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Abstract— When a task is assigned to mobile agents, ones
suitable to perform the task need to be selected according to not
only their application-specific behaviors but also their mobilities.
The focus of current research, however, is on the development
of execution platforms and applications for mobile agents and
not on methodologies for the selection of mobile agents. This
paper presents a general approach for selecting mobile agents
according to their itineraries among multiple hosts. The approach
offers a process algebra-based language for formally specifying
the itineraries of mobile agents and an algebraic order relation
between two itineraries specified as terms of the language. The
relation can strictly decide whether or not the itineraries of
mobile agents can satisfy the itinerary required by a given task, in
the sense that the agents can migrate to all the hosts required by
the task in a permissible order specified by the task. A prototype
implementation of this approach was constructed on a Java-based
mobile agent system. It enables each mobile agent to specify its
itinerary as a term of the language and to migrate over a network
according to only the itinerary. Also, when it receives a task
request from its external environment, it can select a suitable
mobile agent to perform the task by using the order relation.
The paper also describes its prototype implementation and a
practical application.

I. INTRODUCTION

Mobile agents are software agents that can travel among
computers under their own control. Mobile agent technology is
being promoted as an emerging technology that makes it much
easier to design, implement and maintain distributed systems.
It may also be treated as a type of software agent technology,
but it is not always required to offer such intelligent capa-
bilities, for example reactive, pro-active, and social behaviors
which are features of existing software agent technologies.
This is because these capabilities tend to be large in scale
and processing, where each mobile agent should not consume
many computational resources, such as processors, memory,
files, and networks, at its destinations. Also, each mobile agent
must be made as small as possible because the size of a moving
agent seriously affects the cost of migrating it over a network.
Therefore, mobile agent-based distributed applications should
offer various small agents specialized for supporting their
particular tasks, rather than a few general-purpose agents for
supporting various tasks and they should select suitable agents
to perform the tasks requested by users.

For the same reason, it is difficult for each mobile agent
to dynamically generate an efficient itinerary among mul-
tiple hosts, because both the cost of discovering such an
itinerary and the size of its program tend to be large. This
problem becomes more serious when mobile agents are used
for network management, which is one of the most typical

applications of mobile agent technology [11]. This is because
network management systems must often handle networks
that may have various malfunctions and disconnections and
whose exact topology may not be known. Consequently, it
is almost impossible for each mobile agent to discover its
proper destinations on such networks. As a result, some
existing mobile agent-based applications assume that their
mobile agents are often launched with a set itinerary for greater
of agent migration efficiency over the networks. Moreover,
the itineraries of mobile agents must often be fixed to limit
the ranges of free movement of the agents for the reason of
security discussed in [4].

Nevertheless, current work on mobile agents focuses on the
creation of an infrastructure, that among other tasks, provides
functions and services that can be used by agents and a secure
environment for both the mobile agents and their local exe-
cution environment. Therefore, the tasks of selecting mobile
agents unfortunately have received little attention so far. That
is, mobile agent technology lacks general methodologies for
selecting mobile agents that can satisfy the itinerary required
by given tasks. On the other hand, there have been many
approaches for assigning tasks to non-mobile software agents
(for example, [28], [6]) and some of the approaches may be
available in the selection of mobile agents according to their
behaviors. Mobile agents also need to be selected according to
their itineraries among hosts in a network in addition to their
behaviors.

The goal of this paper is to establish a general approach for
selecting mobile agents according to their itineraries instead of
their application-specific behaviors. To select suitable agents,
we must analyze not only the itineraries that mobile agents
can migrate along but also the itineraries that a given request
requires candidates to migrate along. The both itineraries are
various and complex. As a result, it is difficult and tedious
to judge whether or not each of the candidates can satisfy
the required itinerary. To solve this problem, the approach
proposes a theoretical foundation for specifying and reasoning
about the itineraries of mobile agents. It offers a process
algebra-based specification language for the itineraries that
mobile agents are able and required to migrate along and
an algebraic relation for comparing the itineraries of mobile
agents. It is not only a theoretical foundation but also an im-
plementable mechanism for controlling and selecting mobile
agents to efficiently perform a requested task. The current
implementation of the approach is built on our Java-based
mobile agent system, called MobileSpaces [20].



This paper is organized as follows: Section 2 presents
the basic ideas behind the approach presented in this paper.
Section 3 defines the process calculus for specifying mobile
agents and algebraic relations over expressions written in the
calculus. Section 4 presents the design and implementation of
the approach. Section 5 presents some practical applications
of the approach and Section 6 surveys related work. Section 7
briefly presents some future issues and Section 8 makes some
concluding remarks.

II. APPROACH

This paper presents a general approach for selecting suitable
and efficient mobile agents that can satisfy the requirements of
a request from users, other agents, or external systems. Mobile
agents should be selected according to two criteria: their
application specific behaviors and their itineraries. Existing
task assignment mechanisms for non-mobile software agents
may be able to deal with the former criterion but cannot
support the latter. Hence, the approach presented in this paper
focuses on the selection of mobile agents according to their
itineraries.

