Dynamic Deployment of Pervasive Services

Ichiro Satoh
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail: ichiro@nii.ac.jp

Abstract— This paper presents a self-organizing approach
to developing and managing distributed software in pervasive
computing environments. In such environments, people are sur-
rounded by hundreds of mobile or embedded computers each of
which may be used to support one or more user applications due
to limitations in their individual computational capabilities. We
need an approach to coordinating heterogeneous computers that
acts as a virtual computer around a mobile and pervasive com-
puting environment and supports various applications beyond the
capabilities of single computers. This paper presents a framework
for building and aggregating distributed applications from one
or more mobile components that can be dynamically deployed
at mobile or stationary computers during the execution of
the application. Since the approach involves mobile-transparent
communications between components and component relocation
semantics, it enables a federation of components to adapt its
structure and be deployed on multiple computers whose computa-
tional resources, such as input and output devices, can satisfy the
requirement of the components in a self-organized manner. This
paper also describes a prototype implementation of the approach
and its application.

I. INTRODUCTION

Our research on pervasive computing is concerned with our
progress toward developing a pervasive computing service that
is able to deal with the mobility and interactions of both users
and devices. Advances in device technologies and falling costs
are rapidly enabling a variety of computers that are networked
through wired or wireless networks to be provided in modern
offices and homes. Users are surrounded by hundreds of
computers from desktop PCs to small computers embedded
in artifacts, and by sensors able to acquire information from
the physical world. However, these computers cannot always
support services that they were not initially designed for,
because their computational resources, such as processors,
storage, and input and output devices, are limited having only
been optimized for their initial purposes. To accomplish goals
beyond the capabilities of individual computers, a pervasive
computing service should be able to be processed not only by
a single computer but also by interaction between a group of
computers, called a federation. Moreover, such a group must
be configurable in runtime because the goals and positions of
users may change dynamically.

This paper presents a framework for the dynamic federation
of pervasive computers, called Hydra. The goal of the frame-
work is to facilitate the construction of a virtual computer
formed by a networked set of pervasive computers. This may
seem to be similar to the notion of grid computing in the
sense that a virtual computer is organized from distributed

computers, but grid computing is aimed at a very large-
scale, generalized distributed computing system that can be
scaled to Internet size environments with machines distributed
across multiple organizations and administrative domains. Our
framework is aimed at virtually connecting several devices
that are actually attached to different computers in localized
areas that will run interactive services to assist users. There
have been several attempts at integrating the user interface
devices of different computers on a network [2], [5], [9],
[13], [25]. However, most existing attempts aim at enabling
an application to directly redirect its application output events
to output devices, which may be attached to another computer,
and redirect input events from input devices, which may be
attached to a different computer, through a network. Since
there tend to be many naive events from input devices, and to
output devices, these attempts have resulted in network traffic
and latency. Some of these have been specialized for particular
applications. Our framework, however, is aimed at supporting
a variety of application partitions and enabling application
partitions to exchange their application-level events.

Moreover, mobile users often want to constantly change the
computers with which they interact. Consequently, pervasive
services should be able to move from computer to computer
to follow users. The requirements of the services also tend to
vary and changed dynamically. The structure of a pervasive
computing environment may also be changed frequently by
adding or removing components and changing the network
topology. Therefore, our framework enables a federation of
partitioned applications to partially or entirely migrate to
suitable computers according to changes in users and their
associated contexts, e.g., the positions and numbers of people
and computing devices.

In the remainder of this paper, we describe our design goals
(Section 2), the design of our framework, called Hydra, and
a prototype implementation (Section 3). We outline programs
in the system, applications running on it (Section 4), and our
current status (Section 5). We illustrate two applications of
the framework (Section 6). We briefly review related work
(Section 7), provide a summary, and discuss some future issues
(Section 8)

II. ARCHITECTURE OVERVIEW

Our framework enables us to construct an application as
a federation of pervasive computers connected through a
network. The framework also introduces two notions: dis-
tributed application partitioning and application mobility as

a unified approach to overcoming the limitations of compu-
tational resources, such as input and output devices and non-
powerful processors, in single pervasive computers, as seen
in Fig. 1. Since network latency between different computers
through a wired or wireless network, including a power-line-
line network, WiFi, and Bluetooth, may be non-negligible, the
framework must only exchange essential information between
partitioned applications rather than naive data redirected from
input devices, and to output devices.

Computer 1
with display
network
=
©—[||component componen
= |\for processiLL for input
%
bl Computer 3
Computer 2 with a keyboard

without any keyboard and display

Fig. 1. Federation of heterogeneous computers.

A. Application Partitioning for Pervasive Computing

How to partition an application into multiple computers is a
major decision in its design. A well known fact is that an
application should be partitioned according to its functions.
Most existing approaches to pervasive computing applications,
e.g., Gaia [14] and BEACH [25], assume that applications
are inherently designed based on particular application mod-
els, which are extensions of the model-view-control (MVC)
model [10]. Therefore, they must be able to naturally divide
their target applications into components corresponding to
application logic, output, and input parts, before deploying
these components at different computers. However, modern
applications are often constructed based on more complex
application models, e.g., design patterns [3], rather than the
traditional MVC model. Pervasive computing may also need
new or special design patterns as several researchers have
discussed [11].

