
LOCATION-AWARE DESPLOYMENT OF SERVICES FOR INTELLIGENT ENVIRONMENTS
Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 JAPAN

ABSTRACT
A framework for building and managing context-aware
services for intelligent environments is presented. The
goal of the framework is to provide physical entities,
e.g., people and things, and places with location-aware
or personalized services to support and annotate them.
The framework can implement context-aware services
within mobile agents or codes instead of the framework
itself. It enables such service to be executed at
computing devices near the positions of the entities and
places that the services are bound to so that users can
directly access location-based services from their
portable computing devices or their personalized
services from stationary computing devices in the
environment. This paper presents the rationale, design,
implementation, and applications.

1. INTRODUCTION
Location-awareness is becoming an essential feature of
services in pervasive computing devices. Recent
advances in sensing technologies enable pervasive
computing devices to detect their surroundings. In fact,
computing devices Global Positioning System (GPS)
receivers, Radio Frequency IDentification (RFID)
readers, and computer-vision cameras. These sensors
have made it possible to detect and track the presence
and location of people, computers, and practically any
other object we want to monitor. A variety of
pervasive services based on such sensors have been
explored.
 However, there are still several problems in existing
services. Most of the services are inherently designed
for their initial applications. In fact, existing services
can be classified into two approaches. The first is to
make the computing devices that move with the user.
For example, in HP's Cooltown project [8], mobile
computing devices such as PDAs and smart phones are
attached to GPSs to provide location-awareness for
web-based applications running on the devices. The
second is to offer intelligent environments where can
monitor the positions of physical entities, including
people and objects, to support application-specific
services at appropriate computers. A typical example
of this is the so-called follow-me application, which was
a study by Cambridge University's Sentient Computing
project [5], to offer ubiquitous and personalized services
on computers located near users.
 The two approaches are developed independently,
although their final goals coincide. That is, services
are designed for running on mobile computing devices
equipped with positioning systems cannot be reused on
stationary computers with tracking sensors, vice versa.
Moreover, Most existing services are designed

dependently on particular sensors in the sense that they
explicitly or implicitly assume low-level information
measured by sensing systems, for example, geometric
information measured from GPSs. As a result,
software for defining services with particular sensing
systems cannot be reused with other sensing systems.

This paper presents a framework for developing
and operating services for mobile or ubiquitous
computing independently of particular sensing systems
and computing devices. In other words, the
framework does not distinguish between mobile and
stationary computing devices and between positioning
sensors and tracking sensors. Instead, it dynamically
deploys software that defining services at suitable
computing devices according to changes in the physical
world, e.g., the positions of people and computing
devices. Moreover, it provides the deployment
policies of services to support their various
requirements.
 In the remainder of this paper, we describe our design
goals (Section 2), the design of our approach, called
SpatialAgent, and a prototype framework (Section 3).
We present how to bridge the gap between the physical
world and cyberspace (Section 4) and discuss our
experience with several applications, which we
developed with the framework (Section 5). We briefly
review related work (Section 6). We also provide a
summary and some future issues (Section 7). Lastly, we
describe programming models (Appendix).

2. APPROACH
The framework presented in this paper aims to enhance
the capabilities of users, particularly mobile users,
things, including computing devices and non-electronic
objects, and places, such as rooms, buildings and cities.
All these elements must have suitable computational
functionalities that enable their support and annotation.
The goal of the framework is to enable people to access
suitable services that they want in their associate context,
e.g., from suitable computers that are located at suitable
places to support the services and can satisfy the
requirements of the services.

2. 1. Service-oriented Location model
There have been a variety of location-sensing systems.
They can be classified into two types: tracking and
positioning systems. The former, including RFID,
measures the location of other located objects. The latter,
including GPS, measures its own location. Tracking
sensors can be embedded in the environment and
positioning sensors can be carried with portable
computing devices. There are two different ways to
locate objects: geometric location and symbolic location.

The former represents the locations of objects as
geometric information. A few outdoor-applications
like moving-map navigation can easily be constructed
on the former. Most emerging applications, on the
other hand, require a more symbolic notion: place.
Generically, place is the human-readable labeling of
positions, e.g., the names of rooms and buildings. An
object contained in a volume is reported to be in that
place. This paper addresses symbolic location as an
event-driven programming model for pervasive
computing environments. For example, when people
enter a place, services should be provided from their
own portable terminal or their own stationary terminals
should provide personalized services to assist them.