A. Agent Itinerary

The itinerary that a mobile agent is required to migrate
along by a given task request is dependent on the request’s
kinds of applications. One of the most typical applications
of mobile agent technology is remote searching and filtering,
where mobile agents migrate among remote database servers
to retrieve information and carry only relevant information
over a network. If a searching agent gathers information
from a database server and reflects the information on other
database servers, its movement order among servers may affect
the contents of the servers. Therefore, such an agent must
migrate among the servers according to a specified itinerary.
On the other hand, if a searching agent can travel among
database servers to aggregate its interesting information from
the servers without any writing on any database server, the
order of its movement may be independent of its achievement.
Moreover, an agent’s itinerary is often dependent on the results
of an agent’s application-specific behavior. For example, such
a searching agent can determine its destinations based on
information it has acquired from the database servers that it
has visited so far. However, there is a trade-off between the
security advantages of fixed itineraries and the flexibility of
free roaming. The approach presented in this paper allows
each mobile agent to autonomously select one route from the
candidates that are specified in the agent’s itinerary.

B. Itinerary Specification Language

Since mobile agents’ programs are written in general-purpose
programming languages, such as Java, it is almost impossible
to exactly extract only the itineraries of mobile agents from
their programs. Therefore, our approach provides a specifica-
tion language for the itineraries of mobile agents and assumes
that each mobile agent explicitly specifies its own itinerary as a
term of the language. To strictly select mobile agents according

to their itineraries, the language is formulated as an extended
process algebra with the expressiveness of agent movement.
Since each mobile agent is disallowed to stray from its own
itinerary, it can follow the itinerary and reflect the results of its
processing on its destinations only when its itinerary permits
it to migrate to the destinations. Furthermore, this approach
assumes that the itinerary required by a task request from
users, other agents, and external systems is written in the
language. A given request may permit an agent to migrate
along a traversal of all the specified hosts irrespective of arrival
order, or a loose route, where a loose route means that some
hosts may be omitted or visited any number of times. The
language specifies such indefiniteness and agents’ discretion
by extending itself with non-deterministic operators.
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Fig. 1. System structure and its basic mechanism.

C. Algebraic Order Relation for Agent Selection

The selection of mobile agents is formulated based on an order
relation over terms of the language. The relation is defined
based on the notion of bisimulation and can compare between
the possible itinerary of each mobile agent and the itinerary
required by a task request. It allows us to strictly judge whether
or not the former itinerary can satisfy the latter itinerary. We
implemented the relation as a mechanism, called Agent Pool,
for storing and selecting mobile agents, as shown in Figure 1.
Each agent pool can be viewed as a broker or match-maker
by users, other software agents, and external systems. When
it receives a task request, it compares the itinerary of each of
its stored agents with the itinerary required by the request by
using the relation to select one of the most suitable mobile
agent to accomplish the request. Note that the order relation
selects a better itinerary from a finite set of given itineraries,
but does not intend to generate the most efficient itinerary.
Thus, the computational complexity of the relation is not large.

D. Remarks

Since the goal of this paper is to present a selection mechanism
suitable for mobile agents according to their itineraries, this
paper does not limit the types of tasks that mobile agents are



requested to perform, except the order of movement to the
hosts at which each task must be performed.

Some readers may think that simple executable languages,
such as Lisp and Prolog, should be used to specify itineraries,
but it is not easy to exactly verify whether or not itineraries
written in such languages satisfies the itinerary required by a
request. Also, the specification of each mobile agent should
be independent of any particular implementations so that we
can specify and select mobile agents, which are implemented
in different mobile agent platforms, in a unified manner. That
is, we need a platform-neutral approach for reasoning about
mobile agents.

Although this paper addresses mobile agent technology, our
approach itself makes several contributions to active network
technologies, in particular active packets (also called a pro-
grammable capsule) [31], [9]. This is because the language
that specifies itineraries of mobile agents can be directly used
as a notation for describing routings of active packets. The
language is simple and optimized for describing itineraries
among multiple hosts. Therefore, programs written in the
language are small enough to be embedded into packets and
can be interpreted without consuming the computing power of
hosts. Furthermore, existing active network technologies lack
mechanisms for selecting active packets as mobile agent tech-
nology. Our selection mechanism is available in the selection
of suitable active packets.

III. FORMALIZING AGENT ITINERARY

This section defines an executable specification language and
an order relation as a theoretical basis for agent selection.

A. Agent Itinerary Specification Language

Our specification language is basically inherited from those of
existing process algebras, for example CCS [15], �-calculus
[16], and ACP [2], because process algebras provide well-
studied foundations.

Definition 3.1: The set � of language expressions, ranged
over by ����� ��� � � �, is defined recursively by the following
abstract syntax:

� ��� 0 � � � �� ;�� � �� +��

� �� #�� � �� %�� � �� &�� � �*

where � is the set of location names, ranged over by
�� ��� ��� � � �. We often omit 0. We describe a subset language
of � as �, when eliminating �� #��, �� %��, �� &��, and
�* from � . Let �� ��� ��� � � � be elements of �. ��
We describe itineraries required by tasks as terms of � and
agents’ itineraries as terms of S. The intuitive meanings of
basic expressions in the language are as follows.