Therefore, our framework should not assume particular
application models. However, most interactions between com-
ponents in object-oriented applications within a computer can
be covered by three primitives, i.e., event passing, method
invocation, and stream communication. Therefore, the frame-
work enables the three primitives to be available in partitioned
applications on different computers. Achieving syntactic and
(partial) semantic transparency for remote interactions requires
the use of some proxy element that has the same interfaces as
the remote components themselves.

B. Mobile Applications in Pervasive Computing Environments

Applications and partitioned applications must not be bound
to pervasive computers, which have limited computational re-
sources for various applications, but should run on computers

that can satisfy their requirements, according to changes in
users and their associated contexts, e.g., locations, current
tasks, and the number of people. Therefore, the framework
is used to build partitioned applications as mobile agent-
based software components and enables these to move to other
computers while the applications are running. The framework
introduces such objects, called references, to possibly track
moving targets and to interact with these through the three
primitives. Moreover, the deployment of components is often
dependent on their applications. That is, when an application
is made up of multiple components, the movement of one may
affect the others. For example, two components are required
to be at the same or nearby computers, when the first is
a program that controls the keyboard and the second is a
program that displays content on the screen. The framework
therefore enables each component to explicitly specify a
policy for component migration, called a hook. The current
implementation provides two types of hooks. The first enable
a component to follow another component as we can see in
Fig. 2, and the second enables a component to create a copy of
itself and makes the copy follow another component as shown
in Fig. 3.

step 1 component
migration
omputer compute =
|Ce o/
follow
step 2
step 3 component
migration
O

Fig. 2. Follow policy with two components.

The second policy assumes the copy of the component to
be independent of its original, because the policy is used
to deploy components at remote computers. Our framework
can dynamically allocate a federation of partitioned applica-
tions at suitable computers by using these policies. Fig. 4
has an example of a group migration of three components.
When component B has a follow policy for component A
and component C has a dispatch policy for component A,
if component A moves, component B moves to component
A’s destination host because the host satisfies component B’s
requirements. Also, a copy of component C moves to a nearby
proper host that satisfies component C’s requirements. The first
policy is useful when relationships between components that

step 1 component
migration
omputer compute =

Cegfie)|

dispatch
hook

compuie

step 2

step 3 component duplication and

migration

Fig. 3. Dispatch policy with two components.

an application consists of should be retained and the second
policy is useful when components are distributed at computers
along the track of moving components. Several researchers
have explored mechanisms for dynamically deploying compo-
nents. Our mechanism enables each component to specify its
deployment policy, whereas most existing mechanisms assume
a centralized management system to control the deployment
of components.

C. Location-aware Deployment of Mobile Applications

Since pervasive computers will be used in a variety of loca-
tions and situations, certain input and output modalities may be
more appropriate in different circumstances. Some computers
may be dynamically added to or removed from a localized
space. For example, pen-based input operations may be a good
idea when the user is standing in a public space or building
but not when the user is driving a car. If there is a keyboard
in a room, the user may not able to access this far from
his/her current position. That is, user-interface devices near the
users need to be selected and used. Our framework therefore
dynamically allocates a federation of partitioned applications
at suitable computers according to changes in the locations
of users and the locations and capabilities of computers. The
current implementation of our framework offers a location-
aware infrastructure in which spatial regions can be determined
within a meter, and that distinguishes one or more portions
of a room or building through the use of RFID systems. ! It
determines the positions of objects by identifying the spatial
regions that contain them. In general, such RFID systems
consist of RF (radio frequency) sensors, often called readers,
which detect the presence of small RF transmitters, often
called fags. The current implementation also assumes that

'The framework itself is designed to be independent of any particular
infrastructure for location and is accompanied by more than one locating
system.

step 1 component A output device
input device follow /m I:I
. - Component niziels (Component) tput devi
i B J/mmﬁ\{) mA output device
computer |])g "computer |] computer

X digpatch hook

CompB%-lent
C

computer

federation

computer

high-performance processor high-performance processor

step 2
— L] — []
Component Component|
CEd— %
U
federation /O
step 3 component B (] f
ederation
- L] _—— []

Component

A

Component

Compont
C

Fig. 4. Component migration with relocation policy

physical entities and places have been equipped with their own
unique tags so that they are entities that can be automatically
located.

III. DESIGN AND IMPLEMENTATION

This framework consists of two parts: components and com-
ponent hosts. The former denotes partitioned applications and
the latter is middleware and enables components to run on a
computer and migrate from computer to computer. The latter
is independent of application-specific tasks because such tasks
are confined within the former.

A. Component

Since it is almost impossible to automatically partition stan-
dalone applications across computers, this framework relies
on the concept of constructing component-based applications
[24]. That is, an application is loosely composed of software
components that may run on different computers.

Each component in the current implementation of the frame-
work is a collection of Java objects in the standard JAR
file format and can migrate from computer to computer and

duplicate itself by using mobile agent technology [16].2 Each
is also equipped with its own identifier and the identifier of
the federation to which it belongs. Each also specifies the
computational capability that its destination hosts must offer
in CC/PP (composite capability/preference profiles) form [27],
which describes the capabilities of the component host and
the requirements of the components. The framework provides
each component with built-in APIs to verify whether or not
its destination satisfies its requirements.? The APIs transform
the profiles into corresponding LISP-like expressions and then
evaluate them.

