the destination agent
specified as url.

• A child agent cannot access any methods defined in its
parent agent. Instead, each parent agent can be equipped
with a context object which offers service methods in
a subclass of the Context class, like the Applet-
Context of Java’s Applet. These methods can be indi-
rectly accessed by its children to get information about
and interact with the environment such as their parent
agent, their sibling agents, and the underlying computer
system. Each child agent can invoke the public meth-
ods defined in the context of its parent agent by means
of the getService() method defined in the Agent
class. If any method corresponding to the called method
is not in its parent agent, the presence of a correspond-
ing method is tested at stationary agents, including the
base agent, which are ancestral to the agent.

• The dispatchEvent(AgentEvent evt)method
propagates an event specified as its argument to
its descendants, whereas the dispatchEvent(URL
url, AgentEvent evt) method issues an event to
the agent specified as url.

Our system has an event mechanism based on the delegation-
based event model introduced in the Abstract Window Toolkit
of JDK 1.1 or later and thus each agent must be informed
indications of such life-cycle state changes and can release
various resources, such as files, windows, and sockets, which
are captured by the agent.

To hook these events, each agent can have one or more lis-
tener objects. A listener object implements a specific listener

interface extended from the generic AgentEventLis-
tener interface. The AgentEventListener interface
defines callback methods which should be invoked by the
core system before or after the life-cycle state of the agent
changes. One of the most basic listener interfaces, De-
faultEventListener is shown as follows:

interface DefaultEventListener
extends AgentEventListener {
// invoked after creation at url
void create(AgentURL url);
// invoked before termination
void destroy();
// invoked after accepting a child
void add(AgentURL child);
// invoked before removing a child
void remove(AgentURL child);
// invoked after arriving at the destination
void arrive(AgentURL dst);
// invoked before moving to the destination
void leave(AgentURL dst);
....

}

The above interface specifies fundamental methods invoked
by the core system, when agents are created, destroyed, per-
sisted, and migrated to another agent.

4.2 Examples

Transmitter Agents

Suppose an agent migrates between two computers by us-
ing transmitter agents as presented in the previous section.
The following code fragment is the SimpleTransmitter
class which defines a simple transmitter agent. Each Sim-
pleTransmitter agent can exchange agents with each
other via a given communication protocol.

public class SimpleTransmitter extends Agent
implements DefaultEventListener, Runnable {
public SimpleTransmitter() {

// registering itself as a listener
addDefaultListener(this);
// registrating a context for children
addChildrenContext(new BaseContext);
// naming itself as SIMPLE-TRANSMITTER in
// the TRANSMITTER environment variable
register("SIMPLE-TRANSMITTER","TRANSMITTER");

}
public void create(AgentURL url) {

// executing itself as an active program
setAutonomous(true)

}
// invoked at having a visiting child agent
public void add(AgentURL url) {

// serializing the arrival agent
Message msg = new Message("serialize");
msg.setArg(url.getSource());
byte[] data = (byte[])getService(msg);
// sending the agent to its target host
send_agent(data, url.getTarget();

}

public run() {
while(true) {

// receving the data
receive_agent(byte[] data);
// deserializing data as an agent
Message msg = new Message("deserialize");
msg.setArg(data);
AgentURL url = (AgentURL)getService(msg);
...

}
...

}
...

}

When an agent in the agent hierarchy performs the following
code:

go(new AgentURL("$(TRANSMITTER)
://some.where.com/agent1/agent2"));

where $(TRANSMITTER) is an environment variable for
specifying transmitters. We now assume that the Sim-
pleTransmitter agents are running in both comput-
ers and $(TRANSMITTER) variables are given as TCP-
TRANSMITTER by the underlying system, such as operating
system, which can monitor the execution environment.

The above code is interpreted as follows: after perform-
ing the go() method, the agent enters the transmitter agent
specified as the value of the $(TRANSMITTER) variable,
and asks the transmitter agent to migrate itself into the
/agent1/agent2 agent located at the computer addressed
as some.where.com. Next, the add(AgentURL url)
method defined in the SimpleTransmitter class is in-
voked with the identifier of the entering agent accompanied
the original destination address. The SimpleTransmit-
ter agent asks the base agent to serialize the migrating agent
into a transmittable data and then it sends the data to the target
computer some.where.com. On the receiver side, a Sim-
pleTransmitter agent receives and then reconstructs the
serialized agent according to the received data at the destina-
tion agent, i.e., /agent1/agent2.

Mobile Compound Documents

The above example is a just trivial program but there have
been a lot of practical examples of the framework presented
in this paper. One of the most illustrative examples of the
framework is the implementation of the system itself, because
its architecture and adaptability are based on the framework.
Also, we have constructed various mobile agent-based appli-
cations running on the system, for example workflow man-
agement, CSCW, distributed information retrieval, active net-
works, and so on.

