Informatica 17 page xxx—yyy 1

MobiDoc: A Mobile Agent-based Framework for

Compound Documents

Ichiro Satoh
National Institute of Informatics /
Japan Science and Technology Corporation

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 Japan

Tel: +81-3-4212-2546, Fax: +81-3-3556-1916
E-mail: ichiro@is.ocha.ac.jp

Keywords: compound document, mobile agent, software component, distributed system

Edited by:

Received: Revised:

Accepted:

This paper presents a mobile-agent-based framework for building mobile compound doc-
uments, called MobiDoc, where the compound document can be dynamically composed
of mobile agent-based components and can migrate itself over a network as a whole, with
all its embedded agents. The key idea of this framework is that it builds a hierarchical
mobile agent system that enables multiple mobile agents to be combined into a single
one. The framework also provides several value-added mechanisms for visually manip-
ulating components embedded in a compound document and for sharing a window on
the screen among the components. This paper describes this framework and its proto-
type implementation, currently using Java as the implementation language as well as a
component development language, and then illustrate several interesting applications to
demonstrate the utility and flexibility of this framework.

1 Introduction

Building systems from software components has
already proven useful in the development of large
and complex systems. Several frameworks for
software components have been developed, such
as COM/OLE [4], OpenDoc [1], CommonPoint
[10], and JavaBeans [7]. Among them, the no-
tion of compound documents is a document-
centric component framework, where various vis-
ible parts, such as text, image, and video, created
by different applications can be combined into one
document and be independently manipulated in-
place in the document. An example of this type
of framework is CI Labs’ OpenDoc [1] developed
by Apple computer and IBM, although their de-
velopment work on this framework has stopped.
However, there have been several problems in the
few existing compound document frameworks. A
compound component is typically defined by two
parts: contents and codes for modifying the con-
tents. Contents are stored inside the component

but the codes for accessing them are not always.
Thus, a user cannot view or modify a document
whose contents need the support of different ap-
plications, if the user does not have the applica-
tions. Moreover, existing compound documents
are inherently designed as passive entities in the
sense that they can be transmitted over a net-
work by external network systems such as elec-
tronic mail systems and workflow management
systems and cannot determine where it should go
next. We also need network-wide manipulation
for building and assembling various components
located in different computers into a document.
Therefore, not only a whole compound document
but also each of the components of the document
must be able to be transmitted to another com-
puter.

The goal of this paper is to propose a new
framework for building mobile compound docu-
ments. Each document is built as a component
that can be a container for components that can
migrate over a network. Accessing compound

2 Informatica 17 page xxx—yyy

documents over a network requires a powerful in-
frastructure for building and migrating, such as
mobile agents. Mobile agents are autonomous
programs that can travel from computer to com-
puter under their own control. When an agent
migrates over a network, both the state and the
codes can be transferred to the destination. How-
ever, traditional mobile agent systems cannot be
composed of more than one mobile agent, un-
like component technology. Therefore, we built
a framework on a unique mobile agent system,
called MobileSpaces, which was presented in an
earlier paper [12]. The system is constructed us-
ing Java language [2] and provides mobile agents
that can move over a network, like other mobile
agent systems. However, it also allows more than
one mobile agent to be hierarchically assembled
into a single mobile agent. Consequently, in our
framework, a compound document is a hierarchi-
cal mobile agent that contains its contents and a
hierarchy of mobile agents, which correspond to
nested components embedded in the document.
Furthermore, the framework offers several mecha-
nisms for coordinating visible components so that
they can effectively share visual real estate on a
screen in a seamless-manner.

This paper is organized as follows. Section 2
surveys related work and Section 3 presents the
basic ideas of the compound document frame-
work, called MobiDoc. Section 4 details its pro-
totype implementation and Section 5 shows the
usability of our framework based on real-world
examples. Section 6 makes some concluding re-
marks.

2 Background

Among the component technologies developed so
far, OpenDoc and JavaBeans are characterized
by allowing a component to contain a hierarchy
of nested components. Although there are few
hierarchical components available on the market
today, their advent appears to be necessary and
unavoidable in the long run.