2.2. Location-aware deployment of services
Where to execute services is a major design decision.
However, most services for intelligent environments
should be executed at typical locations. For example,
follow-me services should be provided at computers
near the current positions of the users or computers
inside the range of their visions rather than remote
computers. Tourist-navigation services should provide
location-information about the current positions in most
cases. However, it is difficult to manage the location
that services should be operated at according to the
requirements of the services. Therefore, the
framework gives a clear solution to the relocation of
services. Its goal is to provide services on computing
devices near the locations of people that want the
services or within the locations of spaces that the
services annotate. That is, suitable services should be
operated on suitable computing devices in the sense that
the services are wanted according to the locations of
users and their associate contexts and the locations and
capabilities of the devices can satisfy the requirements
of the services. Although this solution may seem to be
limited, it can cover most existing services for
intelligent environments and makes it greatly easy to
manage the locations of services.

2.3. Deployable services for intelligent environments
Most ubiquitous or mobile computers often have only
limited resources, such as restricted levels of CPU
power and amounts of memory. As a result, even if a
computer is at suitable location for a wanted service to
be provided, the computer may not be available because
of a lack of software or capabilities, such as input or
output facilities, for executing the software. Various
kinds of infrastructure have been used to construct and
manage location-aware services. However, such
infrastructures have mostly focused on a particular
application, such as user navigation. To solve this
limitation, our framework provides three approaches.
The first is to software for defining pervasive services to
be composed from software components, which may
run on different computers. The second is to enable
software for defining pervasive services to be

dynamically deployed at stationary or mobile computers
by using mobile code technology and mobile agent
technology. The third is to manage the location of
services as well as the location of physical entities and
computing devices.

3. DESIGN AND IMPLEMENTATION
This framework enables a physical entity and place to
spatially bind with one or more mobile code- or
agent-based services. These services annotate and
support the entities or places in the sense that the
services can be dynamically deployed at stationary and
mobile computing devices that are near or within the
locations of the entities and places. Therefore, the
services can easily be customized to be person- and
location-dependent. They can directly interact with
their users, whereas other existing approaches, e.g.
remote procedure calls and web-based interaction can
be seriously affected by network latency between the
client-side and service side computers.

The framework provides the middleware infrastructure
for managing location-sensing systems and deploying
software for defining services for intelligent
environments according to the locations of users and
objects, including computers. As shown in Figure 1, it
consists of three parts: (1) service-provider components,
which are implemented as mobile agents or codes, (2)
component hosts, which are runtime systems for
executing and migrating components. (3) location
information servers, called LISs.

3.1. Service Provider Component
The framework uses mobile agent or code technology
because the technology has several advantages for
ubiquitous and mobile computing settings. Each
mobile code or agent can be deployable at a computing
device only the time when the device is required to offer
the services provided by that code or agent. Therefore,
mobile code or agent technology can help to conserve
the limited resources of computing devices. Moreover,
When a mobile agent moves to another computer, both
the code and the state of the agent is transferred to the
destination. After arriving at its destination, a mobile
agent can continue working without losing the results,

Location Server A Location Server B

directory

database
directory

database

profile

handler

profile

handler

event handlerevent handler

abstraction
layer

abstraction

layer
abstraction

layer

peer-to-peer communication

agent

migration

locating sensor locating sensor locating sensor

agent host agent host agent host

desklamp-

bound agent
user-bound agent

MobileSpaces MobileSpaces MobileSpaces tag

tagtag
tag

tag

tag

tag

cell 3cell 1 cell 2

user migration

Figure 1: Architecture

e.g. the content of instance variables in the agent's
program, at the source computers. Since each mobile
code or agent is a programmable entity, the framework
enables an application-specific service, including the
user interface and application logic, to be implemented
within a mobile code or agent. It then separates
application-specific services from itself. Therefore, it
can be a general infrastructure for a variety of
location-aware services. It also can directly access
various equipment belonging to that device as long as
the security mechanisms of the device permit this.