Each component provides references to the other com-
ponents of the application federation to which it belongs.
Each reference enables the component to interact with the
component that it specifies, even if the components are
on different computers or move to other computers. The
current implementation of referencing provides three types
of mobility-transparent interactions: publish/subscribe-based
remote event passing, remote method invocation, and stream
communication between computers. Moreover, each reference
defines two migration policies for two components, a follow
hook and a dispatch hook.

e When a component declares a follow hook for another
component, if the following component moves, the hook
instructs the proceeding one to migrate to the same
destination or an appropriate nearby host.

e When a component declares a dispatch hook for another
component, if the following component moves, the hook
instructs a clone of the proceeding one to migrate to the
same destination or an appropriate nearby host.

The framework enables us to define other policies.

B. Component Host

Each component host is a computer and has a runtime sys-
tem for executing and migrating components to other hosts.
Each host establishes at most one TCP connection with each
of its neighboring hosts and exchanges control messages,
components, and inter-component communications with these
through the connection. Fig. 5 outlines the basic structure of a
runtime system. The current implementation can dynamically
extend other component migration protocols by using the
mobile software-based protocol mechanism [17]. Therefore,
it can transmit the components through HTTP or SMTP by
using tunneling techniques, because in almost all intranets,
there is a firewall that prevents users from opening a direct
socket connection to a node across administrative boundaries.

Component Runtime Service: Each runtime system is built
on the Java virtual machine, which conceals the differences
between the platform architectures of the source and des-
tination hosts, such as the operating system and hardware.
Each runtime system governs all the components inside it
and maintains the life-cycle state of each component. When

2JavaBeans can easily be translated into components in the framework.
3More detailed information can be found to another paper [21], which was
omitted have, due to space limitations.

Inter-component communication

Component "Component“) Component| |Component
i _—
A B [component migration v E

[Component Runtithe Servide | [Cpmponenf Runtime Service |

Migration{
transparerjt
Coordinatign

ligration-

Discqvery Policy

Management

Discovery
Management

Polfcy
Managpment

"| | Cpordination

Core Runtime System |

}]

| JavalVirtual Machine |

Transport Protocol |
|

OS/Hardware
component host 2

[Core Runtimg System
+

[Java Virtual Machine \

| Transport Protosel

|

OS/Hardware
component host 1

l
TCP session l
T
|

Fig. 5. Architecture for component host.

the life-cycle state of a component changes, e.g., when it is
created, terminates, or migrates to another host, the runtime
system issues specific events to the component. This is because
the component may have to acquire various resources, e.g.,
files, windows, or sockets, or release ones it had previously
acquired.

Component Migration Service: Each component host can
exchange components with another through a TCP channel
through mobile agent technology. When a component is trans-
ferred over the network, the component host on the sending
side marshals the code of the component and its state into
a bit-stream and then transfers them to the destination. The
component host on the receiving side receives and unmarshals
the bit-stream. The current implementation uses the standard
JAR file format for passing components because it can support
digital signatures, allowing for authentication. It also uses
Java’s object serialization package for marshaling components.
This package can save the content of instance variables in a
component program but does not support the capturing of stack
frames of threads. Consequently, component hosts cannot
serialize the execution states of thread objects. Instead, when a
component is marshaled or unmarshaled, the component host
propagates certain events to its components instructing them
to stop their active threads and then automatically stops and
marshals them after a given period of time.

Policy Management Service: The policy-based deployment
of components is managed by each component host without
a centralized management server. Each component host pe-
riodically advertises its address to the others through UDP
multicasting, and then these hosts return their addresses
and capabilities to the host through a TCP channel.* (1)
When a component migrates to another component host, each
component automatically registers its deployment policy to
the destination host. (2) The destination host sends a query
message to the source host of the visiting component. There
are two possible scenarios: the visiting component has a policy
for another component or it is specified in other component’s
policies. (3-a) In the former, since the source host knows the
host running the target component specified in the policy of

4We assume that the components comprising an application would initially
be deployed to hosts within a localized space smaller than the domain of a
sub-network.

the visiting component, it asks the host to send the destination
host information about itself and about neighboring hosts that
it knows, e.g., network addresses and capabilities. If the target
host has retained the proxy of a target component that has
migrated to another location, it forwards the message to the
destination of the component via the proxy. (3-b) In the second
scenario, the source host multicasts a query message within
current or neighboring sub-networks. If a host has a component
whose policy specifies the visiting component, it sends the
destination host information about itself and its neighboring
hosts. (4) The destination host next instructs the visiting
component or its clone to migrate to one of the candidate
destinations recommended by the target host, because this
framework treats every component as an autonomous entity.
Moreover, when the capabilities of a candidate destination
do not satisfy all the requirements of the component, the
component itself decides, on the basis of its own configuration
policy, whether it will migrate itself to the destination and
adapt itself to the destination’s capabilities.

Migration-transparent Coordination Service: The frame-
work provides three interactions: publish/subscribe for asyn-
chronous event passing, remote method invocation, and
stream-based communication.> Each runtime system offers
a remote method invocation (RMI) mechanism through a
TCP connection. It is independent of Java’s RMI because
Java’s RMI lacks reference updating mechanisms for migrating
components. Each runtime system can maintain a database that
stores pairs of identifiers of its connected components and the
network addresses of the current component host.

Each component host maintains a group of connected
components, when one or more components migrate to other
computers. The basic algorithm for migration-transparent com-
munication is as follows. When a component migrates to
another computer, it sends suspend messages to these hosts to
block any new uplinks from them to the migrating component.
It informs the current component host of the identifiers of
components that may hold references to it. The component
host then searches its database for the network addresses
of component hosts with the components specified in the
identifiers. After the component arrives at its destination, it
sends an arrival message with the network address of the
destination to the departure host via the destination host.
When the departure host receives the arrival message, it sends
resumption messages with the address of the destination to
component hosts with components that may hold references to
the moved component so that they can update their databases.