� 0 represents a terminated itinerary.
� � represents agent migration to the host whose name or

network address is �.
� �� ;�� denotes the sequential composition of two

itineraries �� and ��. If the migration of �� terminates,
then the migration of �� follows that of ��.

� �� +�� represents that an agent moves according to
either �� or ��. The selection can be explicitly performed
by the presence of �� or ��.

� �� # �� means that an agent can select either �� or ��

according to its internal computation independently of the
presence of �� or ��.

� �� # �� means that an agent can follow either �� before
�� or �� before �� as its itinerary.

� �� &�� means that two itineraries �� and �� can be
performed asynchronously.1

� �* is a transitive closure of � and means that an agent
can move along � an arbitrary number of times.

We believe that readers can mostly understand the expres-
siveness and usage of the language from the above intuitive
meanings without reading mathematical definitions presented
in this section. On the other hand, our approach aims at
providing a theoretical and practical foundation for reasoning
about agent mobility so that the remainder of this section
defines the language in a formal manner.

The operational semantics of the language is based on the
concept of interleaving semantics and defined as two layers
of labeled transition rules: migrant transition, written as

�
��

(��� � 	 � 	 �), and non-deterministic transition, written
as

�
�� (��� � 	 
�� 	 �).
Definition 3.2: The language is a labeled transition system

� � � � 
 
�� 

�
��� � 	 � �� � � 
 
�� � �. The transition

relation �� is defined by two kinds of axioms or induction
rules as given below:
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where 0;� is treated to be syntactically equal to � and �*

is recursively defined as 0# �� ; �*�. We often abbreviate
��

�
�� ��

�
�� � � �

�
�� ����

�
�� �� to ���

�
������. ��

In Definition 3.2, the �-transition defines the semantics of
an agent’s mobility. For example �

�
�� �� means that

the agent moves to a host named � and then behaves as
��. Also, if there are two possible transitions �

���� ��

1In process algebras, & is an operator for specifying parallel executions.
The operational semantics of the language is an interleaving model in the
literature of process algebras and each agent migration is an atomic action.



and �
���� �� in an agent, the processing of the agent

chooses one of the destinations �� or ��. On the other hand,
the � -transition corresponds to a non-deterministic choice in an
agent’s itinerary. For example, if an agent has two transitions
�

�
�� �� and �

�
�� ��, then one implementation of it

can follow �� and another can follow ��.
To demonstrate the expressiveness of our language, we

describe three agent migration patterns studied in [1]. To
simplify our discussion hereafter, we introduce three macros,
corresponding to the patterns, for example, Travel, Star, and
Turn. These macros do not extend the language because they
are mapped into � . We describe a list of host names as
���� ��� � � � � ���, where ��� � � � � �� � �. Let �� be an empty list,
������ be the top element of a list X, i.e., �� and ������
be the remaining list of X except for the top element, i.e.,
���� � � � � ���.

���������X��
���
� ������X��;������ �������X���

������ ����
���
� 0

�	�����X��	�
���
� ���� ���X��;	�;�	������ ���X���	�

�	������	�
���
� 0

Let 	 be an element of � and � be a list of host names in
�. For example, ������ ���SNMP-AGENT�� allows an agent
to travel around the hosts specified in the SNMP-AGENT
list consisting of database server names on a sub-network.
�	�����SNMP-AGENT��	� corresponds to a star-shaped route,
which allows an agent to go back and forth between the
destinations specified in the SNMP-AGENT list and a given
base host specified as 	 as the order of the list. To illustrate
the transition defined in Definition 3.2, we show a transition
of �	�����SNMP-AGENT��	� in ��SNMP-AGENT� � �
� �� ��
as follows.

�	�����SNMP-AGENT��	� 
� �	����
� �� ���	�
���
� �
;	�;�	������ ���	�
�
�� 	;�	������ ���	�
�
�� �	������ ���	�
���
� ��;	�;�	�������	�
�
�� 	;�	�������	�
�
�� �	�������	�

In this framework, itineraries required by task requests from
its external environment are written as terms of the language
in � . The terms of � are not executable, unlike those of �, but
can specify discretionary or loose itineraries, where the agent,
to which a task is assigned, can omit or repeat visits to some
destinations, by using non-deterministic operators. We show
some itineraries as follows:

�
�����X��	�
���
� �
�� ����X��;	

�
�� ����X��	�
���
� ��� ���X��%�
�� ����� ���X���	�

�
�� �����
���
� 0

��
���X��	�
���
� ���� ���X��;	�%��
���� ���X���

��
����	�
���
� 0

where �
�����X��	� is a route among the hosts specified in
list ��X� but does not require any movement order. When
a task has �
�����X��	� as its required itinerary, the agent,
by which the task is carried, is required to visit and perform
the task at all the hosts specified in �
�����X��	� in any
movement order.

