
Software Testing for Mobile and Ubiquitous Computing

Ichiro Satoh
National Institute of Informatics / Japan Science and Technology Corporation

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail: ichiro@nii.ac.jp

Abstract

We describe a framework that is used to build and test soft-
ware for ubiquitous and mobile computing. The approach
involves software-level emulators for computing devices.
Since each emulator is implemented as a mobile agent, it
can dynamically carry its target software to each of the
sub-networks that its device is connected to, on behalf of
the device, and it permits the software to interact with other
servers in its current sub-network. The framework can sim-
ulate the mobility and reconnection of mobile or ubiquitous
computing devices by using the logical mobility of mobile
agent-based emulators. That is, it can test software de-
signed to run on a mobile or ubiquitous device in the same
way as if the software were disconnected from the network,
moved with the device, and reconnected to and executed
on another network. This paper describes the lessons we
learned from exploiting the framework in developing typical
application software for mobile and ubiquitous computing
devices.

1 Introduction

The development of software for ubiquitous and mobile
computing devices is very difficult due to the limited com-
putational resources that these devices have. Furthermore,
recent advances in networking technology have made soft-
ware development tedious and extremely susceptible to
change, because modifications to network connectivity and
location may lead to very sudden and unpredictable changes
in contextual information. That is, a change in the network
and location implies movement away from the servers cur-
rently in use, toward new ones. For example, a handheld
device with a short-range radio link, such as IEEE802.11b
and Bluetooth, which is carried across the range of floors
of an office building may have access to different resources,
such as printers and directory information for visitors, on
each floor. Therefore, to construct suitable software, the
developer must test it in all the possible network environ-

ments that the device might be connected to. However, cur-
rent work on ubiquitous and mobile computing has often fo-
cused on creating network and system infrastructures, small
and low-power devices, user interfaces, and context-aware
systems. Unfortunately, the task of building and testing the
software for it has attracted little attention so far. This is
a serious impediment to its growth beyond mere laboratory
prototypes. To solve this problem, a software development
approach that is suited to ubiquitous and mobile computing
is needed. In fact, we previously introduced a framework
for the development of software that ran on portable (but
not ubiquitous) devices in an earlier paper [17]. However,
since the goal of the original framework was not to support
ubiquitous devices, it could not be used to test the software
that used the discovery and management services for these
devices, such as Jini and UPnP.

This paper presents a new framework for building and
testing networked application software for ubiquitous and
mobile computing. It addresses the development of net-
worked application software running on ubiquitous and mo-
bile computing devices that can be connected to servers
through wired or short-range wireless networks. The key
idea behind the framework is to introduce a mobile agent-
based emulator for the target computing device. It performs
application-transparent emulation of its target device for ap-
plications written in the Java language. Furthermore, since
it is implemented as a mobile agent, it can carry its appli-
cations to remote networks according to patterns of physi-
cal mobility and test them in these environments. Also, the
framework provides a platform for building ubiquitous and
mobile computing applications from a collection of Java-
based software components, allowing such applications to
be executed on its target portable device without having to
be modified or recompiled.

The remainder of this paper is organized as follows. Sec-
tion 2 is a survey of related work and Section 3 explains the
framework for building and testing mobile computing ap-
plications. Section 4 is a brief review of our mobile agent
system and the design and implementation of the framework
are presented in it. Section 5 demonstrates the usability of



the framework through two real-world examples. Section
6 has the conclusion and provides suggestions for future
work.

2 Requirements

The goal of this paper is to offer a framework for testing
network-dependent application software, which is designed
to run on ubiquitous or mobile computing devices, such
as information appliances, smart sensors, mobile phones,
PDAs, and notebook-PCs, and which may often access
servers on local networks in the device’s current location
either through wired networks such as the Ethernet or short-
range wireless networks such as the IEEE802.11b or Blue-
tooth.