Most of the time, event dispatch passing or method in-
vocation may complete each of their transactions instantly.
However, components may experience extended delays due
to network congestion or computational overload. Therefore,
method invocation or event passing for moving components
may occur or components that may hold references to a
moving component may migrate to other places before the

SIn the current implementation, remote event passing and stream-based
communication have been implemented using our original RMI mechanism.

basic algorithm is completed. To solve this problem, a mi-
grating component creates and leaves a proxy component at
the departure host for the time the algorithm takes to finish.
The proxy component receives uplinks from other hosts and
forwards them to the moved component through the steps
in Fig. 6, where components A and C have references to
component B, which has a reference to component A and
is moving to another location. Since no components have
to be tracked for other components to communicate with
them, components can leave proxy components along the trail
under their control. Proxies are also programmable entities,
like components, so they can modified based on application
requirements.

Component A and C have references to
component B that is moving to another location.

Component Host

Migration-

Component A hﬁ%
Coordina q
‘W

reference[B] SIVIC ™

step 6
reference update

step 1 .
suspend messagg

step 5
rgsumption message

t+
Component Hostl’ ZT’?I‘\)/; COmpOnenl\H\OS\}
| Mfgration- ration-
c IFirerg for B transparent € message Component B parent
omponent for Codydination Coorination
Sgrvice -omponent — Setyvice
\ B
step 2 -
proxy creation i step 3
h . .
step 1 . slep 5 component migration

')
suspend message resumption message
/

Component Host' Y Y
reference [B [-Mrgration-
transparent

Component C Coggg;ggon

Fig. 6. Migration-transparency mechanism.

step 6
reference update

C. Location Information Service

In addition to components and component hosts, the frame-
work provides location information servers (LISs) to deploy
components at computers according to the positions of com-
puters and physical entities, including people. Each LIS man-
ages more than one sensor that detects the presence of RFID
tags, and maintains up-to-date information on the identities of
tags that are within its area of coverage.

Locating Sensors: Each LIS polls its sensors or receives
events issued by them. To hide differences between underlying
locating systems, each LIS maps low-level positional informa-
tion from each of these in a symbolic model of location. An
LIS represents an entity’s location in symbolic terms of the
unique identifier of the sensor that detects the entity’s tag. Each
sensor’s coverage is called a cell, as in the models of location
studied by several other researchers[12]. In the framework,
multiple sensors do not have to be neatly distributed in a
space, such as rooms or buildings, to completely it; instead,
their coverage can overlap.

Component Discovery: Each LIS is responsible for discov-
ering components bound to tags within its cells. It maintains

a database where it stores information about each of the
component hosts and each of the components attached to a
tagged entity or place. When an LIS detects a new tag in a cell,
the LIS multicasts a query that contains the identity of the new
tag and its own network address to all the component hosts in
its current sub-network.® It then waits for reply messages from
the component hosts. Here, there are two possible scenarios:
it may be attached to a component host or the tag may be
attached to a person, place, or thing other than a component
host.

o In the first, the newly arriving component host sends its
network address and device profile to the LIS; the profile
describes the capabilities of the component host, e.g., its
input devices and screen size. After receiving this reply,
the LIS stores the profile in its database and forwards the
profile to all component hosts within the cell.

« In the second case, some component hosts that have com-
ponents tied to the new tag send their network addresses
and the requirements of acceptable components to the
LIS; the requirements for each component specify the
capabilities of the component hosts that the component
can visit and perform its services at.

If the LIS has no reply messages from the component hosts,
it multicasts a query message to the other LISs. Figure 7
has a sequence for migrating a component to a proper host
when an LIS detects the presence of a new tag. When an
LIS detects the movement of a tag attached to a person or
a thing, to a cell, it searches its database for component
hosts that are present in the current cell of the tag. It then
selects candidate destinations from the set of component hosts
within the cell according to their respective capabilities and
recommends candidate destinations for the components that
the tag is attached to.

step 5:
query message
Location Server A about the tag's ID Location Server B

directol
databasg

step 5:
query message
about the tag's ID

sensor-
abstraction
layer

- profile sensor:
directol abstraction |
databasg | handler laye

profile
handler

step 6: N
query message step 7, step 8: ! 3_‘\ step 3:
about the tag's D, reply message host e Step S ton 41 query message
query messagef [SteP 4| Sabout the tag's ID
about the tag's Il;i host P <
g] step 9: profile tag)
component etection
%l migration component "
ag component

component component taDg '3

host

’ o 3

] =
host '\%/ sensor componept OSt

step 1:
the movement of
a component host

Fig. 7. Component discovery and deployment.