B. Algebraic Order Relation

Next, we formulate an algebraic order relation that is suitable
for selecting one of the agents whose itineraries can satisfy the
requirement of a given task request. It is based on the concept
of bisimulation [15].

Definition 3.3: A binary relation�� (� � ��	��	� ) is
an �-itinerary prebisimulation, where � is the set of natural
numbers, if whenever ��� �� � �� where � � �, then the
following hold for all � � � or � .

(i) if �
�
�� �� then there is an � � such that �

�
�� ��

and �� �� ��� � ����

(ii) � �
�
������ and �� �� �� � ��

(iii) if �
�
�� �� then there exist � �, ��� such that � �

�
��

����
�
�� ��� and �� ��� ��� � ����

where ��� � if there exist some �-itinerary prebisimulations
such that ��� �� � ��. We call �� �-itinerary order. ��
Here we briefly explain the above definition. (i) means that �
requires � to migrate to all the hosts specified in � in the same
arrival order specified in �. If � has selective branches, such
as �� +��, then � has the same branches and all its branches
satisfy their corresponding branches in � in the same way. (ii)
means that if � contains non-deterministic branches, such as
�� #�� and �� %��, then � satisfies at least one of them.
(iii) means that all the migrations specified in � must be the
itinerary of �. That is, the informal meaning of ��� � is that
� is included in one of the permissible itineraries specified in
�.
�� is a family of relations indexed by a non-negative

time value �. That is, in ��� �, � corresponds to the
number of movements of the agent that can satisfy �. We
show several algebraic properties of the order relation be-
low. Several papers on performance evaluations of mobile
agents [8], [10] have reported that the cost of migrating a
Java-based mobile agent between hosts connected through a
network faster than 10 Mbps Ethernet is dependent on the
(un)installation at the source host and the destination host,
including the (de)serialization of the agent, rather than the
latency of transmitting the serialized agent over a network.
That is, the number of agent migrations greatly affects the
overall cost of mobile agent-based computing. As a result, if
one or more mobile agents can satisfy the itinerary required
by a given task request, we should select one of the most
efficient agents according to the number of agent migration
over a network. Hence, we need to select �� whose � is the
least among all �� , which can hold ��� �� .

When the domain of �� is limited to � 	 �, we can
directly obtain that ��� �, and if ���� �� and ���� ��
then ���� ��. Hence �� is a preorder relation.



Proposition 3.4: Let �� � ��. If ���� �, then ���� �

��
Proposition 3.5: Let ��� �� � � , ��� �� � �

and ����� �� and ����� ��. Then we have
�� ;�� ������ �� ;�� and �� +�� �

������	��	 �� +��.
��

The above properties mean that if the itineraries of an agent
can satisfy the requirements of a task, then their combination
by using ; or + can still satisfy the requirements. They
are important because they can reduce the cost of comparing
itineraries. There are some basic examples of �� below.

�
% �% ��;	 �
 �;
; �;	

where the right side requires an agent to migrate among three
hosts 
, �, � in indefinite order and then return to host 	.
When the left side is changed to 
; �; �;	, the relation is
still preserved, but when the left side becomes 
; �;	 or

;	; �;	; �;	, the relation is not preserved.

��
; �; ��& 	*�;	 �� �	����
� �� ���	�

In the above inequality, the left side allows an agent to drop
in at host 	 during the itinerary 
; �; � and then finish its
movement at host 	. The right is a star-shaped route between
three destinations �
� �� �� and host 	 can satisfy the left side.
Note that the left side can permit ������ ��
� �� ���;	 but not
�	������ 
� ���	�.

IV. DESIGN AND IMPLEMENTATION

This section presents a prototype implementation of our
approach. We tried to keep the implementation within the
approach as much as possible. The current implementation
is built on MobileSpaces.2 The system can be run on any
computer with a JDK 1.2-compatible Java runtime system
that can migrate agents over a network using a TCP-based
agent migration protocol. To make mobile agents as small as
possible, this approach delegates the selection of mobile agents
to a mechanism, called AgentPool, deployed at more than one
host on a network.

A. Mobile Agents

Each mobile agent is implemented as an instance of a subclass
of abstract class ItineraryAgent.

public class ItineraryAgent
extends MobileAgent {
// registering the itinerary specified as r
void setRoute(Route r) throws

IllegalSyntaxException .. { ... }
// migrating to the host specified as h
void moveTo(Host h) throws

IllegalHostException,
NoSuchHostException ... { ... }

// migrating to the next host specified in
// its itinerary
void moveToNext() throws

MultiplePossibleHostsException,

2Details about MobileSpaces are given in [20]. The approach presented in
this paper, except for the application of the approach discussed in Section V,
is independent of the system and can thus work with other Java-based mobile
agent systems.

NoSuchHostException ... { ... }
// asking the possible destinations in
// the next migration
Host[] getPossibleHosts() ... { ... }
...

}

a;b;(c+d)
itinerary

interpreter

user-defined program

setRoute()
moveToNext()

moveTo()

migration control

itinerary

mobile agent

state

Fig. 2. Structure of a mobile agent.