Software that is to be tested for ubiquitous or mobile
computing devices needs to satisfy the following require-
ments.

Network-dependency and Interoperability

Cooperation among ubiquitous devices and servers within
a domestic or office network is an indispensable because it
complements various missing features in the device. As a
result, the appropriateness of the software running on the
device not only depends on its internal execution environ-
ment, but also the external environments provided by the
network that it connects to. Moreover, testing the interop-
erability of various devices often tends to be tedious, since
there are countless varieties of devices, with which the tar-
get device can cooperate.

Spontaneous and Plug-and-Play Management

Since a ubiquitous computing environment is dynamic, we
require zero user configuration and administration. To solve
this problem, several middleware systems, such as Jini [2]
and Universal Plug and Play (UPnP) [14], have often been
used to manage devices. These middleware systems use
multicast communications to find their management servers
and devices, where multicast-based messages may only
be transmitted to the hosts within specified sub-networks.
Therefore, the target software to run on ubiquitous comput-
ing devices must be tested within the sub-networks that the
devices can be connected to.

Mobility and Disconnection

Mobile devices may be disconnected from the network of
the current location and then reconnected to that of another
location. Changing the network and location implies move-
ment away from the servers currently in use, toward new
ones. That is, as a device moves across sub-networks, or

joins or leaves a sub-network, some new servers become
available from the software running on it or it may no longer
be able to access previous servers. Such software must be
tested in all the network environments that the device could
possibly be moved to or attached to. Even when a device
is disconnected from the network, it may perform its own
tasks independently of other devices for reasons of avail-
ability.

3 Related Work

A typical ubiquitous or mobile computing device has a less
powerful processor with less memory and a limited user in-
terface with a clamped keyboard and small screen. It is
therefore difficult to build and debug the software for it
within the device itself. A popular and practical solution
to this problem is to offer a software-based emulator for the
target device. Actually, some portable computing devices,
such as Palm-sized PDAs and smart mobile phones, have
their own software-based emulators, which are designed to
run on workstations and simulate the application-level exe-
cution environments of the devices. These emulators have
been widely used in the development of software for such
devices.

However, existing emulators are not always available
for the development of network-dependent software in the
sense that the software may have access to servers on cur-
rent sub-networks. This is because they were designed to
emulate some limited target device resources and it is al-
most impossible for an emulator running on a standalone
computer to simulate the whole context that its target de-
vice interacts with through networks. The best way to solve
this problem is for the developer to actually carry a worksta-
tion running an emulator of the target device (or the device
itself) to run an application and to attach it to local networks
in the current location. However, this is extremely laborious
for the developer and consequently should only be resorted
to in the final phase of software development.

Another solution is to let the target software run on a lo-
cal workstation and link up with remote devices and servers
through networks, e.g., the InfoPad project at Berkeley [11]
and Lancaster University’s network emulator [4]. How-
ever, accomplishing this in a responsive and reliable man-
ner is difficult, and the emulators cannot remotely access
all the services and resources that are only available within
the local networks because of security concerns. More-
over, this approach is inappropriate since network traffic in-
creases when a large amount of data is exchanged between
the emulator and the remote servers. Also, since multicast
communications are often transmitted within specified sub-
networks due to reduced network traffic, they cannot be re-
ceived outside the sub-networks. As a result, target software
running on a workstation in a sub-network cannot access all



multicast-based services, including service discovery sys-
tems, such as Jini, UPnP and SDP, that can be accessed in
other sub-networks.

To our knowledge, there have been attempts to apply
mobile agent technology [6, 10], including mobile code
approach, to developing ubiquitous and mobile computing
apart from that described in our previous paper [17].