OpenDoc is a document-centric component
framework and has several advantages over other
frameworks, but it has been discontinued. An
OpenDoc component is not self-configurable, al-
though it is equipped with scripts to control itself,
so a component cannot migrate over a network

I. Satoh

under its own control. JavaBeans is a general
framework for building reusable software compo-
nents designed for the Java language. The ini-
tial release of JavaBeans (version 1.0 specified
in [7]) did not contain a hierarchical or logical
structure for JavaBean objects, but its latest re-
lease specified in [5] allows JavaBean objects to
be organized hierarchically. However, the Jav-
aBeans framework does not provide any higher-
level document-related functions. Moreover, it is
not inherently designed for mobility. Therefore, it
is very difficult for a group of JavaBean objects in
the containment hierarchy to migrate to another
computer.

A number of other mobile agent systems have
been released recently, for example Aglets [8],
Mole [3], Telescript [17], and Voyager [9]. How-
ever, these agent systems unfortunately lack a
mechanism for structurally assembling more than
one mobile agent, unlike component technologies.
This is because each mobile agent is basically de-
signed as an isolated entity that migrates indepen-
dently. Some of them offer inter-agent commu-
nication, but they can only couple mobile agents
loosely and thus cannot migrate a group of mobile
agents to another computer as a whole. Telescript
introduces the concept of places in addition to
mobile agents. Places are agents that can contain
mobile agents and places inside them, but they
are not mobile. Therefore, the notion of places
does not support mobile compound documents.

To solve the above problem in existing mobile
agent systems, we constructed a new mobile agent
system, called MobileSpaces, in a previous paper
[12]. The system introduces the notion of agent
hierarchy and inter-agent migration. This system
allows a group of mobile agents to be dynamically
assembled into a single mobile agent. Although
the system itself has no mechanism for construct-
ing compound documents, it can provide a pow-
erful infrastructure for implementing compound
documents in network computing settings. Also,
we presented a compound document framework
as just an application of the MobileSpaces system
[13]. Therefore, the previous framework lacked
many functionalities, which are provided by the
framework presented in this paper.
ple, it could deliver a compound document as a
whole to another computer, but not decompose a
document into components or migrate each com-

For exam-

MOBIDOC: A MOBILE AGENT-BASED FRAMEWORK

ponent to another computer independently. As
a result, the previous one could not fetch and as-
semble components located at different computers
into a compound document.

ADK [6] is a framework for building mobile
agents from JavaBeans. It provides an exten-
sion of Sun’s visual builder tool for JavaBeans,
called BeanBox, to support the visual construc-
tion of mobile agents. In contrast, we intend to
construct a new framework for building mobile
compound documents in which each component
can be a container for components and can mi-
grate over a network under its own control. Our
compound document will be able to migrate itself
from one computer to another as a whole with all
of its embedded components to the new computer
and adapt the arrangement of its inner compo-
nents to the user’s requirements and its environ-
ments by migrating and replacing corresponding
components.

We should explain why our hierarchical mobile
agent is essential in the development of compound
documents. The reader might think that existing
software development methodologies such as Java
Beans and OpenDoc, enable components to be
shipped to other computers. Indeed, in the cur-
rent implementation of our system each mobile
agent can be a container of Java Beans and can
get as a whole with its inner Java Beans. How-
ever, Java Bean components are not inherently
designed to be mobile components, unlike mobile
agents. Therefore, it is difficult to migrate each
Java Bean component over the network under its
own control. On the other hand, our framework
introduces a document (or a component) as an
active entity that can travel from computer to
computer under its own control. Therefore, our
document can determine where it should go next,
according to its contents. Moreover, it can dy-
namically adapt the layouts and combinations of
its inner components to the user’s requirements
and the environments.

3 Approach

This section outlines the framework for build-
ing compound documents based on mobile agents
called MobiDoc.