3.2. Component Host
Each component host offers two functionalities:
advertisement of its capabilities and a runtime system
for executing and migrating components. When a host
receives a query message with the identifier of a newly
arriving entity (or a tag attached to an entity) from an
LIS, it can respond in one of the following three
responses: (i) if the identifier in the message is equal to
the identifier of the entity (or its tag) to which it is
attached, it returns profile information about the
component's capabilities to the LIS; (ii) if one of
components running on its runtime system is tied to the
entity (or its tag), it returns its network address and the
requirements of the component; (iii) if neither case is
true, it ignores the message. The current
implementation of this framework is based on a
Java-based mobile agent system called MobileSpaces
[19]. Each component host provides a MobileSpaces
runtime system built on the Java virtual machine and
can move components to other component hosts over a
TCP/IP connection. The runtime system governs all of
the components inside it and maintains the life-cycle
state of each of the components. When the life-cycle
state of a component changes, for example, when it is
created, terminates, or migrates to another host, the
runtime system issues specific events to the component.
Each component host can have its counterpart
component, called a proxy component. The
component is a representation of the device located in
the model. When it receives service-provider
components or request messages, it forwards the
components or messages to the device that it refers to.

3.3. Location Information Management
The framework provides digital representations, called
counterpart of components, spaces, e.g., rooms, floors,
and streets, in the physical world. The components are
programming entities so that they can be explicitly
defined as the ranges within which services should be
operated. The framework maintains containment
relationships between spaces as an acyclic-tree structure
of these counterpart components, like Unix's
file-directory. The location management of this
framework seems to be similar to that of our previous
infrastructure [22,23,26], but the framework presented
in this paper introduces the notion of proxy components

so that it can manage the locations of computing devices
and service provider components in a unified approach.
Since the proxy components control the deployment of
components, the framework itself is independent of any
component migration mechanisms.

Sensor Management:
Each LIS manages more than one sensor and agent
hosts, and maintains up-to-date information on the
identities of those that are within the zone of coverage
by means of its sensors. To hide the differences
between the underlying location-sensors, each LIS
provides an abstract three-layer stack. This can be
mapped to a number of architectures to provide the
acquisition function as in the acquisition stack [8]
 The Reception layer is responsible for extracting

the data from the sensors, as sensors generally
tend to be proprietary or vendor-specific. For
example, some sensors can be retrieved at any
time through synchronous queries and other
sensors can issue results continuously or
periodically. The layer polls sensors or receives
events issued from sensors.

 The Abstraction layer receives low-level data
about the locations of entities from sensors and
then transforms the data in a symbolic model.
For example, the current implementation maps
geometric locations measured by sensors, e.g.,
GPS and wireless and cellular network, into
specified regions, e.g., one or more portions of a
room or building. When an RFID reader detects
the presence of a tagged entity, the location of the
entity is represented as the identifier of the reader.
We call each sensor's coverage and each region a
cell, as location models studied by several other
researchers [8].

 The Fusion layer correlates the sightings
belonging to the same located-object from
different sensors. This infrastructure allows
sensors to be mobile and throughout a space.
When one or more cells overlap geographically,
an entity may be in multiple cells at the same time
and each of the LISs that manage the cells sends
update information to agents bound to the entity.

Component Discovery Mechanism:
The framework provides demand-driven mechanisms
for discovering the components and component host

Figure 1: Location information server.

required. Each LIS discovers components bound to the
entities (or their tags) present in its sensing spaces and
maintains a database by storing information about each
component host and each component attached to an
entity or place. When a LIS detects the presence of a
new entity (or tag) in a space, it multicasts a query
message with the identify of the new entity (or tag) and
its own network address to all the component hosts in
its current sub-network and then waits for reply
messages from the hosts. We anticipate one of two
possible cases: the entity is a component host, i.e., the
tag is attached to the host, or the entity is a person, place,
or thing, i.e., the tag is not attached to an component
host. (1) The newly arriving component host sends its
proxy component to the LIS; the proxy component
describes the capabilities of the host, e.g., input devices
and screen size. The LIS locates the component at the
counterpart component corresponding to the space that
spatially contains the host. (2) Component hosts that
have components tied to the entity send their network
addresses and requirements of the components to the
LIS; the requirements for each component specify the
required capabilities of the component hosts that the
component can visit and at which it performs its
services at. Then, the LIS stores the requirements of
the components in its database and moves the
components to appropriate component hosts via the
proxy components of the hosts. When the absence of
an entity is detected, each LIS multicasts a message
with the identifier of the entity and the identifier of the
cell to all component hosts in its current sub-network.
Since LISs can be individually connected to other
servers, which may be in other sub-networks and with
which they exchange information in a peer-to-peer
manner, they can discover component hosts and
components that may be in other sub-networks.