Figure 2 shows the basic structure of a mobile agent. The
itinerary of each mobile agent is denoted as a term of �. It can
be statically defined in the agent by invoking the setRoute
method, or be dynamically given by an agent host, in which
the agent is stored, as an explicit parameter.

setRoute(new Route("a;b;(c+d)"));

where a;b;(c+d) is an itinerary attached to the mobile agent
and means that the agent migrates to host a and then to host
b. Next, the agent can select either host c or d according
to the result of its own processing. This approach restricts
mobile agents from straying from their itinerary they registered
with themselves. Each mobile agent can migrate itself over a
network by using the following two approaches.

� The first approach allows each agent to move along
the itinerary registered with itself. Each agent has a
lightweight interpreter for the language in �. When
the agent invokes the moveToNext() method, the
interpreter evaluates the agent’s next destination from
the itinerary and automatically moves the agent to the
destination. However, if the itinerary contains one or
more candidate destinations combined by the selective
operator + , the invocation of the method throws a
MultiplePossibleHostsException. The agent
gets all the destinations that it can move to at the
next hop by invoking the getPossibleHosts()
method and moves to one of them by invoking the
moveTo(dst) method with the selected destination
specified as dst. For example, suppose that an agent
registers a;b;(c+d) as its own itinerary. As shown in
Fig. 3, it performs the moveToNext() method twice
for two hops; from the current host to a and then from
host a to b. Next, it can select either c or d, after which
it performs the moveTo(dst) method with the name
of the selected destination as the method’s argument.

� The second approach permits an agent to control its
mobility within its itinerary. That is, an agent decides its
next destination and then migrates itself to the destination



moveTo(c);moveToNext(); moveToNext();

host a host b

host d
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host h
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Fig. 3. Following-itinerary movement of a mobile agent with itinerary
specified as a;b;(c+d).

by invoking the moveTo(dst) method where dst
corresponds to the destination, only if the destination is
specified in its itinerary. Otherwise, the method throws
an exception, named IllegalHostException. For
example, an agent whose itinerary is a;b;(c+d) can
invoke the moveTo() method with a and then b to move
to host a and then to b as shown in Fig. 4. Next, it can
invoke the same method with either c or d.

moveTo(c);moveTo(a); moveTo(b);

host a host b

host d

host c

host h

agent agent agent

agent

agentmoveTo(d);

a;b;(c+d) b;(c+d) c+d

0

0

migration migration

migration

migrationitinerary

itinerary

itineraryitinerary

itinerary
agent programagent programagent program

agent program

Fig. 4. Autonomous movement of a mobile agent whose itinerary is specified
as a;b;(c+d).

In both the above approaches, when the movement of a
mobile agent deviates from the itinerary registered by in-
voking the setRoute() method, it is constrained and the
IllegalHostException is thrown to the agent. Each
agent can explicitly change its itinerary by invoking the
setRoute() method while it is moving, but the new
itinerary becomes available after it returns to a agent pool.

B. Agent Pool

As mentioned previously, the key idea of the approach is
to provide a variety of small mobile agents specialized for
their particular itineraries and tasks rather than a few general-
purpose agents for the reason of performance and security.
Each agent pool is a place for storing and selecting idle mobile
agents, as shown in Fig. 5. It is also responsible for receiving a
task request from its external environment and then assigning
the task to a suitable mobile agent. Tasks requested from the
external environment are various, but the order of movement
to the hosts at which each task must be performed is always
written in � .

Some readers may think that mobile agents should maintain
their itineraries in explicit parameters, which can be overwrit-
ten by the external systems, and they should be dynamically
given their itineraries by agent pools. However, our approach
permits mobile agents to statically have their own itineraries as
well as to be dynamically defined by themselves or the agent

pools. This is because the approach should not assume the
implementations of mobile agents. For example, some mobile
agents may follow their own mobility control so that their
itineraries should be treated as just specifications about their
mobilities. The current implementation of agent pools stores
idle mobile agents as well as only their itineraries.

requested task

agent pool

database

a;b;c;h

b;a;c;h
b;a;h

(a%b%c);h

inference

engine

a;b;c;hb;a;h

idle mobile agent

idle mobile agent mobile agent

(a%b%c);h

itinerary registration

migration itinerary

Fig. 5. Agent pool.

Here, we explain the selection algorithm of the current
implementation3. Each agent pool maintains a repository
database about itineraries. When it receives a task request
from its external environment, each agent pool extracts the
required itinerary from the request and selects one of the
agents whose itineraries can satisfy the required itinerary
among the itineraries stored inside the pool. To do this, the
agent pool compares the required itinerary written in � with
each of the itineraries of the agents written in � by directly
using the order relation �� � �	� in Definition 3.3. First, it
transforms each of its stored agent itineraries into a transition
tree whose arcs are the labeled transitions in Definition 3.2.
Also, in the same way it transforms the required itinerary into
a transition tree whose arcs correspond to �-transitions or � -
transitions in Definition 3.2. Next, it judges whether or not the
former tree can satisfy the latter tree by matching the two trees
according to the definition of the order relation as follows:
(1) if each node in one of the two trees has arcs correspond-

ing to �-transitions, then the corresponding node in the
other tree can have the same arcs and the sub-nodes
derived through the two trees’ matching arcs can still
satisfy either (1) or (2).