Informatica 17 page xxx—yyy 3

3.1 Mobile Agent-based Components

To create an enriched compound document, a
component or document must be able to con-
tain other components, like OpenDoc. On the
other hand, each mobile agent resembles a soft-
ware component in the sense that each entity is a
self-contained module holding its code and state,
but most existing mobile agent systems do not al-
low a mobile agent to be composed structurally.
Furthermore, each mobile agent is characterized
by its mobility. Thus, a composition of mobile
agents must be designed to keep their mobility.
We intend to provide such a component through
a hierarchical mobile agent. Our framework is
therefore built on MobileSpaces [12] which can
dynamically assemble more than one mobile agent
into a single mobile agent. The system supports
mobile agents that are computational and itiner-
ant entities, like other mobile agent systems. It
also incorporates the following concepts:

Agent B Agent C

Step 2 - migration
C—> Y
Computer A Computer B
Agent B Agent C
a >
Step 1 Q ll
Computer A Computer B

Figure 1: Agent Hierarchy and Group Migration.

e Agent Hierarchy The first concept means
that each mobile agent can be contained
within one mobile agent. It enables us to
assemble more than one mobile agent into a
single mobile agent in a tree structure.

e Group Migration The second concept
means that each mobile agent can migrate
to another agent or another computer as a
whole, with all of its inner agents. It allows
a group of mobile agents to be treated as a
single mobile agent during their migration.

The first concept is needed in the development
of a mobile compound document, because such a
document should be able to contain other compo-
nents, like OpenDoc. The second concept enables

4 Informatica 17 page xxx—yyy

a compound document to migrate itself and its
components as a whole. Accordingly, a compound
document is given as a collection of mobile compo-
nents and can be treated as a mobile component.
Figure 1 shows an example of an inter-agent mi-
gration in an agent hierarchy. In an agent hierar-
chy, each agent is still mobile and can freely move
into any computer or any agent in the same agent
hierarchy except into itself or its inner agents, as
long as the destination accepts the moving agent.

3.2 Compound Document Framework

MobileSpaces is a suitable infrastructure for mo-
bile compound documents, but it does not pro-
vide any document-centric mechanisms for man-
aging components in a compound document. We
offer a compound document framework for sup-
porting mobile agent-based components, includ-
ing graphical user interfaces for manipulating vis-
ible components. This framework, called Mo-
biDoc, is given as a collection of Java objects that
belong to one of about 50 classes. It defines the
protocols that let components embedded in a doc-
ument communicate with each other. It also deals
with in-place editing services similar to those pro-
vided by OpenDoc and OLE. The framework of-
fers several mechanisms for effectively sharing the
visual estate of a container among embedded com-
ponents and for coordinating their use of shared
resources, such as keyboard, mouse, and window.

4 Implementation

Next, we will describe our method for using Mo-
bileSpaces to construct mobile compound docu-
ments.! It has been incorporated in Java Devel-
opment Kit version 1.2 and can run on any com-
puter that has a runtime system compatible with
this version.

4.1 MobileSpaces Runtime System

The MobileSpaces runtime system is a platform
for executing and migrating mobile agents. It is
built on a Java virtual machine and mobile agents
are given as Java objects [2]. Each component is
given as a mobile agent in the system and the

!Details of the MobileSpaces mobile agent system can
be found in our previous paper [12].

I. Satoh

Hierarchical Mobile Agents

AgentD | Agent A Agent G

MobileSpaces
Runtime System

Java Virtual Machine

- Agent Migration
[MobileSpaces]

Runtime System

Java Virtual Machine

Network

Figure 2: Agent Migration between Two Mo-
bileSpaces Runtime Systems.

containment hierarchy of components in a docu-
ment is given as an agent hierarchy managed by
the system. The runtime system has the following
functions:

Agent Hierarchy Management

The agent hierarchy is given as a tree structure
in which each node contains a mobile agent and
its attributes. The runtime system is assumed to
be at the root node of the agent hierarchy. Agent
migration in an agent hierarchy is performed just
as a transformation of the tree structure of the
hierarchy. In the runtime system, each agent has
direct control of its internal agents. That is, a
container agent can instruct its embedded agents
to move to other agents or computers, serialize
them and destroy them. In contrast, an embed-
ded agent has no direct control over its container
agent. It can only access the collection of service
methods offered by its container agents.