4 Approach

Our framework aims to solve the problems in the previous
section through a software-level emulator, which can simu-
late the internal execution environment of its ubiquitous or
mobile computing device like the approaches taken existing
works. The key idea behind the framework is the emulation
of the physical mobility of a ubiquitous or mobile comput-
ing device by using the software’s logical mobility, which
has been designed to run on the device over networks. Phys-
ical mobility entails the movement and reconnection of mo-
bile computing devices between sub-networks (see Figure
1), while logical mobility involves software, such as mobile
codes and mobile agents, that migrates among hosts on the
sub-networks (see Figure 2).

sub-network A

sub-network B

sub-network C

target

software

target

software

target

software

local servers

mobile computer

local servers

movement

movement

disconnection

connection

local servers

connection /

disconnection

Figure 1. Physical mobility of a portable de-
vice.

Each mobile agent is just a logical entity and must thus
be executed on a computer. Therefore, this framework as-
sumes that each of the networks into which the device may
be moved and attached to, has more than one special sta-
tionary host, called an access-point host, which offers a
runtime system for mobile agents. Each access-point host
is a runtime environment allowing applications running in
a visiting emulator to connect to local servers in its net-
work. That is, the physical movement of a portable com-
puting device from one network and its attachment to an-
other network is simulated by the logical mobility of a mo-
bile agent-based emulator with the target applications mov-
ing from an access-point computer in the source network to

migration

migration

target

software

target

software

target

software

emulator

emulator

emulator

access point host

access

point

host

sub-network A

sub-network B

sub-network C

local servers

local servers

local servers

access point host

Figure 2. Emulation of physical mobility
through logical mobility.

another access-point computer in the destination network.
Since each emulator is a mobile agent, it can basically carry
not only the code but also the states of its applications to the
destination, so the carried applications can basically con-
tinue their processes after arriving at another host as if they
have been physically moved with the targeted device. Since
the framework itself and applications are written in the Java
language, the target portable devices must support this lan-
guage. Moreover, while the framework does not require
any custom hardware, its current implementation requires
its target devices to offer TCP/IP communication over wired
or wireless networks.

Since each emulator is implemented as a mobile agent, it
can carry its target software to an access-point host, which
can be treated as a peep provided from its visiting emulator
for the devices to communicate with servers. The carried
software can maintain its previous processes and interact
with other devices and servers on the current sub-network
via the access-point host. Therefore, the developer can test
his/her target software that has been designed to run on its
target device on the access-point host in the sub-network
that the device can be moved and connected to. This means
that the framework can satisfy the first and second require-
ments discussed in the previous section. Moreover, since
the carried software is deployed and executed within the
domain of the current sub-network, it can directly receive
multicast packets such as Jini’s and UPnP’s management
messages that are available in the domain. Therefore, the
framework satisfies the third requirement and is useful in
testing the interoperability of various protocols for ubiqui-
tous computing.

5 Design and Implementation

This section describes our mobile agent-based framework.
The current implementation of this framework is based on a



Java-based mobile agent system called MobileSpaces [15].1

As Figure 3 shows, the framework has the following three
components:

� The mobile agent-based emulator, which can carry the
target software to specified access-point hosts on re-
mote networks on behalf of a target-mobile or ubiqui-
tous computing device.

� The access-point hosts, which are allocated to each
network and allow the software carried by an emula-
tor to connect with various servers running on the net-
work.

� The remote-control server, which is a front-end to the
whole system allowing us to monitor and operate the
moving emulator and its target software by remotely
displaying their graphical user interfaces on its screen.

In addition to the above, we provided a runtime system to
run on a ubiquitous or mobile device and support the execu-
tion of the tested software. As the framework is constructed
independently of the underlying system, it can run on any
computer with a JDK 1.1 or 1.2-compatible Java virtual ma-
chine, including Personal Java, and the MobileSpaces sys-
tem.

sub-network A

migration

migration

local servers

local servers

local servers

sub-network B

sub-network C
remote control

server

target

software

emulator

control message

access point host

access

point

host

control message

control message

mobile agent

based emulator

Figure 3. Architecture

5.1 Mobile Agent-based Emulator

We designed our mobile agent-based emulator to carry and
test applications that have been designed to run on its tar-
get computing device. Each mobile agent-based emulator
is just a hierarchical mobile agent of the MobileSpaces sys-
tem. Since every application is provided as a collection of
mobile agent-based components, the emulator can naturally
contain more than one mobile agent-based application and