Component Deployment:
When an LIS knows the movement of an entity, e.g., a
person or thing, to a cell, it tries to deploy components
attached to the entity at computing devices in the cell.
It searches its database for component hosts that are
present in the current cell of the entity. It then selects
candidate destinations from a set of component hosts
within the cell based on their device capabilities. This
framework offers a description language based on
CC/PP [30], for specifying the properties of computing
devices (vendor, model class of device, e.g., pc, pda,
phone, etc., screen size, display colors, CPU, memory,
input device, secondary storage, loudspeaker, etc) in
XML notation. Each LIS informs each component of
the profiles of the component hosts that are present in
the cell and that satisfy the requirements of the
component, and then the component can migrate
autonomously to the appropriate host.

4. COMPONENT PROGRRAMMING
This section explains the programming interface for

mobile codes or agents. The former is implemented as
Java Beans and can support specified callback methods
invoked by runtime systems.

interface ServiceListener extends
SystemEventListener {
 // invoked after the entity
 // arrives at the space
 void entityArrived(URL dst_splace);
 // invoked after the entity leaves from
 // the space
 void entityLeft(URL des_space);
 // invoked after the component host
 // arrives at the space
 void entityArrived(URL dst_space);
 // invoked after the component host
 // leaves from the space
 void entityLeft(URL des_space);

}

The above interface specifies the fundamental methods
that are invoked by the runtime system when entities or
spaces that components are bound to enter and exit from
spaces or component hosts enter and exist from the
spaces. On the other hand, each mobile agent-based
component can also have more than one listener object
that implements a specific listener interface to hook
certain events issued before or after changes in its
life-cycle state or the movements of the entity or tag that
the component is bound to.

interface AgentListener extends ServiceListener {
 // invoked after creation at url
 void agentCreated(URL url);
 // invoked before termination
 void agentDestroying();
 // invoked before migrating to dst
 void agentDispatching(URL dst);
 // invoked before moving to dst

 void agentArrived(URL dst);
 // invoked after arrived at dst

}

This interface specifies the fundamental methods that
are invoked by the runtime system when agents are
created, destroyed, or migrated to another agent host.
 The current implementation provides counterpart
components corresponding to spaces. Each
counterpart component is defined as a subclass of
abstract class CounterpartComponent, which has
some built-in methods that are used to control its
mobility and life-cycle like service provider components.
It is bound to at least one entity or space in the physical
world.

class CounterpartComponent {
 void setIdentity(String name) { ... }
 void setAttribute(String attribute,
 String value){ ... }
 void add(Component comp) throws
 NoSuchComponent { ... }

 void remove(Component comp) throws
 NoSuchComponent { ... }
 ComponentInfo getParentComponent() {..}
 ComponentInfo[] getChildren() { ... }

}

By invoking setIdentity, a counterpart component
can assign the symbolic name of the physical entity or
space that it represents. For example, a counterpart
component refers to the coverage area of an RFID
reader and it has the identify of the reader. By
invoking setAttribute, a counterpart component
can explicitly record attributes about its entity or space
inside it, e.g., owner, position, shape, and size. When
a counterpart component invokes the add (or remove)
method, it contains the component specified as comp
inside it (or take out the component specified as comp
from itself), where comp is an instance of
CounterpartComponent (or its subclass) or a
service-provider component. For example, when a
user enters a room, the framework deploys a counterpart
component corresponding to the user in a counterpart
component corresponding to the room. People should

only be able to access location-bound services, e.g.,
printers and lights, that are installed in a space, when
they enter it carrying their own terminals or using public
terminals located in the space. Therefore, the
framework allows service-provider components to
access attributes and services provided in their parent or
ancestor components. In contrast, it has no direct access
over other components, which do not contain it, for
reasons of security.
There are two typical scenarios in intelligent
environments as shown in Figure 2.

 Figure 2 (a) shows that a moving user carries a
portable component host and sensors are located in a
place. When a sensor detects the presence of the
host or measures the position of the host within the
place, the LIS deploys components attached to the
place at the visiting host. The components can
provide the moving user with location-dependent
services of the place from his/her portable host.

 Figure 2 (b) shows that sensors and component hosts
are located in places. When a sensor detects the
movement of a user from place to place, the LIS
deploys components attached to the user at the
component host in the destination place so that the
components provide the moving user with his/her
peronalized-dependent services from the stationary
host.