Agent Life-cycle Management

The runtime system is at the root node of the
agent hierarchy and can control all the agents
in the agent hierarchy. Furthermore, it main-
tains the life-cycle of agents: initialization, exe-
cution, suspension, and termination. When the
life-cycle state of an agent is changed, the run-
time system issues events to invoke certain meth-
ods in the agent and its containing agents. More-
over, the runtime system enforces interoperation
among mobile agent-based components. The run-
time system monitors changes in components and
propagates certain events to the right compo-
nents. For example, when a component is added
to or removed from its container component, the

MOBIDOC: A MOBILE AGENT-BASED FRAMEWORK

system dispatches certain events to the compo-
nent and the container.

Agent Migration Mechanism

Each document is saved and transmitted as a
group of mobile agents. When a component is
moved inside a computer, the component and its
inner components can still be running. When
a component is transferred over a network, the
runtime system stores the state and the codes of
the component, including the components embed-
ded in it, into a bit-stream formed in Java’s JAR
file format that can support digital signatures for
authentication. The system provides a built-in
mechanism for transmitting the bit-stream over
the network by using an extension of the HT'TP
protocol. The current system basically uses the
Java object serialization package for marshaling
components. The package does not support the
capturing of stack frames of threads. Instead,
when a component is serialized, the system prop-
agates certain events to its embedded components
to instruct the agent to stop its active threads.

4.2 Mobile Agent Program

In our compound document framework, each
component is a group of mobile agents in Mo-
bileSpaces. They consist of a body program and a
set of services implemented in Java language. The
body program defines the behavior of the compo-
nent and the set of services defines various APIs
for components embedded within the component.
Every agent program has to be an instance of a
subclass of the abstract class ComponentAgent,
which consists of some fundamental methods to
control the mobility and life-cycle of a mobile
agent-based component as shown in Figure 3.

1: public class ComponentAgent extends Agent {

2 // (un)registering services for inner agents
3 void addContextService(

4 ContextService service) { ... }

5: void removeContextService(

6 ContextService service) { ... }

7

8 // (un)registering listener objects

9: // to hook events
10: void addListener(

11: AgentEventListener listener) { ... }
12: void removeListener (

13: AgentEventListener listener) { ... }
14: cee

15: void getService(Service service)

16: throws ... { ... }

Informatica 17 page xxx—yyy 5

-
Agent

Child Agent A Child Agent B

getS‘ervice()

agent J service method 1

context service method 2

agent method 1

preramm method 2
A

callback method 3
N | J

7an event from the parent agent

state

Figure 3: Structure of a Hierarchical Mobile

Agent.

17: void go(AgentURL url)

18: throws ... { ... }

19: void go(AgentURL urll, AgentURL url2)

20: throws ... { ... }

21: byte[] create(byte[] data) throws ... {...}
22: byte[] serialize(AgentURL url) throws ... {...}
23: AgentURL deserialize(byte[] data)

24: throws ... {...}

25: void destroy(AgentURL url) throws ... {...}
26: .

27: ComponentFrame getFrame() { ... }

28: ComponentFrame getFrame(

29: AgentURL url) {...}

30: cen

32: }

The methods used to control mobility and life-
cycle defined in the ComponentAgent class are as
follows:

e An agent can invoke public methods defined
in a set of service methods offered by its con-
tainer by invoking the getService () method
with an instance of the Service class. The
instance can specify the kind of service meth-
ods, arbitrary objects as arguments, and
deadline for timeout exception.

e When an agent performs the go(AgentURL
url) method, it migrates itself to the
destination agent specified by url. The
go(AgentURL urll, AgentURL url2)
method instructs the descendant specified
as urll to move to the destination agent
specified as url?2.

e Each container agent can dispatch certain
events to its inner agents and notify them
when certain actions happen within their sur-
roundings.