1The framework itself is independent of the MobileSpaces mobile agent
system and can thus work with other Java-based mobile agent systems.

can migrate itself and its inner applications to other places.
Since such contained applications are still mobile agents,
both the applications running on emulator and the applica-
tions running on the device are mobile agents of the Mo-
bileSpaces system and can thus be executed in the same
runtime environment. Actually, this framework basically
offers a common runtime system to both its target devices
and access-point hosts, to minimize the differences between
them as much as possible. In addition, the Java virtual ma-
chine can actually shield applications from most features of
the hardware and operating system of target computing de-
vices. Figure 4 has the structure of a mobile agent-based
emulator running an access-point host.

Hardware / OS

Java VM

access point host

target software

sub-network

mobile agent-based emulator

mobile agent runtime system local severs

user

interface
network

execution

control

event

handler

migration

control

file

system

Figure 4. A mobile agent-based emulator run-
ning on an access-point host.

Emulation of Physical Mobility

Each emulator can have its own itinerary, listing hosts that
correspond to the physical movement pattern of its target
mobile device. The list is a sequence of the tuples of the
network address of the destination, the length of stay, and
the name of the method invoked upon arrival. An emula-
tor can interpret its own itinerary and then migrate itself
to the next destination. Such an itinerary can be dynami-
cally changed by the emulator itself and is statically defined
by the user through its graphical user interface as Figure 6
shows. Moreover, the developer can interactively control
the movement of the emulator through the remote-control
server.

When a mobile computing device moves in physical
space, it may still be running. However, our emulator can-
not migrate over networks when its inner applications are
running, because they must be suspended and marshaled
into a bitstream before being transferred to the destination.
To solve this problem, we designed our framework to di-
vide the life-cycle state of each application into the follow-
ing three phases: networked running, isolated running, and
suspended. In the networked running state, the software



is running in its emulator on an access-point host and is al-
lowed to link up with servers on the network. In the isolated
running state, the software is still running but is prohibited
from communicating with any servers and devices on the
network. This means that the device is disconnected from
the network. In the suspended state, the emulator stops its
target software and maintains the execution states, such as
program variables, for the software by marshaling itself into
a bit stream as a whole with the states and code of its target
software. For example, the reconnection of a disconnected
device is emulated by a combination of the isolated run-
ning state and the networked-running state of the software
designed to run on the device.

isolated()suspending()

networked()resumed()

terminating()terminating()

created()

isolated

running

mode

networked

running

mode

suspended

mode

Figure 5. Callback method invocations in ex-
ecution mode transition

When an emulator is suspended or migrated over net-
works, it can marshal itself into a bit stream as a whole
with the heap blocks and codes of its target software since
it is implemented as a mobile agent. The emulator also
dispatches certain events to its target software to explicitly
restart (or stop) its activities and acquire (or release) the
computational resources of the current host when the life-
cycle state of the software is changed, as shown in Figure
5. In addition, our framework can provide each ubiquitous
device with a lightweight middleware to monitor the envi-
ronment of the device and dispatch certain events to its tar-
get as a mobile agent-based emulator corresponding to the
device.

Figure 6. The user interface of a mobile agent-
based emulator.

Emulation of Computing Devices

The framework assumes that its target software will be Java
application program. Accordingly, the Java virtual machine
can actually shield such target software from many features
of the hardware and operating system of ubiquitous devices.
Each emulator permits its target software to have access to
the standard classes commonly supported by the Java virtual
machine as long as the target device offers these. In addi-
tion, the current implementation of our emulator supports
several typical resources of ubiquitous devices as follows:

File Storage: Each emulator can maintain a database to
store files. Each file can be stored in the database as a pair
consisting of its file/directory path name pattern and its con-
tent. Each emulator provides basic primitives for file oper-
ation, such as creation, reading, writing, and deletion and
also allows a user to insert files into itself through its graph-
ical user interface.