Existing location-aware systems can only support each
of the scenarios. For example, the Cooltown [8] and
NEXUS[6] projects support the first and the person
tracking display approach in the EasyLiving project [1]
and the Follow-me applications approach in the Sentient
Computing project [5] support the second. On the
other hand, this framework supports the both scenarios.
Components can be executed on mobile and stationary
computing devices, only when the devices can satisfy
the requirements of components, since this framework
does not distinguish between the both computers.
Moreover, the framework hides differences in sensing

Step 1
physical entity

movement

Step 2

cell

(b) moving tagged entity and stationary sensor

Step 1

Step 2

(a) moving agent host and stationary sensor

component

host

host movement

component migration

to visiting host

cell

cell

cell

component

host

component

host

component

host

component

host

component

host

Figure 2: Two scenarios for intelligent
environments.

Figure 4: Screenshot of follow-me user
assistant agent that selects user's favorite
sushi from menu database of the restaurant in
front of the user.

systems, since it maps geometric location information
into symbolic location information.

5. APPLICATIONS
This section presents two typical location-based
services developed using this framework. The first
example tracks the current location of a user by using a
915-MHz RFID system and provides a user assistant
agent that follows the user and maintains profile
information about the user, so that the user can assist the
agent in his/her personalized manner anywhere.
Suppose that a user has a tag and is moving by a
restaurant that offers a RFID reader and an agent host
with a touch-screen. When the tagged user enters the
coverage area of the reader, the framework enables
his/her assistant agent to automatically move to the
agent host near his/her current location. After arriving at
the host, the agent accesses a database provided by the
restaurant to obtain the restaurant menu. It then selects
appropriate candidates meals from the menu based on
the user's profile information, such as favorite foods and
recent during experiences, stored inside the agent.
Next, it displays the list of the candidate meals on the
screen of the current agent host in a personalized
manner. Figure 4 shows how the user's assistant agent
runs on the agent host of the restaurant and seamlessly
embeds the pictures, names, and prices of the candidates
meals with buttons for ordering them into its graphical
user interface. Since a mobile agent is a program entity,
we can easily define a more intelligent assistant agent.
The second example is a user navigation system that
assists visitors to a building. Active RFID tags are
positioned at several places in the building in the
ceilings, floors, and walls. Each visitor carries a
wireless-LAN- enabled tablet PC equipped with an
RFID reader to detect tags. The PC includes an LIS and
an agent host. The system initially deploys
place-bound agents to hidden computers within the
building. When a tagged position is located in the
coverage area of the moving sensor, the LIS running on
the visitor's tablet PC detects the presence of the tag and
detects the place-bound agent tied to the tag. It then
instructs the agent to migrate to its agent host and
provide the agent's location-dependent services to the
host. The system enables more than one agent tied to a
place to move to a tablet PC; the agent then returns to
its home computer and other agents, which are tied to
another place, move to the tablet PC. Figure 2 shows a
place-bound agent being used to display a map of its
surrounding area on the screen of a tablet PC.

6. RELATED WORK
This section discusses several systems that have
influenced various aspects of this framework, which
seamlessly integrates two different approaches, i.e.
ubiquitous and mobile computing.
 We compared our approach with several projects
that support mobile users in a ubiquitous computing

environment. Research on smart spaces and intelligent
environments has become popular at many universities
and corporate research facilities. Cambridge
University's Sentient Computing project [5] provides a
platform for location-aware applications using
infrared-based or ultrasonic-based locating systems in a
building. Using the VNC system [16] the platform can
track the movement of tagged entities, such as
individuals and things, so that the graphical user
interfaces of the user's applications follow them while
they are moving around. Although the platform
provides similar functionality to of our approach, its
management is centralized and thus it is difficult to
dynamically reconfigure the platform when sensors are
added to or removed from the environment. Since the
applications must be executed in remote servers, the
platform may have non-negligible interactive latency
between the servers and the hosts that the user accesses
locally. Our approach, however, enables a user's
application, including user interfaces, to be dynamically
deployed and directly run on computers close to the user
so that it can minimize temporal and spatial distances in
interactions between him/her and the applications.
Recently, the project provided a CORBA-based
middleware system called LocARE [14]. The
middleware can move CORBA objects to hosts
according to the location of tagged objects. However
CORBA objects are not always suitable for
implementation on user interface components.
 Microsoft's EasyLiving project [1] provides
context-aware spaces, with a particular focus on the
home and office. It uses mounted sensors, such as stereo
cameras, on the room's walls and tracks the locations
and identities of people in the room. The system can
dynamically aggregate network-enabled input/output
devices, such as keyboards and mice, even when they
belong to different computers in the space. However,
its management is centralized and it does not
dynamically migrate software to computers according to