6 Informatica 17 page xxx—yyy

Our framework provides an event mechanism
based on the delegation-based event model intro-
duced in the Abstract Window Toolkit of JDK
1.1 or later, like Aglets [8]. When an agent
is migrated, marshaled, or destroyed, our run-
time system does not automatically release all
the resources, such as files, windows, and sock-
ets, which are acquired by the agent. Instead,
the runtime system can issue certain events in
the changes of life-cycle states. Also, a container
agent can dispatch certain events to its inner mo-
bile agent-based components at the occurrence of
user-interface level actions, such as mouse clicks,
keystrokes, and window activation, as well as at
the occurrence of application level actions, such as
the opening and closing of documents. To hook
these events, each mobile agent-based component
can have one or more listener objects which im-
plement certain methods invoked by the runtime
system and its container component. For exam-
ple, each component can have one or more ac-
tivities that are performed using the Java thread
library, but it needs to capture certain events is-
sued before it migrates over a network and stop
its own activities.

4.3 MobiDoc Compound Document
Framework

The MobiDoc framework is implemented as a col-
lection of Java classes to embody some of the prin-
ciples of component-interoperation and graphical
user interface.

Visual Layout Management

Each mobile agent-based component can be dis-
played within the estate of its container or a
window on the screen, but it must be accessed
through an indirection: frame objects derived
from the ComponentFrame class.? as shown in Fig.
4. Each frame object is the area of the display
that represents the contents of components and
is used for negotiating the use of geometric space
between the frame of its container component and
the frame of its component.

% Although the ComponentFrame class is a subclass of the
java.awt.Panel class, we call them frame objects because
many existing compound document frameworks often call
the visual space of an embedded component frame.

I. Satoh

MobiDoc Framework

frame for Clock
Content Size

Inner Frames

Mobile Compound Document Layout Manager

]

In-Place Editor

Hierarchical Mobile Agents

\\ clock | Canvas
agent) Agent

Window Agent

frame for Canvas \

Content Size
Inner Frames

Layout Manager

In-Place Editor

i

frame for Windowt—"]
Content Size

Inner Frames
Layout Manager

In-Place Editor

i

Figure 4: Components for Compound Document
in Agent Hierarchy.

The frame object of each container component
manages the display of the frames of the com-
ponents it contains. That is, it can control the
sizes, positions, and offsets of all the frames em-
bedded within itself, while the frame object of
each contained component is responsible for draw-
ing its own contents. For example, if a component
needs to change the size of its frame by calling the
setFrameSize () method, its frame must negoti-
ate with the frame object of its container for its
size and shape and redraw its contents within the
frame.

1: public class ComponentFrame

2: extends java.awt.Panel {

3 // sets the size of the frame

4: void setFrameSize(java.awt.Point p);

5: // gets the size of the frame

6: java.awt.Point getFrameSize();

7 // sets the layout manager for

8: // the embedded frames

9: void setLayout(CompoundLayoutManager mgr) {
10: // views the type of the component,

11: // e.g. iconic, thumbnail, or framed,

12: int getViewType();

13: // gets the reference of the container’s frame
14: ComponentFrame getContainerFrame();

15: // adds an embedded component specified as frame
16: void addFrame(ComponentFrame frame);

17: // removes an embedded component

18: // specified as frame

19: void removeFrame(ComponentFrame frame);

20: // gets all the references of embedded frames
21: ComponentFrame[] getEmbeddedFrames();

22: // gets the offset and size of the inner frame

23: // specified as cf
24: java.awt.Rectangle getEmbeddedFramePosition(

25: ComponentFrame cf);
26: // sets the offset and size of the inner frame
27: // specified as cf

28: void setEmbeddedFramePosition(ComponentFrame cf,
29: java.awt.Rectangle);
30:

31: }

MOBIDOC: A MOBILE AGENT-BASED FRAMEWORK

When one component is activated, another
component is usually deactivated but does not
necessarily become idle. To create a seamless ap-
plication look, components embedded in a con-
tainer component need to share, in a coordi-
nated manner, several resources, such as key-
board, mouse, and window. Each component is
restricted from directly accessing such shared re-
sources. Instead, the frame object of one ac-
tivated component is responsible for handling
and dispatching user interface actions issued from
most resources, and can reserve these resources
until it sends a request to relinquish them.