User Interface: The user interfaces of most handheld
computers are limited by their screen size, color, and reso-
lution, and they may be not equipped with traditional input
devices such as a keyboard or mouse. Each emulator can
explicitly constrain only the size and color of the user inter-
face available from its inner applications by using a set of
classes for the visible content of the MobileSpaces system,
called MobiDoc, developed by the author [16]. As will be
discussed later, our framework also enables the developer
to view and operate the user interfaces of applications in an
emulator on the screen of its local computer, even when the
emulator is being deployed at remote hosts.

Network: When anchored at an access-point host, each
emulator can directly inherit most network resources from
the host, such as java.net and java.rmi packages. In
the current implementation, a moving emulator cannot have
its own network identifier, such as an IP address and port
number. However, this is not a serious problem because
most applications on a computing device are provided as
client-side programs, rather than server-side ones, as dis-
cussed in [8]. For example, Figure 7 shows the emula-
tion of a ubiquitous device when the device is connected
to a sub-network in a plug-and-play manner and the soft-
ware running on it is interacting with other devices through
multicast-communications. For example, when arriving at
an access-point host, each emulator can directly exploit
most network resources from the host, such as java.net
and java.rmi packages. Although a moving emulator
cannot have its own unique network identifier, such as an IP
address and port number, it can inherit the identifier of the
access-point host that it is running on.



plug-and-play
connection

sub-network (multicast domain)

target
software

target
software

emulator

sub-network (multicast domain)

multicast-based
management

multicast-based
management

access point
host

access point
host

target
software

emulator

A)

B)

agent
migration

Figure 7. Emulation of (A) the plug-and-play
operation of a ubiquitous device by (B) the
migration of the emulator for the device be-
tween access-point hosts

Serial Port: Each emulator can permit its target software
to be Java’s communication APIs (Java COMM), if they
are provided on the device that the emulator runs on. Fur-
thermore, the framework offers a mechanism that allows its
target software to have access to equipment running on re-
mote computers via serial ports. The mechanism consists of
proxies whose interfaces are compatible with Java’s com-
munication APIs and which can forward the port’s signals
between the emulator and the remote-control server through
TCP/IP channels. In almost all Intranet situations, a firewall
prevents users from opening a direct socket connection to a
node across administrative boundaries.

5.2 Access-point Host

As previously mentioned, the framework presented in this
paper is built on the MobileSpaces mobile agent system.
Each access-point host offers a MobileSpaces runtime sys-
tem for executing the mobile agent-based emulator and mi-
grating it to another access-point host. When an agent is
transferred over a network, the runtime system stores the
state and codes of the agent, including software, in a bit-
stream defined by Java’s JAR file format, which can support
digital signatures for authentication. The MobileSpaces
runtime system supports a built-in mechanism for transmit-
ting the bitstream over networks through using an exten-
sion of the HTTP protocol. In almost all Intranet situations
there is a firewall that prevents users from opening a direct
socket connection to a node across administrative bound-
aries. Since the mechanism is based on a technique called

HTTP tunneling, it enables agents to be sent outside a fire-
wall as HTTP POST requests, and responses to be retrieved
as HTTP responses.