IV. COMPONENT PROGRAMMING

As previously discussed, each component was implemented
as a collection of Java objects and needed to be an instance
of a subclass of the MComponent class. Here, we will

Note that the coverage area of an RFID reader is mostly contained within
the reachable domain of multicasting communications.

explain some programming interfaces, which characterize the
framework.
class MComponent extends MobileAgent

implements Serializable {
void go(URL url)

throws NoSuchHostException { ... }
void duplicate()

throws IllegalAccessException { ... }
void setGroupldentifier(

GroupIdentifier gid) { ... }
GroupIdentifier getGroupIdentifier() { ... }
void setComponentProfile(

ComponentProfile cpf) { ... }
boolean isConformableHost (

HostProfile hfs) { ... }

ComponentRef[] getGroupComponents() { ... }

ComponentRef[] getComponents (
Object cif) {..}
ComponentProfile getComponentProfile(

ComponentRef ref) { ... }
setPolicy(ComponnetProfile cref,

MigrationPolicy mpolicy) { ... }
}

Let us explain some methods defined in the Component
class.

e A component executes go(URL url) to move to the
destination host specified as url by its runtime system.
duplicate() creates a copy of the component, includ-
ing its code and instance variables.

e The setGroupIdentifier() ties the component
to the identity of the federation specified as gid and
the getGroupComponents () returns a list of com-
ponents that belongs to the same federation. When
getComponents () is invoked with an object corre-
sponding to a component interface, it returns a list of
components that can satisfy the interface in local and
remote component hosts.

e Each component can specify a requirement that
its destination hosts must satisfy by invoking the
setComponentProfile(), with the requirement
specified as cpf, where the requirement is defined in
CC/PP form. The class has a service method named
isConformableHost (), which the component uses
to decide whether or not the capabilities of the component
hosts specified as an instance of the HostProfile class
satisfy the requirements of the component.

Each component can have more than one listener object that
implements a specific listener interface to hook certain events
issued before or after changes in its life-cycle state.

A. Component Migration Programming

Each component can declare its own migration policy by
invoking the setPolicy() of the Component class while
it is running.
setPolicy(cref,
new MigrationPolicy(Policy.FOLLOW));

setPolicy(cref,
new MigrationPolicy(Policy.DISPATCH));

For example, the upper command in the above code fragment
means that when a component specified as cref moves to
another computer, the component that executes the command

migrates to the same computer or nearby computers in the
current cell that the computer resides at. The framework is
open to the introduction of new policies as long as they are
subclasses of MigrationPolicy that defines the migration
policy.

B. Component Coordination Programming

Component references are responsible for tracking possible
moving targets and for invoking the targets’ methods. They
are defined as the ComponentRef class and provide the
following three primitives for remote interactions. Our early
experience already proved that these primitives could cover
most types of interactions presented in the literature on design
patterns.

a) Remote Method Invocation:: The framework provides
APIs for invoking the methods of other components on lo-
cal or different computers with copies of arguments. Our
programming interface for method invocation is similar to
CORBA’s dynamic invocation interface and does not have to
statically define stub or skeleton interfaces through a precom-
piler approach, because pervasive computing environments are
dynamic.

Message msg = new Message("print");

msg.setArg("hello world");
Object result = cref.invoke(msg);

The above code fragment is to invoke a method the component
specifies as cref reference.

b) Publish/Subscribe-based Event Passing:: Modern
GUI applications often rely on publish/subscribe approaches
that provide subscribers with the ability to express their
interest in an event so that they can be notified afterwards
of any event notified by a publisher. The approach is useful in
minimizing the number of events passed to remote computers.
This framework provides a generic remote publish/subscribe
approach using Java’s dynamic proxy mechanism, which is a
new feature of the Java 2 Platform since version 1.3.7 Fig. 8
shows how events are passed, published by a component on
a remote component host, to the corresponding event-listener
object in another component on another remote component
host.

SampleListener sl =
cref.addListener(sl,

new SampleListenerImpl();
"SampleListener");

The above code fragment registers the listener object specified
as s1, which is an implementation of the SampleListener
interface. The addListener () method dynamically creates
a proxy object on a remote component host that has a remote
component specified as cref. The proxy is an implemen-
tation of the SampleListener interface and automatically
forwards events that are specified in the interface to the listener
object on the local host.

c) Stream Communication: The notion of a stream is
highly abstracted representing a connection to a communi-
cation channel. The framework enables two components on

7As the dynamic creation mechanism is beyond the scope of this paper, we
have omitted it here.

event
dispatcher

dynamic
proxy

Component A
local listener

Component B

event
dispatcher

reference

| Core Runtime System | | Core Runtime System

| Java Virtual Machine |
\

X,

TCP Session |/

]
Java Virtual Machine j |
|

Fig. 8. Dynamic creation of proxy object for publish/subscribe

different hosts to establish a reliable channel through a TCP
connection managed by the hosts.?

V. CURRENT STATUS

A prototype implementation of this framework was built
with Sun’s Java Developer Kit version 1.4.° It uses the
Mobilespaces mobile agent system to provide mobile com-
ponents and supports five commercial locating systems: RF
Code’s Spider, Aeroscout’s WiFi-tag, Alien Technology’s 950
MHz RFID-tag, Philips I-Code, and Hitachi’s p-chip systems.
The first and seconds system provide active RFID-tags and
the others provide passive RFID-tags. The Spider system’s
sensor can detect tags within a range of 1 to 20 meters. The
Aeroscout’s WiFi-tag can locate the position of tagged objects.
Alien Technology’s 915MHz RFID system’s sensor can read
tags within 3 meters and the other systems within within a
few centimeters. The other systems can read tags within 0.3
meters.

Although the current implementation was not constructed
for performance, we evaluated the group migration of three
components (Fig. 4). The cost of migrating the three compo-
nents was 180 msec, where the cost of migrating components
between two hosts over a TCP connection was 40 msec and
the cost of duplicating components in a host was less than
5 msec.!® This experiment was done with five component
hosts (Pentium III-1.2 GHz with Windows XP and JDK 1.4)
connected through a Fast Ethernet network. The cost of migrat-
ing components included that of opening TCP-transmission,
marshaling the components, compressing them in a zip-form,
migrating them from their source hosts to their destination
hosts, uncompressing them, unmarshaling them, and verifying
security. We believe that this latency is acceptable for a
location-aware system used in rooms or buildings.