(2) if each node in the tree derived from the required itinerary
has one or more arcs corresponding to � -transitions, then
at least one of the nodes derived through the arcs and the
corresponding node in the tree derived from the agent’s
itinerary can still satisfy (1) or (2).

(3) if neither (1) nor (2) is satisfied, the agent pool backtracks
from the current nodes in the two trees and tries to apply
(1) or (2) to their two backtracked nodes.

Here, we illustrate a matching between a;((b;(c+d))#d)
in E and a;b;(c+d) in S in Figure 6. Then, the agent pool
assigns the request to the agent whose itinerary can satisfy
the above conditions. If more than one agent satisfies the
required itinerary, it selects the agent with the least number
of agent migrations over a network, which is � of �� in
Definition 3.3. The current implementation can expand � *

3The current implementation was not optimized for performance, but it
can handle the example itineraries presented in this paper within a few
milliseconds.



by using the structural congruence presented in Definition 3.5
as lazily as possible. All the itineraries written in � or �
can be transformed into finite trees, called image-finite in the
literature of process algebras [5], [15].

a;b;(c+d)a;((b;(c+d))#d)

(b;(c+d))#d
τ τ

b;(c+d) d

b;(c+d)

c+d
dc

dc

a a

b

b d

3

Fig. 6. Matching two terms a;((b;(c+d))#d) and a;b;(c+d).

V. APPLICATIONS

The approach presented in this paper can select mobile
agents according to their itineraries, instead of any of their
application-specific behaviors. However, this limitation is not
serious in the development of typical applications of mobile
agents, such as remote information retrieval and filtering and
network management tasks, where a mobile agent contains
code to define its application-specific task to be performed
whenever it arrives at one of its destinations. That is, mobile
agents, which itinerate among multiple hosts, often execute the
same code at each of the hosts that they visit. This means that
the separation of concerns studied in the literature of aspect-
oriented programming [12] is effective in the development of
of mobile agents.

In our previous papers [23], [25], we proposed a methodol-
ogy for composing a mobile agent from two parts: application-
specific and mobility control. The former part defines its
own application-specific task to be performed at each of the
hosts it visits. The latter part defines a particular itinerary
on its target network, so that it can efficiently travel among
its multiple destinations. However, since the previous papers
aimed at applying the separation of concerns into mobile
agent technology, they did not provide any mechanisms for
matchmaking task agents and carrier agents.

This section presents that the approach is useful as such
a mechanism. This implementation constructed the two parts
as mobile agents, called task agents and carrier agents. Both
agents were implemented as hierarchical mobile agents in
MobileSpaces [20], which can hierarchically organize multiple
mobile agents. In the MobileSpaces system, a mobile agent
can dynamically contain other mobile agents and can migrate
to other mobile agents as a whole with all its inner agents.
Each carrier agent is a container of more than one task agent
and carries its task agents over a network according to its own
itinerary specified as a term of �. On the other hand, each task
agent defines its own application-specific task to be performed

at each of the hosts it visits. It also has an attached term of �
to specify the hosts at which application-specific task should
be performed. Therefore, the former agent can be reused in
any application and the latter can be used in any network.
Since a carrier agent can be optimized to a particular itinerary
on its target network, it can efficiently navigate its task agents
among the hosts that the agents must visit. It is independent
of any application-specific tasks.

Our approach provides Java-based abstract classes, called
TaskAgent and CarrrierAgent, that allow us to easily
define advanced task agents and carrier agents by extending
the classes.

public class TaskAgent extends MobileAgent {
// registering its requiring itinerary
void setRoute(Route r)

throws IllegalSyntaxException ... { ... }
// callback method invoked after the agent
// arrives at one of its destinations.
void arrivedAt(Host here);
// callback method invoked before the agent
// leaves from the current host.
void depaturingFor(Host dst);
// callback method invoked after the agent
// visits all the hosts in its itinerary
void finished(Route r);
...

}

Each agent defines its task in the arrivedAt() method.
When arriving at an agent pool, the task agent gives the pool
the required itinerary along which a carrier agent is required
to carry itself by performing the setRoute() method with
an itinerary specified in � . The agent pool selects a suitable
carrier agent and then migrates the task agent into the selected
agent. Upon arrival at a host, the carrier agent invokes the
arrivedAt() method of its task agent to instruct it to do
something for a given time period at the host. After receiving
a certain event from all the task agents or after the period has
elapsed, the carrier agent invokes the depaturingFor()
method with the address of the next host and then moves itself
and its task agents to the next destination on its itinerary. For
reasons of security, all agents must be authenticated by the
agent pool of a sub-network on behalf of the sub-network. This
is helpful in network management systems whose hosts may
have limited CPU power and memory. Since a sub-network
may explicitly prohibit any task agent from visiting its hosts,
task agents must be carried by a carrier agent managed by the
agent pool of the sub-network. Therefore, a task agent alone
cannot migrate to all the hosts, even if it knows the addresses
of its target hosts in the sub-network.