Also, each access-point host is treated as a peep of the
resources and services provided in its network from the ap-
plications in a visiting emulator. This framework assumes
more than one access-point host is allocated in each net-
work, to which the target computing device may be at-
tached. Each access-point host is constructed based on a
common runtime system that can be used for targeted de-
vices and run on a standard workstation without any cus-
tom hardware. Many applications have their own graphical
user interfaces. To test such applications, our framework
should offer a mechanism for remotely viewing and operat-
ing these user interfaces on the screen of the remote control
server, instead of on the screen of their current hosts. The
mechanism is constructed on the Remote Abstract Window
Toolkit (RAWT) developed by IBM [7]. This toolkit allows
Java programs that run on a remote host to display GUI data
on a local host and receive GUI data from it. Each access-
point host can be incorporated with the toolkit, thus allow-
ing all the windows of applications in a visiting emulator
to be displayed on the screen of the control server and oper-
ated using the keyboard and mouse of the server. Therefore,
no access-point hosts do not have to offer any graphics ser-
vices.

5.3 Remote-control Server

This server is a control entity responsible for managing the
whole system. It can run on a standard workstation that sup-
ports Java. It can always track the locations of all the emula-
tors, because each access-point host sends certain messages
to the control server whenever the moving emulators arrive
or leave. Moreover, the server acts as a graphical front end
for the system and thus allows the developer to freely in-
struct moving emulators to migrate to other locations and
terminate, through its own graphical user interface. More-
over, by incorporating with a server of the RAWT toolkit, it
enables us to view and operate the graphical user interfaces
of targeted applications on behalf of their moving emula-
tors. It also can monitor the status of all access-point hosts
by periodically multicasting query messages to them.

5.4 Runtime System on Target Devices

This framework offers a lightweight runtime system to each
target computing device. Each runtime system supports
the execution of the software tested by our mobile agent-
based emulators and monitors the environment of the de-
vice, including its characteristics such as network connec-
tivity and location, to make the software aware of environ-
mental changes. When detecting changes, it invokes certain



of the methods of the software. Moreover, the runtime sys-
tem provides a collection of service methods to allow soft-
ware to have access to the device, without any particular
knowledge of the operating system or hardware of its tar-
get device. There is no need to worry about the overheads
of the runtime system, because the performance of software
running on the minimum runtime system is almost equal to
that of corresponding applications executed directly on the
Java virtual machine.

5.5 Current Status

The current implementation of the framework supports em-
ulators for four kinds of computing devices: standard note-
book PCs, pen-based tablet PCs, palm-sized PDAs, and em-
bedded computers that monitor and control equipment via
RS232C-based serial ports. The features of the framework
are summarized as:

� Like other computer emulators, this framework can
provide software-level emulation of its target portable
device for software designed by incorporating a Java
virtual machine.

� Depending on the movement and (dis)connection pat-
terns of its target device, the mobile agent-based emu-
lator can carry software on its behalf to networks that
the device may be moved and connected to.

� The emulator allows us to test and debug software with
the services and resources, including multicast-based
services, provided through its current network as if
the software were being executed on the target device
when attached to the network.

� The framework does not need any special equip-
ment. Most existing Java-enabled application-specific
servers can be used as access-point hosts by supply-
ing runtime systems for mobile agent-based emulators.
The remote-control server is operated on an ordinary
PC.

� Software tested successfully in the emulator can still
run in the same way without being modified or recom-
piled.

As previously mentioned, it is constructed on a Java-based
mobile agent system called MobileSpaces [15], but we be-
lieve that the framework itself can work with other Java-
based mobile agent systems.2

2Although the MobileSpaces system is characterized by the notion of
hierarchical mobile agents, the framework presented in this paper is re-
constructed independently of the system, unlike the original framework
presented in our previous paper [17].

6 Applications

To demonstrate the utility of our framework, we tested two
typical systems in ubiquitous computing settings.