The current implementation can encrypt components to
be encrypted before migrating them over a network and
then decrypt them after they arrive. Moreover, since each
component is just a programmable entity, it can explicitly
encrypt its particular fields and migrate itself with these
fields and its own cryptographic procedure. The Java virtual

8Since our channel relies on TCP, it can guarantee exactly-once communi-
cation semantics across the migration of components.

9The functionalities of the framework except for subscribe/publish-based
remote event passing can be implemented on Java Developer Kit version 1.1
or later versions, including Personal Java.

10Each of the three components was about 8 KB.

machine can explicitly restrict components to only access
specified resources to protect hosts from malicious compo-
nents. Although the current implementation cannot protect
components from malicious hosts, the runtime system supports
some authentication mechanisms for agent migration provided
in mobile agent technology so that each component host can
only send agents to and only receive from trusted hosts.

VI. INITIAL EXPERIENCE

This section presents two examples that illustrate how the
framework works.

A. Follow-Me Applications

The first example is a typical mobile application developed
with the framework to illustrate how the this framework works.
The application is a mobile editor. Since it is based on model-
view-control (MVC) pattern [10], it is composed of three
partitioned components corresponding to the model, view, and
control parts in the pattern. The first, called application logic,
manages and stores text data and should be executed on a
host equipped with a powerful processor and a vast amounts
of memory. The second, called viewer, displays text data
on the screen of its current host and should be deployed at
hosts equipped with large screens. The third, called controller,
forwards texts from the keyboard of its current host to the first
component.

These components interact with one another through the
migration-transparent interaction primitives of this framework.
The first component is a listener object for the third component
that receives keyboard input. The second component is a
listener object for the first component that updates its content
according to changes in the stored first component. When
it displays large amount of the first component’s content, it
establishes stream communication from the first component to
itself to receive its content sequentially. They also have relo-
cation policies as follows: the application logic and controller
components have follow hook policies for viewer components
to deploy themselves at the current host or nearby hosts.

B step 1 step 1 »
user movemept ‘ user movement
= =" RFID-tag
= =
computer A RFID-tag step 2 RFID-tag
with keyboard i i i ;
(Y RFID-tracking component migration () — RFID-tracking 4 computer A

and screen) (with screen

system

‘user
| counter-part

step 3
component
e

migration

controller
component

. . N
] controller ?mm\'owewer
component, "™, component}

computer A
(with keyboard)

M—/{
gi\' ‘ componentD

migration ’
:application ~
logic compohe

network

it application
logic compgnent

step 4 D —

component migration

)
computer B (with high-performance
processor and memory)

computer B (with high-performance
processor and memory)

Fig. 9. Dynamic deployment of components for editor application.

As we can see from Fig. 9, we assumed that the three
components would initially be stored in two hosts, where the
first host had a keyboard and a large screen and the second one
had a powerful processor and abundant memory. We developed
a middleware for location-aware services in a previous paper
[21]. The middleware could track the movement of the user
in a physical space through RFID-tag technology.!' Using
the middleware and an RFID-tag system, we introduced a
component called user-counterpart that could automatically
move to hosts near the current location of the user, even while
the user was moving. That is, a user-counterpart was always
at a host near the user. Since the viewer component had a
follow hook policy to move the user-counterpart component,
it moved to a host that had a user-counterpart or nearby hosts.
When a user moved to another location, the components could
be dynamically allocated at suitable hosts without losing any
coordination between them as we showed in Fig. 9.

B. Component Diffusion in Sensor Networks

The second example involves the speculative deploying of
components according to changes in the physical world. This
provides a mechanism that dynamically and speculatively
deploys components at sensor nodes when there are environ-
mental changes. This system assumes that the sensor field is
a two-dimensional surface composed of sensor nodes and it
monitors environmental changes, such as motion in objects
and variations in temperature. It is a well known fact that
after a sensor node detects environmental changes in its area
of coverage, some of its geographically neighboring nodes
tend to detect similar changes after a short time. Diffusion
occurs as follows. When a component on a sensor node finds
changes in its environment, the component duplicates itself
and deploys the copy at neighboring nodes as long as the
nodes have the same kinds of components (Fig. 10). Each
component is associated with a resource limit that functions
as a generalized Time-To-Live (TTL) field. Although a node
can monitor changes in interesting environments, it sets the
TTLs of its components as their own initial value. It otherwise
decrements TTLs as the passage of time. When the TTL
of a component reaches zero, the component automatically
removes itself. This example is still in the early stages of
experimentation but we have developed a mobile agent-based
middleware for sensor networks [26] and plan to extend this
framework to the middleware. Some readers may think that
this mechanism is similar to dynamic management approaches
for sensor networks [1], [8]. However, the existing approaches
have only been optimized for only sensor networks and do not
enable all deployable software to configure their deployment
policies unlike our framework.

VII. RELATED WORK

There have been several projects that have aggregated
multiple-user-interface devices attached to different comput-
ers. For example, Microsoft’s EasyLiving project [2] provided

UFID-based-tacking systems have been described in previous papers [21].