We must offer a variety of carrier agents specific to their
own itineraries in more than one agent pool on the target net-
work. However, due to the lack of space, this section illustrates
only two carrier agents, defined by CarrierAgent1 and
CarrierAgent2 classes respectively.

public class CarrierAgent1
extends CarrierAgent {
public CarrierAgent1() {

// registering its possible itinerary
setRoute(new Route("h;a;b;c;d;h"));

}



// invoked at the completion of the task
// agent’s processing at the current host
public void done() throws
MultiplePossibleHostsException .. {
moveToNext();

}
...

}

CarrierAgent1 can travel along a tour route,
h;a;b;c;d;h written in � and CarrierAgent2 can
move along a star-shaped route, h;a;h;b;h;c;h;d;h.
Figure 7 shows the two agents’ itineraries.

public class CarrierAgent2
extends CarrierAgent {
public CarrierAgent2() {
setRoute(

new Route("h;a;h;b;h;c;h;d;h"));
}
public void done() throws
MultiplePossibleHostsException .. {
moveToNext();

}
...

}

host h

host b
host a

host c

host d

CarrierAgent 1

CarrierAgent 1
database

database

database

database

host h

host b 
host a

host c

host d

CarrierAgent 2

CarrierAgent 2
database

database

database

database

Fig. 7. Itineraries of two carrier agents (CarrierAgent1 and CarrierAgent2).

Next, suppose that a task agent has its required itinerary
specified as h;((a%b%c%d)&hˆ*);h, where hˆ* denotes
	* in the language � .

setRoute(new Route("h;((a%b%c%d)&hˆ*);h"));

When an agent pool receives the task agent, it se-
lects a suitable carrier agent whose itinerary can satisfy
h;((a%b%c%d)&hˆ*);h among the idling agents storing
inside it, as shown in Figure 8. In the above example, the
two carrier agents can satisfy the required itinerary of the task
agent. Since CarrierAgent1 has fewer agent migrations
than CarrierAgent2, the agent pool selects the former
carrier agent and moves the task agent into it.

After receiving the task agent, the carrier agent carries it
from host to host according to its own itinerary. When it arrives
at one of the destinations, it issues certain events to invoke
the arrived() method of the task. The task agent performs

its application-specific task, such as information searching and
filtering from the database on its visiting host. When it finishes
the task that should be performed at the current host, it invokes
the done() method to instruct the carrier agent to carry it to
the next destination. The approach presented in this paper can
strictly select one of the most suitable carrier agents, since it
provides a theoretical and practical mechanism for comparing
itineraries of the carrier agents.

We have obtained a preliminary measurement of the cost
of migrating a carrier agent over a sub-network of the cluster
system. Note that the system is just a prototype implementa-
tion; hence it is not optimized for efficient agent migration.
Actually, the total size of the carrier agent containing one of
the task agents is about 8 KB (zip-compressed) and it is only
20 percent greater than the size of a self-contained task agent
that controls its own itinerary. This is a small increase in size
if we take into account the amount of data such agents can
collect from clusters. The cost of detecting a carrier agent
in an agent pool is less than 10 msec, although the current
algorithm for agent selection in agent pools was not optimized
for performance.4 The total cost of management depends on
application-specific tasks performed at clusters rather than
agent migration. After receiving a task agent at the agent
pool of the sub-network, the carrier agent travels straightly
around four clusters and then returns to the agent pool of the
sub-network, where the clusters and the pool are Pentium III-
800 MHz computers connected using a 100-Mbps Ethernet.
The itinerary of the carrier agent is statically defined and
corresponds to five hops. The round-trip time of the agent is
about 480 msec. where the per-hop latency of agent migration
for the task agent using the carrier agent is at most 25 percent
greater than the per-hop latency of a self-contained task agent.

VI. RELATED WORK

Many mobile agent systems have been developed over the
last few years, for example, Aglets [13], Telescript [32], and
MobileSpaces [20]. Several researchers have explored ap-
proaches for dynamically assigning tasks to non-mobile multi-
agents, for example, contract-net protocol [28] and KQML
[6]. Since most of the existing approaches can select agents
suitable to perform tasks based on their application-specific
behaviors, they cannot be directly applied to mobile agents,
because not only the application-specific behaviors of mobile
agents but also their itineraries may seriously affect their
success and efficiency. However, since mobile agents are
often treated as just an implementation of distributed systems,
there have been few attempts to select mobile agents. Among
them, Plangent [17] is a mobile agent system. In Plangent an
agent can dynamically generate a plan for acquisition of the
knowledge that users need and then it migrates and executes
its application-specific actions according to the plan. When
the agent cannot gain the knowledge because the plan is
invalid, it generates new plans by using new knowledge at the

4The cost includes communication between the agent pool and mobile
agents. It was measured when the agent host runs on Pentium III-800MHz
and Windows 2000.
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current hosts. However, the planning functionality of Plangent
does not target the mobility of agents and cannot always
generate valid plans. On the other hand, our approach offers
a theoretical foundation for the the selection of mobile agents
and allows us to strictly judge whether or not the movements
of agents can satisfy the users’ requirements.