6.1 UPnP-based Management System

In a previous project [12], we implemented a subset of the
UPnP protocol written in Java. Using this framework, we
tested the interoperability of our UPnP implementation and
other UPnP-aware devices. UPnP is an infrastructure for
managing various devices such as smart appliances, embed-
ded computers, and PCs. It uses a multicast-based man-
agement protocol, called Simple Service Discovery Proto-
col (SSDP), to announce a device’s presence to others as
well as to discover other devices or services. For example,
a joining device sends out a multicast message to adver-
tise its services to the UPnP’s control points. Since UPnP’s
multicast messages are available within the domain of spec-
ified sub-networks, our UPnP aware-software designed to
run on a device, must operate within the domain to receive
the messages. Therefore, we constructed a mobile agent-
based emulator just as a carrier for the software. When the
emulator arrives at an access-point host within the domain,
the software it carries can send out an advertisement mul-
ticast message and receive search multicast messages from
other devices in the domain as if the emulator’s target were
joined to the domain. In addition, the software tested suc-
cessfully in the emulator can still be run in the same way
without modifying or recompiling it. This example demon-
strates that our framework can provide a powerful method-
ology for testing the interoperability of protocols, limited
within specified sub-networks for reasons of security and
reduced network traffic.

6.2 Printer Management System

Through this example, we explain the development of a
location-dependent printing service system for users that
are moving through a building. In the current implemen-
tation of the system, each floor of the building has one or
more printers of various types that are managed by the Jini
system [2]. Each floor is covered by one or more ranges of
IEEE802.11b wireless sub-networks without any overlap in
these ranges. Also, all users moving in a building have a
portable computing device equipped with an IEEE802.11b
network interface.3 As the user is moving from floor to
floor, the server allocated in the sub-network automatically
advertises its printers to the visiting device. To construct

3The implementation assumes our target device is a PC-based portable
computer because other devices such as PDAs and mobile phones cannot
currently support Jini.



Jini client-side software designed to run on a portable com-
puting device, the developer needs to carry the device, at-
tach it to the sub-network of each floor, and then check
whether it can successfully access every printer on the cur-
rent floor. This framework could successfully be used to test
the system. We constructed a mobile agent-based emulator
for the device that can migrate the client-side software to the
sub-network of another floor. It then allows the software to
interact with Jini’s servers to access the printer for the floor.
While it is impossible to measure the framework’s benefits
in a quantitative manner, it eliminates the task of the devel-
oper having to go up and down the stairs while carrying a
portable device simply to verify whether it can successfully
print out data from the networked printers on the current
floor.

7 Conclusion

In this paper, we provided a framework for building and
testing software that had been designed to run on ubiquitous
or mobile devices. The key idea behind the framework was
to construct an emulator for target computing devices that
was implemented as a mobile agent. The emulator could
carry, deploy, and test software designed to run on its tar-
get portable device with the environment provided by the
sub-network in the same way as if the software had been
moved with and executed on the device when attached to
the sub-network. This approach could test most features of
ubiquitous or mobile devices, such as network-dependency,
mobility, and multicasting-based management. Our early
experience indicated that we could greatly reduce the time
required to develop software for ubiquitous and mobile de-
vices by using the framework.

There are also further issues that need to be resolved.
Security is one of the most serious concerns in mobile
agent technology. However, since our approach can be
used in the development phase instead of operation phases,
this issue is not serious, as it is in other mobile agent-
based applications. However, we plan to devise schemes
to guarantee security and control access, since the current
implementation relies on the JDK 1.1 security manager.
Also, our approach can be used to complement existing
software-development methodologies for ubiquitous com-
puting. Therefore, we are interested in making tools to inte-
grate our approach with other methodologies. The location-
aware mobile agent infrastructure we developed incorpo-
rates RF-based and infrared-based tag sensors [18] and the
framework we propose should be able to support theses.

Acknowledgments: We would like to thank the anony-
mous reviewers for their significant comments.

References

[1] G.D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and
M. Pinkerton, “Cyberguide: A Mobile Context-Aware Tour Guide”.
ACM Wireless Networks 3, pp.421–433. 1997.

[2] K. Arnold, A. Wollrath, R. Scheifler, and J.Waldo, “The Jini Specifi-
cation”. Addison-Wesley, 1999.