Step 1

00
00 e e
'\:_,"—'). moving entity
OO0 @@
@®
sensor node
Step 2
volatilizing
@0
valatilizing duplication
0 e @
volatilizing| .—-} moving entity
0 e ee
volatilizing i duplication
@0

sensor node

Fig. 10. Component diffusion with moving entity

a middleware, called InConcert, to dynamically aggregate
networked-enabled input/output devices, such as keyboards
and mice, even when they belonged to different computers.
The middleware transmitted input and output across networks
as necessary using devices that users indicated could be used.
This is similar to the motivation behind our framework, but
it managed these devices in a centralized manner and could
not dynamically migrate software from computer to computer.
The i-Land project by GMD-IPSI and Darmstadt University
provided a component-based software infrastructure, called
BEACH [25], which could provide support to construct col-
laborative applications through shared or distributed devices.
BEACH, however, was aimed at synchronously sharing infor-
mation between multiple users, and BEACH applications were
statically bound to computers, unlike our framework.

Several researchers have introduced software mobility as a
technology that enables pervasive computers to support various
services, which they may not have initially been designed for.
The Aura project [4] by CMU provides an infrastructure for
binding tasks associated with users, and migrating applica-
tions from computer to computer as users move about, like
our framework does. Although Aura shares several common
design goals with our framework, it focuses on providing
contextual services to users rather than integrating multiple
computers to support functions and performance unattainable
through a single computer. One.world [6] by the University
of Washington and our MobileSpaces [16] provided an in-
frastructure for pervasive computing environments and mobile
containers. This was called an environment by one.world and
a hierarchical mobile agent by MobileSpaces, where each

container not only provided the structure and controls for
computational services but also acted as a carrier for the other
containers. The two approaches assumed that each applica-
tion would be executed within a single computer, instead of
different computers.

The type of application partitioning we seek is similar to
the one proposed by the Gaia project [14] of the Univer-
sity of Illinois at Urbana-Champaign. Like our framework,
Gaia allows applications to be partitioned between different
computers and move from computer to computer [15]. As
discussed in Section II, Gaia assumes that applications will
be constructed based on a design pattern, called MPACC,
which is is an extension of the MVC pattern [10], whereas
our framework supports a variety of interactions between
partitioned applications so that we do not have to assume
particular application models. Pervasive computing may also
need new or special design patterns as several researchers have
discussed [11]. Therefore, we have not assumed particular
application models in our framework. Instead, it incorporates
the notion of relocation constraint, called the hook policy. This
notion enables a federation of partitioned applications to be
organized among heterogeneous computers in a self-organized
manner, unlike Gaia’s applications.

The notion of our relocation policy may be similar to the
dynamic layout of distributed applications in the FarGo system
[7], but the former aims at allowing one component to describe
its own migration, whereas the latter was aimed at allowing
one or more components to control a single component. This
is because our framework treats components as autonomous
entities that travel from computer to computer under their own
control. This difference is important, because FarGo policies
may conflict if two components can declare different relocation
policies for one single component. However, our framework
is free of conflicts because each component can only declare
a policy regarding its own relocation instead of those for
other components. There have been numerous mobile agent
systems in addition to the systems discussed in this section.
They introduced mobile agents as independent computing
entities that can travel between computers independently of the
location of other agents. They, therefore, lack any mechanism
for coordinating the relocation of one or more agents, running
on local or remote computers.

We described an infrastructure for location-aware mobile
agents in a previous paper [21]. Like the framework presented
in this paper, that infrastructure provided RFID-tagged entities,
including people and things, with application-level software
to support and annotate them. However, since it could not
partition an application into one or more components, it
needed to deploy and run applications on single instead of
multiple computers. We presented an earlier version of the
framework presented in this paper in a recent short paper [22].
The previous framework aimed at building an application as
a federation of one or more mobile components, but lacked
migration-transparent coordination mechanisms and dynamic
relocation policies supported by the current framework.

VIII. CONCLUSION

This paper discussed a novel framework for dynamically
aggregating distributed applications in pervasive computing
environments. It was used to build an application from mobile
agent-based components, which could explicitly have policies
to deploy themselves. It also supported most typical interac-
tions between partitioned applications on different computers.
It enabled a federation of components to be dynamically
structured in a self-organized manner and move among het-
erogeneous computers that could provide the computational
resources required by the components. We believe that the
framework provides a general and practical infrastructure for
building distributed and mobile applications. We designed
and implemented a prototype system for the framework and
demonstrated its effectiveness in several practical applications.

To conclude, we would like to identify further issues that
need to be resolved. We aimed at presenting two deployment
policies, but there are other and useful policies that may be
possible. We are interesting at developing such deployment
policies. The current policies treat a copy of the component
to be running independently of the original, but we plan on
providing a mechanism to enable a component and its clone
to share updating. Although the examples presented in this
paper were designed for single persons, we plan to implement
multiuser applications, e.g., CSCW and workflow management
systems. Security is essential in mobile applications and the
current implementation of the system relies on Java’s security
manager. However, we plan to design a security mechanism
that is more suited to distributed applications. We are also
interested in security mechanisms that enable interactions
between humans and components. We developed an approach
to test context-aware applications on mobile computers [20],
but need to develop a methodology for testing distributed
applications that are based on this new framework. We also
proposed a specification language for the itinerary of mobile
software [23]. The language enabled us to define more flexible
and varied policies to deploy components.

REFERENCES

[1] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T.W.D. Kim, B. Zhou, and E.
G. Sirer, On the Need for System-Level Support for Ad hoc and Sensor
Networks, Operating Systems Review, ACM, vol. 36, no.2, pp.1-5, April
2002.