Figure 2: Screenshot of map-viewer agent running
on tablet PC with positioning sensor.

the position of users. Both the projects assume that
locating sensors have initially been allocated in the
room, and it is difficult to dynamically configure the
platform when sensors are added to or removed from
the environment. Our approach, however, permits
sensors to be mobile and scattered throughout the space.
 MIT's Project Oxygen Alliance has tried to
introduce intelligent spaces that are as abundant and
accessible to use as oxygen into people's lives by
incorporating several perceptual devices, including
location systems. It has provided agent-based
infrastructures to construct and manage location-aware
services in such spaces [13]. The goal of these
infrastructures has been to offer suitable services at
suitable locations within the space based on contextual
information within the environment and information
emanating from users. However, they have not been
able to dynamically deploy service-provider services at
suitable computers in the space, as we have done.
 There have also been several studies on
enhancing context-awareness in mobile computing.
HP's Cooltown [8] is an infrastructure that supports
context-aware services on portable computing devices.
It is capable of automatically providing bridges between
people, places, and things in the physical world with the
web resources that are used to store information about
them. The bridges that it forms allow users to access
resources stored on the web via a browser using
standard HTTP communication. Although user
familiarity with web browsers is an advantage in this
system, all the services available in the Cooltown
system are constrained by the limitations of web
browsers and HTTP. Our approach, however, is not
limited by a web-based approach and can dynamically
change mobile agent-based applications, including
viewer programs, for location-sensitive information
based on the locations and requirements of users.
 The NEXUS system [6], developed by Stuttgart
University, offers a generic platform that supports
location-aware applications for mobile users. Like the
Cooltown system, users require a PDA or tablet-PC,
which is equipped with GPS-based positioning sensors
and wireless communication. Applications that run on
such devices (e.g. user-navigation) maintain a spatial
model of the current vicinity of users and gather spatial
data from remote servers. Unlike our approach,
however, neither Cooltown nor NEXUS can support
mobile users through stationary computers distributed in
a smart environment.
 Several research projects have introduced
software mobility as a technology for enabling
ubiquitous computers to support various services, which
they may have not been initially designed for. The
Aura project [3] of CMU and the Gaia project [17] of
the University of Illinois at Urbana-Champaign provide
infrastructures for binding tasks associated with users,
and migrating applications from computer to computer
as users move about, like our approach does.

Although they share several common design goals with
our framework, they focus on the development of
contextual services for users rather than the
location-aware deployment of services. Kangas [7]
developed a location-aware augmented-reality system
that enables the migration of virtual objects to mobile
computers, but only when the computer was in a
particular space, in a similar way to our framework.
However, the system is not designed to move such
virtual objects to ubiquitous computing devices. The
one.world project [4] by the University of Washington
provides a middleware infrastructure for ubiquitous
computing, but does not provide any location-aware
mechanisms for deploying services at computing
devices. It assumes a distributed shared memory and
builds applications based on the principle of separating
data and functionality in applications, where our
approach always treats applications as a set of data and
functionality to be deployed at various devices that is
not initially designed for executing the application.
Hive [15] is a distributed agent middleware for building
decentralized applications. It can deploy agents at
devices in ubiquitous computing environments and
organize the devices as groups of agents. Although it
can provide contextual information for agents, it does
not support any mechanism for monitoring sensors and
deploying agents according to changes in the
environment, unlike ours.
 Several researchers have explored
location-sensitive servers like our LIS. Their location
models can be classified into two types: spatial models
based on concrete geographical coordinates of objects
and spatial models based on geographical containment
between objects. For example, the EasyLiving project
provides a geometric model based on the former
approach, so it accurately represents the physical
relationships between entities in the world. Leonhardt
[11] developed a location-tree model based on the latter
approach and used location-aware directory servers. Our
framework is based on a symbolic location model
similar to the geographical containment model.
However, it is unique in having the ability to
dynamically manage spatial models. That is, it
provides a demand-driven mechanism that discovers the
locations of agent hosts and agents because it permits all
its elements, such as hosts and sensors, to both be
mobile in and to be dynamically added to or removed
from a space. In previous papers [22,23,26], we
presented an early prototype of the present framework.
This approach does not support the mobility of sensors
and agent hosts so that the four linkages described in the
second section of this paper were not available in the
previous framework unlike the framework presented in
this paper. We will present a location model based on
containment relationship between spaces and entities in
the physical world in our previous paper [27], but the
model aims at constructing a general-purpose model for
managing location-aware services, whereas the

framework presented in this paper provides a
location-aware deployment of software.