[3] K. Cheverst, N. Davis, K. Mitchell, and A. Friday, “Experiences
of Developing and Deploying a Context-Aware Tourist Guide: The
GUIDE Project”, Proceedings of ACM/IEEE Conference on Mobile
Computing and Networking (MOBICOM’2000), pp.20–31, 2000.

[4] N. Davies, G. S. Blair, K. Cheverst, and A. Friday, “A Network Em-
ulator to Support the Development of Adaptive Applications”, Pro-
ceedings of USENIX Symposium on Mobile and Location Indepen-
dent Computing, USENIX, 1995.

[5] W. K. Edwards and R. E. Grinter “At Home with Ubiquitous Com-
puting: Seven Challenges”, Proceedings of Ubiquitous Computing
(Ubicomp’2001), pp.256-272, LNCS, Vol. 2201, Springer, 2001.

[6] A. Fuggetta, G. P. Picco, and G. Vigna, Understanding Code Mobil-
ity, IEEE Transactions on Software Engineering, 24(5), 1998.

[7] International Business Machines Corporation, “Remote Abstract
Window Toolkit for Java”, http://www.alphaworks.ibm.com/, 1998.

[8] J. Jing, “Client-Server Computing in Mobile Environments”, ACM
Computing Survey.

[9] T. Kindberg and A. Fox, “System Software for Ubiquitous Comput-
ing”, Pervasive Computing, Vol.1, No.1, pp.70-81, IEEE Computer
Society, 2002.

[10] B. D. Lange and M. Oshima, “Programming and Deploying Java Mo-
bile Agents with Aglets”, Addison-Wesley, 1998.

[11] M. Le, F. Burghardt, and J. Rabaey, “Software Architecture of the In-
fopad System”, Workshop on Mobile and Wireless Information Sys-
tems. 1994.

[12] T. Nakajima, I. Satoh, and H. Aizu, “A Virtual Overlay Network for
Integrating Home Appliances”, Proceedings of International Sympo-
sium on Applications and the Internet (SAINT’2002), pp.246-253,
IEEE Computer Society, January, 2002.

[13] D. Salber, A. K. Dey, and G. D. Abowd, “The context toolkit: Aid-
ing the development of context-enabled applications” Proceedings
of Conference on Human Factors in Computing Systems (CHI’99),
pp.434-441, ACM Press, 1999.

[14] Microsoft Corporation, “Universal Plug and Play
Device Architecture Version 1.0” June, 2000.
http://www.upnp.org/UpnPDevice Architecutre 1.0.htm

[15] I. Satoh, “MobileSpaces: A Framework for Building Adaptive Dis-
tributed Applications Using a Hierarchical Mobile Agent System”,
Proceedings of International Conference on Distributed Computing
Systems (ICDCS’2000), pp.161-168, IEEE Computer Society, April,
2000.

[16] I. Satoh, “MobiDoc: A Framework for Building Mobile Compound
Documents from Hierarchical Mobile Agents”, Proceedings of Sym-
posium on Agent Systems and Applications / Symposium on Mo-
bile Agents (ASA/MA’2000), Lecture Notes in Computer Science,
Vol.1882, pp.113-125, Springer, 2000.

[17] I. Satoh, “Flying Emulator: Rapid Building and Testing of Net-
worked Applications for Mobile Computers”, Proceedings of Con-
ference on Mobile Agents (MA’2001), LNCS, Vol.2240, pp.103-118,
Springer, December, 2001.

[18] I. Satoh, “Physical Mobility and Logical Mobility in Ubiquitous
Computing Environments”, Proceedings of 6th International Confer-
ence on Mobile Agents (MA’2002), LNCS, Vol.2535, pp.186-202,
Springer, October, 2002.

[19] B. Schilit, N. Adams, R. Want, “Context-Aware Computing Applica-
tions” Proceeding of Workshop on Mobile Computing Systems and
Applications, IEEE Computer Society, 1994.