[2] B. L. Brumitt, B. Meyers, J. Krumm, A. Kern, S. Shafer, EasyLiving:
Technologies for Intelligent Environments, Proceedings of International
Symposium on Handheld and Ubiquitous Computing (HUC’00), pp. 12-
27, September, 2000.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns,
Addison-Wesley, 1995.

[4] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, Project
Aura: Towards Distraction-Free Pervasive Computing, IEEE Pervasive
Computing, vol. 1, pp. 22-31, 2002.

[5] K. J. Goldman, B. Swaminathan, T. P. McCartney, M. D. Anderson, R.
Sethuraman The Programmers’ Playground: I/O Abstraction for User-
Configurable Distributed Applications, IEEE Transactions on Software
Engineering, vol. 21, no. 9, pp.735-746, September 1995.

[6] R. Grimm, el. al, System support for pervasive applications,
http://www.cs.nyu.edu/rgrimm//one.world.pdf

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

O. Holder, I. Ben-Shaul, and H. Gazit, System Support for Dynamic
Layout of Distributed Applications, Proceedings of International Con-
ference on Distributed Computing Systems (ICDCS’99), pp 403-411,
IEEE Computer Soceity, 1999.

C. Intanagonwiwat, R. Govindan, and D. Estrin, Directed Diffusion: A
Scalable and Robust Communication Paradigm for Sensor Networks,
Proceedings of Conference on Mobile Computing and Networking
(Mobicom’2000), pp.56-67, August, 2000.

B. Johanson, G. Hutchins, T. Winograd, PointRight: Experience with
Flexible Input Redirection in Interactive Workspaces, Proceedings of
User Interface Software and Technology (UIST’02), ACM Press, 2002.
G. E. Krasner and S. T. Pope, A Cookbook for Using the Model-View-
Controller User Interface Paradigma in Smalltalk-80, Journal of Object
Oriented Programming, vol.1 No.3, pp. 26-49, 1988.

J. A. Landay and G. Borriello, Design Patterns for Ubiqutious Com-
puting, Computer, vol. 36, no. 8, pp. 93-95, IEEE Computer Society,
August 2003.

Leonhardt U, Magee J. Towards a General Location Service for Mo-
bile Environments. Proceedings of IEEE Workshop on Services in
Distributed and Networked Environments, pp. 43-50, IEEE Computer
Society, 1999.

B.A. Myers: Using Hand-Held Devices and PCs Together, Communica-
tions of the ACM, vol. 44, no. 11, pp. 34-41, 2001.

M. Romdn, C. K. Hess, R. Cerqueira, A. Ranganat R. H. Campbell,
K. Nahrstedt K, Gaia: A Middleware Infrastructure to Enable Active
Spaces, IEEE Pervasive Computing, vol. 1, pp.74-82, 2002.

M. Romidn, H. Ho, R. H. Campbell, Application Mobility in Active
Spaces, Proceedings of International Conference on Mobile and Ubig-
uitous Multimedia, 2002.

1. Satoh, MobileSpaces: A Framework for Building Adaptive Distributed
Applications Using a Hierarchical Mobile Agent System, Proceedings
of IEEE International Conference on Distributed Computing Systems
(ICDCS’2000), pp.161-168, April 2000.

I. Satoh, Adaptive Protocols for Agent Migration, Proceedings of
IEEE International Conference on Distributed Computing Systems
(ICDCS’2001), pp.711-714, IEEE Computer Society, April, 2001.

I. Satoh, MobiDoc: A Mobile Agent-based Framework for Compound
Documents, Informatica, vol.25, no.4, pp.493-500, December 2001.

I. Satoh, Building Reusable Mobile Agents for Network Management,
IEEE Transactions on Systems, Man and Cybernetics, vol.33, no. 3,
part-C, pp.350-357, August 2003.

I. Satoh, A Testing Framework for Mobile Computing Software, IEEE
Transactions on Software Engineering, vol. 29, no. 12, pp.1112-1121,
December 2003.

I. Satoh, Linking Physical Worlds to Logical Worlds with Mobile
Agents, Proceedings of IEEE International Conference on Mobile Data
Management (MDM’04), pp. 332-343, IEEE Computer Society, January
2004.

I. Satoh, Dynamic Federation of Partitioned Applications in Ubiquitous
Computing Environments, Proceedings of 2nd International Conference
on Pervasive Computing and Communications (PerCom’2004), pp.356-
360, IEEE Computer Society, March 2004.

1. Satoh, Selection of Mobile Agents, Proceedings of IEEE International
Conference on Distributed Computing Systems (ICDCS’2004), pp.484-
493, IEEE Computer Society, March 2004.

C. Szyperski, D. Gruntz, and S. Murer, Component Software (2nd),
Addison-Wesley, 2003.

P. Tandler, Software Infrastructure for Ubiquitous Computing Envi-
ronments: Supporting Synchronous Collaboration with Heterogeneous
Devices, Proceedings of UbiComp’2001, LNCS vol. 2201, pp. 96-115,
Springer, 2001.

Umezawa T, Satoh I, Anzai Y. A Mobile Agent-based Framework for
Configurable Sensor Networks. Proceedings of International Workshop
on Mobile Agents for Telecommunication Applications (MATA’2002);
Lecture Notes in Computer Science 2002; Springer; Vol. 2521: 128-140.
World Wide Web Consortium (W3C), Composite Capability/Preference
Profiles (CC/PP), http://www.w3.org/TR /NOTE-CCPP, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