7. CONCLUSION
We presented a middleware infrastructure for managing
location-sensing systems and dynamically deploying
services at suitable computing devices. Using
location-tracking systems the infrastructure provides
entities, e.g. people and objects, and places, with mobile
agents to support and annotate them and migrate agents
to stationary or mobile computers near the locations of
the entities and places to which the agents are attached.
It is a general framework in the sense that it is
independent of any higher-level applications and
location-sensing systems and supports a variety of
spatial linkages between the physical mobility of people
and things and the logical mobility of services.
Furthermore, we designed and implemented a prototype
system of the infrastructure and demonstrated its
effectiveness in several practical applications.

Finally, we would like to point out further issues to
be resolved. Since the framework presented in this
paper is general-purpose, in future work we need to
apply it to specific applications as well as the three
applications presented in this paper. The location
model of the framework was designed for operating real
location-sensing systems in ubiquitous computing
environments. We plan to design a more elegant and
flexible world model for representing the locations of
people, things, and places in the real world by
incorporating existing spatial database technologies.
We have developed an approach to testing
context-aware applications on mobile computers [21,24].
We are interested in developing a methodology that
would test applications based on the framework.

References
1. B. L. Brumitt, B. Meyers, J. Krumm, A. Kern, S.

Shafer, "EasyLiving: Technologies for Intelligent
Environments", Proceedings of International
Symposium on Handheld and Ubiquitous
Computing, pp. 12-27, 2000.

2. K. Cheverst, N. Davis, K. Mitchell, and A. Friday:
"Experiences of Developing and Deploying a
Context-Aware Tourist Guide: The GUIDE
Project", Proceedings of Conference on Mobile
Computing and Networking (MOBICOM'2000),
pp. 20-31, ACM Press, 2000.

3. D. Garlan, D. Siewiorek, A. Smailagic, and P.
Steenkiste, "Project Aura: Towards
Distraction-Free Pervasive Computing", IEEE
Pervasive Computing, vol. 1, pp. 22-31, 2002.

4. R. Grimm, el. al., "Systems Directions for
Pervasive Computing", Proceedings of 8th
Workshop on Hot Topics in Operating Systems,
pp.147-151, May 2001.

5. Harter, A. Hopper, P. Steggeles, A. Ward, and P.
Webster, "The Anatomy of a Context-Aware

Application", Proceedings of Conference on
Mobile Computing and Networking
(MOBICOM'99), pp. 59-68, ACM Press, 1999.

6. F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel,
and M. Schwehm, "Next Century Challenges:
Nexus - An Open Global Infrastructure for
Spatial-Aware Applications", Proceedings of
Conference on Mobile Computing and
Networking (MOBICOM'99), pp. 249-255, ACM
Press, 1999).

7. K. Kangas and J. Roning, "Using Code Mobility
to Create Ubiquitous and Active Augmented
Reality in Mobile Computing", Proceedings of
Conference on Mobile Computing and
Networking (MOBICOM'99), pp. 48-58, ACM
Press, 1999.

8. T. Kindberg, et al, "People, Places, Things: Web
Presence for the Real World",

9. Technical Report HPL-2000-16, Internet and
Mobile Systems Laboratory, HP Laboratories,
2000.

10. B. D. Lange and M. Oshima, "Programming and
Deploying Java Mobile Agents with Aglets",
Addison-Wesley, 1998.

11. U. Leonhardt and J. Magee, "Towards a General
Location Service for Mobile Environments",
Proceedings of IEEE Workshop on Services in
Distributed and Networked Environments, pp.
43-50, IEEE Computer Society, 1996.

12. U. Leonhardt and J. Magee: "Multi-Sensor
Location Tracking", Proceedings of Conference
on Mobile Computing and Networking
(MOBICOM'98), pp.203-214, ACM Press, 1998.