Several papers also introduce the notion of an itinerary
pattern to shift the responsibility for navigation from an
application-specific agent to framework libraries or meta-level
specifications, for example see [1] and [30]. The notion is
based on design patterns studied in the literature of software
engineering. Since it should be used in the development
of agent software, it does not offer any dynamic selection
mechanisms for selecting mobile agents.

Several papers have explored theoretical models for reason-
ing about mobile agents, for example, Mobile UNITY [14],
the Join calculus [7], Ambient calculus [3], Distributed �-
calculus [18], and Nomadic �-calculus [29]. Mobile UNITY
is an extension of UNITY, which is an existing formal model
for specifying distributed systems, with the expressiveness of
the movement of components, including mobile computers
and mobile software. Since it is designed for specifying
variable and conditional assignment statements in programs
by incorporating UNITY, it cannot extract and reason about
only the itineraries of mobile components.

Most existing formal models for mobile agents are based on
process calculi (or called process algebras), like ours. Ambient
calculus [3] allows mobile agents (called ambients in the
calculus) to contain other agents and to move with all its inner
ambients. The calculus must always model the mobility of
agents as a navigation along a hierarchy of agents, whereas
itineraries of real mobile agents may be complicated. The join-
calculus [7] also introduces the notion of named locations
which form a tree and the mobility of an agent is modeled
as a transformation of subtrees from one part of the tree to
another. Distributed �-calculus and Nomadic �-calculus are
extensions of �-calculus with the notion of locations. Existing
process calculus-based models are just theoretical frameworks
for reasoning about the whole computation of mobile agents.
As far as the author knows, no existing calculi provide any
preorder relations for the selection of mobile agents.

Although MobileSpaces [20], which serves as the basis for
the framework presented in this paper, can dynamically adapt

its functions and structures to changes in the environments,
its goal is to provide a general platform for executing and
migrating distributed applications. We also presented an archi-
tecture for building several agent migration protocols in our
previous papers [21], [22]. That architecture is hierarchically
organized like the notion of a protocol stack in existing data
transmission protocols. It can customize network processing
for agent migration embedded in a mobile agent runtime
system. We presented a mobile agent-based framework for
network management in other previous papers [23], [25]. That
framework divides a mobile agent into two parts: its mobile
control component and its application-specific component.
Although it offers a basis for the separation of mobile agents
presented in Section V, its purpose is to enhance the reusability
of mobile agents. It is specific only to network management.
These previous papers do not present any mechanisms for
selecting mobile agents suitable to perform tasks, unlike this
paper.

VII. FUTURE WORK

There are several open issues. Finally, we would like to
mention some future research directions. The specification
language presented in this paper addresses the movement of
agents, but we are interested in extending the language with the
expressiveness of application-specific behaviors, locations, the
cost of agent migration by incorporating our previous process
algebra for distributed systems studied in [19]. The perfor-
mance of the current implementation of our agent selection
algorithm presented in Section IV on the order relation is not
yet satisfactory and we believe that existing optimizations for
bisimulation, for example see [5], can be easily applied to the
relation presented in this paper. This paper does not discuss
any coordination among multiple mobile agents, but we are
interested in developing a mechanism for assigning a task to
one or more mobile agents. Also, we plan to establish an ax-
iomatic system based on the order relation for the performance
improvement of the agent selection. The approach presented
in this paper was initially designed as a policy-based control
system for mobile agents. We are interesting in applying the
framework to our mobile agent-based systems, for example, a
location-aware infrastructure for ambient intelligence studied
in our previous paper [24] and a software testing framework
for networked mobile computing in our another paper [27].



VIII. CONCLUSION

This paper presented a general approach to selecting mobile
agents suitable to perform tasks according to their itineraries.
The approach offers a process algebra-based language and
an algebraic order relation between terms of the language as
a theoretical foundation for the selection of mobile agents.
The language can strictly specify the itineraries that mobile
agents can migrate along and are required to migrate along.
The relation can decide whether or not the possible itinerary
of each mobile agent can satisfy the itinerary required by
a requested task. A prototype implementation of the ap-
proach has been built on a Java-based mobile agent system,
called MobileSpaces. Each mobile agent is implemented as
a collection of Java objects with its own itinerary written
in the language and can travel from host to host along the
itinerary. Agent selection provides a mechanism for storing
idle agents and selecting one of the most suitable and efficient
agents when it receives a task request written in the language
from its external environment. The approach presented in this
paper focuses on a serious problem of existing mobile agent
technology. We believe that the approach provides a general
solution to this problem and enables us to strictly specify and
select suitable mobile agents according to their mobilities.
Since the approach itself is designed independently of any
mobile agent platforms, it can easily specify and select other
existing mobile agents.
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