In-Place Editing

Our framework provides for document-wide op-
erations, such as mouse click and keystrokes. It
can dispatch certain events to its components to
notify them when certain actions happen within
their surroundings. Moreover, the framework
provides each container component with a set
of built-in services for switching among multiple
components embedded in the container and for
manipulating the borders of the frame objects of
its inner components. One of these services offers
graphical user interfaces for in-place editing. This
mechanism allows different components in a doc-
ument to share the same window. Consequently,
components can be immediately manipulated in-
place, without the need for opening a separate
window for each component.

To directly interact with a component, we need
to make the component active by clicking the
mouse within its frame. When a component is
active, we can directly manipulate its contents.
When the boundary of the frame is clicked, the
frame becomes selected and displays eight rectan-
gle control points for moving it around and resiz-
ing it, as shown in Fig. 5. The user can easily
resize and move the selected component by drag-
ging its handles.

Structured Storage and Migration

While migrating over a network and being stored
on a disk, each component must be responsible
for transforming its own contents and codes into
a stream of bytes by using the serialization facility
of the runtime system. However, the frame object
of each component is not stored in the component.

Informatica 17 page xxx—yyy 7

Window Component

[=[]
| T n I‘
Compcl)nent Rectangle Control Point

Figure 5: Selected Component and its Rectangle
Control Points.

Instead, it is dynamically created and allocated
in its container’s frame, when it becomes visible
and restored. The framework automatically re-
moves frame objects of each component from the
screen and stores specified attributes of the frame
object in a list of values corresponding to the at-
tributes, because other frame objects may refer
to objects that are not serializable, such as sev-
eral visible objects in the Java Foundation Class
package. After restoring such serialized streams
as components at the destination, the framework
appropriately redraws the frames of the compo-
nents, as accurately as possible.

Network-Wide Component Assembly

Nowadays, cut-and-paste is one of the most com-
mon manipulations for assembling visible compo-
nents. However, while a cut-and-paste on a single
computer is easy, the system often forces users
to transfer information between computers in a
very different way. Therefore, our framework of-
fers a mechanism for cutting and pasting between
different computers. When a cut operation oc-
curs at a component in one (source) container, the
mechanism marshals the component and trans-
mits the resulting byte sequence to another (des-
tination) container at a local or remote computer
by using the agent migration management of Mo-
bileSpaces. It becomes an infrastructure for pro-
viding a network-wide and direct manipulation
technique, such as Pick-and-Drop that is a kind of
network-wide drag-and-drop manipulations stud-
ied in [11].

8 Informatica 17 page xxx—yyy

4.4 Current Status

The MobiDoc framework has been implemented
in the MobileSpaces system using the Java lan-
guage (JDK1.2 or later version), and we have de-
veloped various components for compound docu-
ments, including the examples presented in this
paper. The MobiDoc framework and the Mo-
bileSpaces System are constructed independently
of the underlying system and can run on any com-
puter with a JDK 1.2-compatible Java runtime
system.

MobileSpaces is a general-purpose mobile agent
system. Therefore, mobile agents in the system
may be unwieldy as components of compound
documents, but our components can inherit the
powerful properties of mobile agents, including
their activity and mobility. Security is essen-
tial in compound documents as well as mobile
agents. The current system relies on the Java se-
curity manager and provides a simple mechanism
for authentication of components.
component can judge whether to accept a new in-
ner component or not beforehand, while the inner
components can know the available methods em-
bedded in their containers by using the class intro-
spector mechanism of the Java language. Further-
more, since a container agent plays a role in pro-
viding resources for its inner agent, it can limit the
accessibility of its inner components to resources
such as window, mouse, and keyboard, by hiding
events issued from these resources.