One of the most important examples is applications based
on the concept of compound documents like OpenDoc de-
veloped by Apple Computer and IBM [1]. Our agent hierar-
chy allows compound documents given as mobile agents to

be dynamically composed into a compound document, while
traditional mobile agents are isolated programs and thus can-
not support any compound documents.

We have constructed an electronic mail system where each
letter is a mobile agent incorporated with the framework pre-
sented in this paper. Therefore, each letter can contain more
than one mobile agent-based component, i.e., text, graphics,
and animation on the document of the letter as shown in Fig-
ure 5 and 6. Users can edit these inner components written
in arbitrary data formats, because they are mobile agents and
thus can include programs to edit their own contents. For
example, to edit the text, simply click on it, and its editor
program is invoked. The letter agent can autonomously de-
liver itself and its inner components to the destination. The
receiver can read all the contents of the arriving letter, be-
cause the letter is a mobile agent that contains components
for viewing the contents.

Text Editor
Component
(Child Mobile Agent)

Image Viewer
Component
(Child Mobile Agent)

Letter Component
(Parent Mobile Agent)

Figure 5: Window of the Compound Letter Agent

Letter Component
(Parent Mobile Agent)

image

viewer
text

editor
layout manager

mail transfer

Text Editor
Component

(Child Mobile Agent)

Image Viewer
Component

(Child Mobile Agent)

migration

Figure 6: Structure of the Compound Letter Agent

5 Implementation and Performance

The MobileSpaces mobile agent system has been imple-
mented in the Java language (JDK1.1 or later version). The
core system is constructed independently of the underlying
system and can run on any computer with a 1.1-compatible
Java runtime. We have tried to keep the implementation
within the framework as much as possible.3

3An implementation of the mobile agent system, including its examples
is available from http://islab.is.ocha.ac.jp/.

Even though our implementation was not built for per-
formance, we have performed a basic experiment of agent
migration for two cases: agent migration in an agent hier-
archy and agent migration between two computers (Pentium
II-300 MHz with WindowsNT 4.0 and JDK 1.1.8) connected
by 10BASE-T Ethernet. The moving agent is a simple im-
plementation of the DefaultEventListener interface
presented in the previous section.

Table 1: The time of agent migrations (msec)

time
agent migration in an agent hierarchy 5
agent migration between two computers 30

The first result is the time of an agent migration in an agent
hierarchy, and includes the cost to check whether the visiting
agent is permitted to enter the destination agent or not. In the
second experiment, agent migration is supported by transmit-
ter agents allocated on two computers. Each transmitter agent
can communicate with the other by using an application-level
protocol for agent transmission whose mechanism is modeled
on that of the HTTP protocol over TCP/IP communication.
On the sender side, a transmitter agent serializes and transfers
the codes and state of an agent (including its inner agents)
to the transmitter on the receiver side and waits for an ac-
knowledgment message. The marshaled agent consists of its
serialized state, its codes, and its attributes such as name and
capability, and is packed and compressed into a bit-stream
which amounts to 1.5Kbytes. The second result is the sum
of the marshaling, zip-based compression, opening TCP con-
nection, transmission, security verifications, decompression,
and unmarshaling.

6 Related Work

The notion of agent hierarchy presented in this paper is sim-
ilar to a process calculus for modeling process migration
called mobile ambients [5]. The calculus can formalize a
mobile process including other mobile processes like ours,
but it is just a theoretical framework. Therefore, to develop a
practical implementation of the calculus, we must change its
whole semantics.

Moreover, a lot of mobile agent systems have been re-
leased nowadays, for example see Aglets [9], MOA [10],
Mole [13], Telescript [16], and Voyager [11]. To our knowl-
edge, no existing mobile agent systems, including mobile
object systems, are based on the concept of agent hierar-
chy proposed in this paper. Mole introduces the notion of
agent groups in order to encourage coordination among mo-
bile agents [3]. Mole’s agent groups can consist of agents
working together on a common task, but they are not mobile.

Also, Telescript and MOA introduce the concept of places in
addition to mobile agents. Places are agents which can con-
tain mobile agents and places inside them, but they are not
mobile. Our mobile agent system, on the other hand, allows
one or more mobile agents to be dynamically organized into
a single mobile agent, and thus we do not have to distinguish
between mobile agents and places. Therefore, a distributed
application, in particular a mobile application, that is large in
scale and complex can be easily constructed by combining
more than one agent.