13. J. Lin, R. Laddaga, and H. Naito, "Personal
Location Agent for Communicating Entities
(PLACE)", Proceedings of Mobile HCI'02, LNCS,
Vol. 2411, pp. 45-59, Springer, 2002.

14. D. Lopez de Ipina and S. Lo, "LocALE: a
Location-Aware Lifecycle Environment for
Ubiquitous Computing", Proceedings of
Conference on Information Networking
(ICOIN-15), IEEE Computer Society, 2001.

15. N. Minar, M. Gray, O. Roup, R. Krikorian, and P.
Maes, "Hive: Distributed agents for networking
things", Proceedings of Symposium on Agent
Systems and Applications/Symposium on Mobile
Agents (ASA/MA'99), IEEE Computer Society,
2000.

16. T. Richardson, Q, Stafford-Fraser, K. Wood, A.
Hopper, "Virtual Network Computing", IEEE
Internet Computing, Vol. 2, No. 1, 1998.

17. M. Romän, C. K. Hess, R. Cerqueira, A. Ranganat,
R. H. Campbell, K. Nahrstedt K, "Gaia: A
Middleware Infrastructure to Enable Active
Spaces", IEEE Pervasive Computing, vol. 1,
pp.74-82, 2002.

18. K. Romer and T. Schoch, "Infrastructure
Concepts for Tag-Based Ubiquitous Computing

Applications", Workshop on Concepts and
Models for Ubiquitous Computing, Ubicomp
2002, September 2002.

19. I. Satoh, "MobileSpaces: A Framework for
Building Adaptive Distributed Applications Using
a Hierarchical Mobile Agent System",
Proceedings of Conference on Distributed
Computing Systems (ICDCS'2000), pp. 161-168,
IEEE Computer Society, 2000.

20. I. Satoh, "MobiDoc: A Framework for Building
Mobile Compound Documents from Hierarchical
Mobile Agents", Proceedings of Symposium on
Agent Systems and Applications/Symposium on
Mobile Agents (ASA/MA'2000), LNCS, Vol.
1882, pp. 113-125, Springer, 2000.

21. I. Satoh, "Flying Emulator: Rapid Building and
Testing of Networked Applications for Mobile
Computers", Proceedings of Conference on
Mobile Agents (MA'01), LNCS, Vol. 2240, pp.
103-118, Springer, 2001.

22. I. Satoh, "Physical Mobility and Logical Mobility
in Ubiquitous Computing Environments",
Proceedings of Conference on Mobile Agents
(MA'02), LNCS, Vol. 2535, pp. 186-202,
Springer, 2002.

23. I. Satoh, "Location-based Services in Ubiquitous
Computing Environments", to appear in
Proceedings of International Conference on
Service Oriented Computing (ICSOC'2004),
LNCS, vol. 2910, pp.527-542, Springer,
December 2003.

24. I. Satoh, "A Testing Framework for Mobile
Computing Software", IEEE Transactions on
Software Engineering, vol. 29, no. 12,
pp.1112-1121, 2003.

25. I. Satoh, "Configurable Network Processing for
Mobile Agents on the Internet", Cluster
Computing, (Accepted) vol. 7, no.1, Kluwer,
January 2004.

26. I. Satoh, "Linking Physical Worlds to Logical
Worlds with Mobile Agents", Proceedings of
IEEE International Conference on Mobile Data
Management (MDM'04), pp. 332-343, IEEE
Computer Society, January 2004.

27. I. Satoh, "A Location Model for Pervasive
Computing Environments", Proceedings of IEEE
3rd International Conference on Pervasive
Computing and Communications (PerCom'05),
pp.,215-224, IEEE Computer Society, March
2005.

28. R. Want, A. Hopper, A. Falcao, and J. Gibbons,
"The Active Badge Location System", ACM
Transactions on Information Systems, vol.10, no.1,
pp. 91-102, ACM Press, 1992.

29. R. Want, "The Personal Server - Changing the
Way We Think about Ubiquitous Computing",
Proceedings of 4th International Conference on
Ubiquitous Computing (Ubicomp 2002), LNCS

2498, pp. 194-209, Springer, September 2002.
30. World Wide Web Consortium (W3C),

"Composite Capability/Preference Profiles
(CC/PP)", http://www.w3.org/TR/NOTE-CCPP,
1999.