A container

Even though our implementation was not built
for performance, we have conducted a basic ex-
periment on component migration with comput-
ers (Pentium ITI-800MHz with Windows2000 and
SUN JDK 1.2). The time of a component mi-
gration from a container to another container in
the same hierarchy was measured to be 30 ms,
including the cost to draw the visible content of
the moving component and to check whether the
component is permitted to enter the destination
agent. The cost of component migration between
two computers connected by Fast-Ethernet was
measured to be 120 ms. The cost is the sum of the
marshaling, compression, opening a TCP connec-
tion, transmission, acknowledgment, decompres-
sion, security and consistency verifications, un-
marshaling, layout of the visual space, and draw-
ing of the contents. The moving component is a
simple text viewer and its size (the sum of code

I. Satoh

and data) is about 4 Kbytes (zip-compressed).
We believe that the latency of component migra-
tion in our framework is reasonable for a Java-
based visual environment for building documents.

5 Examples

The MobiDoc compound document framework is
powerful and flexible enough to support radically
different applications. This section shows some
examples of compound documents based on the
MobiDoc framework.

5.1 Electronic Mail System

One of the most illustrative examples of the Mo-
biDoc framework is for the provision of mobile
documents for communication and workflow man-
agement. We have constructed an electronic mail
system based on the framework. The system con-
sists of an inbox document and letter documents
as shown in Fig. 6. The inbox document provides
a window that can contain two components. One
of the components is a history of received mails
and the other component offers a visual space for
displaying the contents of mail selected from the
history. The letter document corresponds to a
mobile agent-based letter and can contain various
components for accessing text, graphics, and an-
imation. It also has a window for displaying its
contents. It can migrate itself to its destination,
but it is not a complete GUI application because
it cannot display its contents without the collab-
oration of its container, i.e., the inbox document.

For example, to edit the text in a letter compo-
nent, one simply clicks on it, and an editor pro-
gram is invoked by the in-place editing mechanism
of the MobiDoc framework. The component can
deliver itself and its inner components to an in-
box document at the receiver. After a moving
letter has been accepted by the inbox document,
if a user clicks a letter in the list of received mail,
the selected letter creates a frame object of itself
and requests the document to display the frame
object within the frame of the document. The
key idea of this mail system is that it combines
different mobile agent-based components into a
seamless-looking compound document and allows
us to immediately display and access the contents
of the components in-place. Since the inbox doc-

MOBIDOC: A MOBILE AGENT-BASED FRAMEWORK Informatica 17 page xxx—yyy 9
i [Untitled Messaee 1
: Tn-: |\chiro@\s\ab ig.0cha.acip
el ;
Send || save Image Viewer Component

Letter Component ;
(Container Mobile Agent)

IThiS paper presents a new framework for constructing mobile

\agents. The framewark introduces the notion of agent hierarchy an |

d inter-agent migration and thus allows group of mobile agerts |
0 be dynamically assembled into a single mobile agent. =

= |i-" (Inner Mobile Agent)

| ____Text Editor Component
(Inner Mobile Agent)

Figure 6: Structure of a Letter Document.

ument is the root of the letter component, when
the document is stored and moved, all the compo-
nents embedded in the document are stored and
moved with the document.

5.2 Desktop Teleporting

We constructed a mobile agent-based desktop sys-
tem similar to the Teleporting System and the
Virtual Network Computing system. These sys-
tems are based on the X Window System and
allow the running applications in the computer
display to be redirected to a different computer
display.

In contrast, our desktop system consists of mo-
bile agent-based applications and thus can mi-
grate not only the appearance of applications but
also the applications themselves to another com-
puter (Fig. 7). The system consists of a window
manager document and its inner applications.
The manager corresponds to a desktop document
at the top of the component hierarchy of applica-
tions separately displayed in their own windows
on the desktop on the screen. It can be used to
control the sizes, positions, and overlaps of the
windows of its inner applications. When the desk-
top document is moved to another computer, all
the components, including their windows, move to
the new computer. The framework tries to keep
the moving desktop and applications the same as
when the user last accessed them on the previous
computer, even when the previous computer and
network have stopped. For example, the frame-
work can migrate a user’s custom desktop and
applications to another computer that the user is
accessing.