Our mobile agent system is characterized by its extensibil-
ity and adaptability in contrast to existing mobile agent sys-
tems that cannot extend and adapt their functions to their ex-
ecution environments while they are running. In the literature
on extensible operating systems and meta-level architecture,
several researchers have explored frameworks to change the
behavior of operating systems and applications according to
their environments (for example, see [4, 6, 8, 17]). These
systems can adapt themselves to their surrounding environ-
ments by means of special operations such as code migration
or meta-level semantics. Most of them are not designed for
constructing mobile applications and thus lack any mecha-
nism for the migration of running applications. MROM [8]
introduces the notion of meta-level semantics into mobile ob-
jects, but its mobile objects are essentially designed as iso-
lated entities and thus cannot construct any large-scale mo-
bile application as a compound mobile object. The Apertos
operating system [17] introduces the notion of object migra-
tion as a meta mechanism like ours, but it needs to distin-
guish between meta-level semantics and base-level seman-
tics. However, unlike the Apertos system, our system in-
troduces agent migration as a single unified mechanism for
processing agents and changing the system without explicitly
introducing any meta-level semantics. As a result, it can nat-
urally and easily adapt and extend its own functions by means
of agent migration, which is one of the most essential mecha-
nisms in mobile agent computing. Also, mobile agent-based
applications running on the system can inherit the extensibil-
ity and adaptability of the system.

7 Conclusion

We presented a new framework for dynamically assembling
a group of mobile agents into a single mobile agent. This
framework makes two contributions. One of them is the pro-
viding of a powerful method to construct a mobile agent-
based application that is large in scale and complicated. It is
also useful in multi-agent technology because it can provide
a general programmable framework for coordinating mobile
agents. The other is the introduction of agent migration as
a meta mechanism to dynamically evolve and extend a sys-
tem consisting of one or more mobile agents. We have im-
plemented a mobile agent system based on the framework.

The system is unique in that it can dynamically change and
evolve its functions by migrating agents that offer the func-
tions, while other existing systems cannot do this. Also, mo-
bile agent-based applications running on the system can enjoy
the extensibility and adaptability of the system.

Finally, we would like to point out further issues to be
resolved. Security is essential in mobile agent computing.
The current implementation of the system relies on the JDK
1.1 security manager and provides a simple mechanism for
authentication of agents. However, many security features
are left open for the next release. Also, the programming
interface of the current implementation is not yet satisfactory.
We plan to design a more elegant and flexible interface.

References
[1] Apple Computer Inc., OpenDoc: White Paper, Apple Computer Inc.,

1994.

[2] K. Arnold and J. Gosling, The Java Programming Language, Addison-
Wesley, 1996.

[3] J. Baumann and N. Radounklis, Agent Groups in Mobile Agent Sys-
tems, Proceedings of Conference on Distributed Applications and In-
teroperable Systems, 1997.

[4] B. N. Bershad, et al, Extensibility, Safety and Performance in the SPIN
Operating System, Proceedings of Symposium on Operating Systems
Principles, 1995.

[5] L. Cardelli and A. D. Gordon, Mobile Ambients, Foundations of Soft-
ware Science and Computational Structures, LNCS, Vol. 1378, pp.
140–155, 1998.

[6] D. R. Engler, M. F. Kaashoek, and J. O. Toole, Exokernel: An Operat-
ing System Architecture for Application-level Resource Management,
Proceedings of Symposium on Operating Systems Principles, 1995.

[7] R. S. Gray, Agent Tcl: A Transportable Agent System, CIKM Work-
shop on Intelligent Information Agents, 1995.

[8] O. Holder and I. Ben Shaul, A Reflective Model for Mobile Soft-
ware Objects, IEEE International Conference on Distributed Comput-
ing Systems, pp.339-346, 1997.

[9] B. D. Lange and M. Oshima, Programming and Deploying Java Mobile
Agents with Aglets, Addison-Wesley, 1998.

[10] D. S. Milojicic, W. LaForge, and D. Chauhan, Mobile Objects and
Agents (MOA), Proceedings of USENIX Conference on Object Ori-
ented Technologies and Systems, April 1998.

[11] ObjectSpace Inc, ObjectSpace Voyager Technical Overview, Ob-
jectSpace, Inc. 1997.

[12] B. N. Schilit, and N. Adams, and R. Want, Customizing Mobile Appli-
cation, Proceedings of Workshop on Mobile Computing Systems and
Applications, IEEE Press, 1993.

[13] M. Strasser and J. Baumann, and F. Hole, Mole: A Java Based Mobile
Agent System, Proceedings of ECOOP Workshop on Mobile Objects,
1996.

[14] C.Szyperski, Component Software, Addison-Wesley, 1998.

[15] G. Voelker, and B. Bershad, Mobisaic: An Information System for a
Mobile Wireless Computing Environment, Proceedings of Workshop
on Mobile Computing Systems and Applications, IEEE Press, 1994.

[16] J. E. White, Telescript Technology: Mobile Agents, General Magic,
1995.

[17] Y. Yokote, The Apertos Reflective Operating System: The Concept and
its Implementation, Proceedings of OOPSLA’92, pp. 414–434, 1992.