6 Conclusion

We have presented an approach for building com-
pound documents. The key idea of the approach
is to build compound documents from hierarchical
mobile agents in the MobileSpaces system, which
allows more than one mobile agent to be dynam-
ically assembled into a single mobile agent. Our
approach allows a compound document to be dy-
namically composed of mobile components and to
be migrated over a network as a whole with its
inner components under its own control. We de-
signed and built a framework, called MobiDoc, to
demonstrate the usability and flexibility of this
approach. The framework provides value-added
services for coordinating mobile agent-based com-
ponents embedded in a document.

Finally, we would like to point out further is-
sues to be resolved. To develop compound doc-
uments more effectively, we need a visual builder
for our mobile components. We plan to extend
a visual builder tool for JavaBeans, such as the
BeanBox system included in the Bean Develop-
ment Kit (BDK) [15], so that can support mobile
agent-based compound documents. In the cur-
rent system, resource management and security
mechanisms are incorporated relatively straight-
forwardly. These should now be designed for mo-
bile compound documents. Additionally, the pro-
gramming interface of the current system is not
yet satisfactory. We plan to design a more ele-
gant and flexible interface incorporating existing
compound document technologies.

References

[1] Apple Computer Inc. (1994) OpenDoc: White Paper,
Apple Computer Inc.

10

[13]

[14]

Informatica 17 page xxx—yyy I. Satoh

Clock Window
(Inner Component)

Editor Window
(Inner Component)

Window Manager
(Container Component)

Computer B

Computer A
(source) (destination)

Figure 7: Desktop Teleporting to another Computer.

Arnold, K. & Gosling, J. (1998) The Java Program- [15] Sun Microsystems (1998) The Bean Development Kit,

ming Language, Addison-Wesley. http://java.sun.com/beans, Sun Microsystems.
Baumann, J. Hole, F., Rothermel, K., & Strasser, M., [16] Szyperski, C. (1998) Component Software, Addison-
(1999) Mole - Concepts of A Mobile Agent System, Wesley.

Mobility: Processes, Computers, and Agents, pp.536-
554, Addison-Wesley.

Brockschmidt, K. (1995) Inside OLE 2, Microsoft
Press.

Cable, L. (1997) Eztensible Runtime Containment
and Server Protocol for JavaBeans, Sun Microsfys-
tems, http://java.sun.com/beans.

Gschwind, T., Feridun, M., & Pleisch, S. (1999) ADK:
Building Mobile Agents for Network and System Man-
agement from Resuable Components, Technical Uni-
versity of Vienna, TUV-1841-99-10.

Hamilton G. (1997) The JavaBeans Specification, Sun
Microsfystems, http://java.sun.com/beans.

Lange, B. D., & Oshima, M. (1998) Programming and
Deploying Java Mobile Agents with Aglets, Addison-
Wesley.

ObjectSpace Inc. (1997) ObjectSpace Voyager Techni-
cal Overview, ObjectSpace Inc.

Potel, M., & Cotter, S. (1995) Inside Taligent Tech-
nology, Addison-Wesley.

Rekimoto, J. (1997) Pick-and-Drop: A Direct Ma-
nipulation Technique for Multiple Computer Environ-
ments, ACM Symposium on User Interface Software
and Technology (UIST’97), pp.31-39.

Satoh, I. (2000) MobileSpaces: A Framework for
Building Adaptive Distributed Applications Using a
Hierarchical Mobile Agent System, Proceedings of
International Conference on Distributed Computing
Systems (ICDCS’2000), pp.161-168, IEEE Computer
Society.

Satoh, I. (2000) MobiDoc: A Framework for Building
Mobile Compound Documents from Hierarchical Mo-
bile Agents, Proceedings of Symposium on Agent Sys-
tems and Applications / Symposium on Mobile Agents
(ASA/MA’2000), Lecture Notes in Computer Science,
Vol.1882, pp.113-125, Springer.

Satoh, I. (2001) Adaptive Protocols for Agent Migra-
tion, Proceedings of IEEE International Conference
on Distributed Computing Systems (ICDCS’2001),
pp-711-714, IEEE Computer Society.

[17] White, J. E. (1995) Telescript Technology: Mobile
Agents, General Magic.

